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We study the Drell-Yan cross section differential with respect to the transverse momentum of the
produced lepton pair. We consider data with moderate invariant mass Q of the lepton pair, between 4.5 and
13.5 GeV, and similar (although slightly smaller) values of the transverse momentum qT . We approach the
problem by deriving predictions based on standard collinear factorization, which are expected to be valid
toward the high-qT end of the spectrum and to which any description of the spectrum at lower qT using
transverse-momentum dependent parton distributions ultimately needs to be matched. We find that the
collinear framework predicts cross sections that in most cases are significantly below available data at high
qT . We discuss additional perturbative and possible nonperturbative effects that increase the predicted cross
section, but not by a sufficient amount.
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I. INTRODUCTION

The Drell-Yan (DY) process [1] is one of the main
sources of information about the internal structure of the
nucleon (for a recent review, see [2]). Factorization theo-
rems were first established for DY [3], and global extrac-
tions of parton distribution functions (PDFs) heavily rely
on measurements of the DY cross section differential in
the rapidity of the produced boson (see, e.g., [4,5] and
references therein). DY processes also offer the possibility
to access transverse-momentum distributions (TMDs)
[6–15], if the cross section is kept differential in the
transverse momentum of the produced boson.
Considering the invariant mass of the produced boson,

Q, its transverse momentum, qT , and a typical QCD scale,
ΛQCD, we can distinguish a region of “high transverse

momentum”1 where ΛQCD ≪ qT ∼Q and a region of “low
transverse momentum” where qT ≪ Q. In the first region,
the cross section should be well described by a collinear
factorization framework in terms of collinear PDFs con-
voluted with a partonic hard scattering calculated up to a
fixed order in αs. This calculation is nowadays possible
even up to order α3s [next-to-next-to-leading order (NNLO)]
[17], but most of the phenomenology is carried out at order
α2s [next-to-leading order (NLO)] [18–25] or even only order
αs [leading order (LO)].
In the low transverse momentum region, the cross

section should be described in the framework of TMD
factorization, which also incorporates the effects of the
resummation of large logarithms in qT=Q. The all-order
corrections dominating the cross section in this region are
embodied in the so-called “W term” of the Collins-Soper-
Sterman formalism [26]. The matching of the collinear
formalism at high qT with the TMD resummation at low qT
is usually performed through the introduction of the
so-called “Y term”, i.e., the difference of the fixed-order
perturbative result and the asymptotic expansion of the
resummed result. In the low-qT region, the asymptotic
piece and the fixed-order one ideally cancel each other,
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1Note that sometimes also qT ≫ Q is referred to as the Drell-
Yan high transverse momentum regime; see Ref. [16]. This
regime is usually not accessible in fixed-target scattering and will
therefore not be addressed in the present paper.
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leaving only theW term. In the high-qT region, on the other
hand, the cancellation takes place between the asymptotic
piece and the W term. The situation is more complicated
if also the angular dependence of the DY cross section is
taken into consideration (see, e.g., [27–30]).
Both regimes, qT ≪ Q and qT ∼Q, as well as their

matching, must be under theoretical control in order to have
a proper understanding of the physics of the Drell-Yan
process. In the present work, we study the process at fixed-
target energies for moderate values of the invariant mass Q
and in the region qT ≲Q. We focus on the predictions
based on collinear factorization and examine their ability to
describe the experimental data in this regime. We find, in
fact, that the predicted cross sections fall significantly short
of the available data even at the highest accessible values
of qT . We investigate possible sources of uncertainty in
the predictions based on collinear factorization, and two
extensions of the collinear framework: the resummation of
high-qT threshold logarithms, and transverse-momentum
smearing. None of these appear to lead to a satisfactory
agreement with the data. We argue that these findings also
imply that the Drell-Yan cross section in the “matching
regime” qT ≲Q is presently not fully understood at fixed-
target energies.
We note that a similar problem has been reported in [31]

for semi-inclusive deep inelastic scattering (SIDIS) proc-
esses in the region of large transverse momenta, where
large disagreements have been observed also in this case
between fixed-order calculations and experimental data.
The discrepancies we report here arguably appear more
serious since the calculation of the Drell-Yan cross section
relies on the very well constrained PDFs, while SIDIS is
also sensitive to the comparably more poorly known
fragmentation functions.

II. MOTIVATION: FROM TMDs TO
THE MATCHING REGIME

As described in the Introduction, the regime qT ≪ Q
may be addressed in terms of TMD factorization, and
numerous studies using fixed-target Drell-Yan data have
been carried out [6–15], which however only address the
region qT ≲ 1.5 GeV and do not make any attempt to
perform a matching to a fixed-order calculation at higher
qT . Indeed, extending the description to the whole qT
spectrum is a delicate task. To understand the related issues,
it is worth summarizing here the basic ideas behind the
most common matching procedures (for detailed exposi-
tions, we refer the reader to dedicated studies, e.g., [26,32]).
The low-qT formula for the cross section, which embod-

ies TMD physics, has the following expression:

dσ
dqT

∝ WðqTÞ ¼
Z

d2b
ð2πÞ2 e

ib·qT

×WpertðxA; xB; b�ðbÞ; QÞWNPðxA; xB; b;QÞ; ð1Þ

where Wpert contains soft-gluon resummation and WNP the
nonperturbative terms. The observed transverse-momentum
distribution is thus a convolution of the two contributions.
Since perturbative calculations would hit the Landau pole
at large values of b, one common solution is to freeze the
impact parameter b beyond a threshold bmax, by introducing
the function b�ðbÞ, constructed in such a way that b� ≃ b
when b ≪ bmax, and b� ¼ bmax when b > bmax.
With increasing qT , one expects a smooth transition from

TMD physics to collinear factorization. A common way to
describe this transition is the following: a correction term
(so-called Y-term) is added to Eq. (1), in order to approxi-
mate the subleading (in powers of qT=Q) contributions that
are not present in the resummed formula. It is given by the
difference between the fixed-order and asymptotic cross
sections:

YðqTÞ ∝
dσ
dqT

ðf:o:Þ
−

dσ
dqT

ðasyÞ
; ð2Þ

where the asymptotic piece is obtained by isolating the
terms in the fixed-order expression that are most divergent
for qT=Q → 0. In an ideal situation, at some point as qT
increases toward Q, the asymptotic term in Eq. (2) cancels
with the W term, so that the sum W þ Y approaches the
fixed-order cross section (see, e.g., Sec. 1.4 of [32]).
The matching procedure can pose serious problems

when Q is not very high, as was shown in [33] for the
case of SIDIS.2 The observed problems can be summarized
as follows: the high-qT tail of the TMD formula shows
sensitivity to the nonperturbative parameters and to the
details of the b� function, preventing a proper cancellation
with the Y term. It is straightforward to check that this
behavior is also present in Drell-Yan at fixed-target
kinematics. To give an example, in Fig. 1 we show the
effect of extrapolating the TMD fitted in [13] to high qT .
Although the asymptotic curve drops very rapidly at some
point, signaling that OðqT=QÞ corrections should become
dominant, the TMD extends far beyond, owing to the
nonperturbative Sudakov contribution. For illustration, we
have used two different forms of b� employed in Ref. [13]
(see Eqs. (3.18) and (3.19) there), the standard “square-root
form,” for which

b� ¼ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2=b2max

p ; ð3Þ

and the “exponential form”

b� ¼ bmax

�
1 − exp

�
−

b4

b4max

��1
4

: ð4Þ

As can be seen in the left part of Fig. 1, the two forms lead
to rather different predictions for the cross section beyond
qT ¼ 2.5 GeV. We note that also the behavior of the Wpert

2It is striking that the problems were found to persist even to
HERA-like kinematics, withQ2¼100GeV2 and

ffiffiffi
s

p ¼ 300 GeV.
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andWNP for b → 0 is expected to play a role here. All in all,
while on the one side the shape of the data seems to suggest
that TMD physics is indeed involved in some form up to
transverse momenta as high as 2.5 GeV, one has to admit at
the same time that presently there is not a good under-
standing of the TMD formalism in this region. The TMD
tail is largely affected by nonperturbative elements, such as
the functional form of b�.
The procedure for the matching to fixed order is afflicted

by large uncertainties as well. This is shown in the right part
of Fig. 1, for which we include the matching based on the
scheme proposed in Ref. [35]. Without entering into
details, we only mention that this procedure forces the
use of pure fixed-order calculation at intermediate values of
qT , by suppressing the tail of the TMD cross section by
multiplication with a damping function of the form

Ξ
�
qT
Q

; η
�

¼ exp
�
−
�
qT
ηQ

�
8
�
; ð5Þ

where η is a parameter that controls the transition point to
the fixed-order cross section. The figure exhibits two
examples of the effect of using this damping function in
our case, along with their interplay with the choice of
the form of b�. For larger values of η, the influence of the
TMD is effectively extended toward higher qT. As may be
seen, the matching procedure fails then since the fixed-
order result is not reached even at qT ∼Q. We note that
alternative matching procedures were proposed also in,
e.g., Refs. [37,38].
In conclusion, the two plots in Fig. 1 show that the Drell-

Yan qT spectra at low invariant mass are presently not

understood beyond the region qT ≪ Q typical of TMD fits.
In the following, we will approach the problem from high
qT ∼Q, where collinear factorization is expected to offer
a suitable framework for describing the cross section.
Undoubtedly the collinear-factorized cross section will
be an important ingredient for a better understanding of
the regime qT ≲Q, where it will be especially important
for carrying out the proper matching of the resummed cross
section.

III. COLLINEAR FACTORIZATION AND
COMPARISON TO FIXED-TARGET DATA

In this section we show the comparison of fixed-order
perturbative QCD calculations to Drell-Yan data from
Fermilab, CERN and RHIC experiments, mainly for pro-
ton-proton collisions. The center-of-mass energies of the
experiments taken into account lie in the range 20 GeV ≤ffiffiffi
s

p
≤ 60 GeV (except for RHIC, where

ffiffiffi
s

p ¼ 200 GeV),
while the invariant mass of the Drell-Yan lepton pair lies in
the range 4.5 ≤ Q ≤ 13.5 GeV. For all our theoretical
predictions, we use the DYQT [23,24] and CUTE [25] codes,
obtaining completely equivalent results for the fixed-order
differential cross sections, at bothLOQCD ½OðαsÞ� andNLO
QCD ½Oðα2sÞ�. These codes also provide an all-order resum-
mation of logarithms in qT=Q in the cross section, which
become relevant toward low qT. This enables us to study
the asymptotic expansion of the resummed result, which we
will make use of below.We note that we have also performed
cross-checks using the numerical codes of Refs. [21,22].
Throughout this paper, the CT14 PDF set [39] will be our
default choice.

)
(

)
(

)( )(

FIG. 1. (Left panel) The TMD cross section (full line) from the fit in [13], when extended beyond the fit region, shows markedly
different behavior depending on the functional form chosen for b� in Eq. (1): the dotted line is obtained with the square-root form, while
the dashed line with the exponential form of [34]; see Eqs. (3) and (4). In both cases, we choose bmax ¼ 1.123 GeV−1. The asymptotic
curve is also plotted (at LO, to be consistent with the fit). (Right panel) Matched curve obtained from the same TMD, with the procedure
described in [35], Sec. IX: the full line is obtained with the damping function proposed in [35] [see Eq. (5)], using the parameter
η ¼ 0.34 advocated in that paper. This choice enforces a transition to the pure LO prediction between qT ≃Q=4 and qT ≃Q=2, and the
result is insensitive to the TMD tail and to the choice of the b� function. The dashed and dotted curves instead show the effect of a slight
variation of the parameter η controlling the transition point, for our two types of b� prescriptions. For a larger value of η the matching to
fixed order is not working due to the incomplete cancellation between the TMD tails and the Y term. Data are taken from [36].
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A. E866

The E866/NuSea experiment [40] was a fixed-target
Drell-Yan experiment designed to measure the internal
structure of the nucleon, in particular the asymmetry of
down and up antiquarks in the sea, using dimuon events
originating from the collision of an 800-GeV proton beam
with hydrogen and deuterium targets (

ffiffiffi
s

p ¼ 38.8 GeV).
The measurement of the qT distribution of the muon pair is
presented in [41], a Fermilab Ph.D. thesis, and results are
given in terms of the differential cross section:

Ed3σ
d3q

≡ 2E
π

ffiffiffi
s

p dσ
dxFdq2T

¼ dσ
πdydq2T

: ð6Þ

Data are reported for different bins in xF ¼ 2pL=
ffiffiffi
s

p
,

ranging from −0.05 to 0.8, and are integrated over different
ranges in the invariant mass Q of the muon pair.
The comparison of our LO and NLO theoretical calcu-

lations with the experimental data is shown in Fig. 2 for the
bin 0.15 ≤ xF ≤ 0.35 and for the invariant mass range
4.2 GeV ≤ Q ≤ 5.2 GeV. The lower part of the plot shows
the ratio (data-theory)/theory. The error margins of the
data points correspond to the sum in quadrature of
statistical and systematic uncertainties, including also an
overall normalization uncertainty of 6.5%, as indicated in
[41]. Our theoretical predictions are computed at the
average Q value and xF of each bin (Q ¼ 4.7 GeV and
xF ¼ 0.25 in the case of Fig. 2). The left plot of
Fig. 2 shows the comparison of the experimental data with
NLO QCD ½Oðα2sÞ� predictions for central values of the

factorization and renormalization scales, μR ¼ μF ¼ Q.
The 90% confidence interval of the CT14 PDF set [39]
is included in the plot, but the corresponding variation is
barely visible.
An immediate observation from Fig. 2 is that the NLO

cross section is below the E866 data at high transverse
momenta, qT ≳ 3 GeV, even within the relatively large
uncertainties that the data have here. The NLO cross
section falls below the data even much more severely at
lower qT closer to the matching regime with TMD physics,
where the experimental uncertainties are much smaller.
This provides further evidence to our observation above
that this regime is presently not well understood theoreti-
cally. At the same time we emphasize that data from [41],
integrated over qT, are in good agreement with theoretical
predictions and are commonly used in global PDF fits
[42,43] [see, for instance, Sec. 5.1 of [41], where the only
relevant discrepancy concerns the lowest mass point (hQi≃
4.4 GeV) for 0.05 < xF < 0.25 (Figs. 5.1–5.5)]. This
suggests that TMD physics may be the main player for
the cross section up to relatively high qT , since the tail at very
large qT makes only a small contribution to the cross section.
The right plot of Fig. 2 shows the effect of varying the

renormalization and factorization scales independently in
the range Q=2 < μR, μF < 2Q, both for the LO QCD
½OðαsÞ� and the NLO QCD ½Oðα2sÞ� calculation. The fact
that, for qT ≳ 2.5 GeV, the NLO uncertainty band overlaps
with (and is eventually included in) the LO uncertainty
band provides some indication that perturbation theory is
well behaved for this process. On the other hand, we also

)
(

( ) ( )

)
(

FIG. 2. Transverse-momentum distribution of Drell-Yan dimuon pairs at
ffiffiffi
s

p ¼ 38.8 GeV in a selected invariant mass range and
Feynman-x range: experimental data from Fermilab E866 (hydrogen target) [41] compared to LO QCD and NLO QCD results. (Left
panels) NLO QCD ½Oðα2sÞ� calculation with central values of the scales μR ¼ μF ¼ Q ¼ 4.7 GeV, including a 90% confidence interval
from the CT14 PDF set [39]. (Right panels) LO QCD and NLO QCD theoretical uncertainty bands obtained by varying the
renormalization and factorization scales independently in the range Q=2 < μR, μF < 2Q.
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observe that the NLO scale uncertainty band is only
marginally more narrow than the LO one.
We have also considered different PDF choices (CTEQ

10 [44], NNPDF 2.3 [45] and MSTW2008 [42]), obtaining
very similar results: the different curves lie within the
uncertainty bands shown in the right plot of Fig. 2. Such a
mild PDF dependence was expected, since the PDFs are
well constrained and have small uncertainties in the x range
probed in this process. We conclude that PDF uncertainties
(unless they are grossly underestimated by the parametri-
zations) cannot explain the discrepancy between theory and
data at high qT .
The comparison between data and theory for other xF bins

(Fig. 3) and for a different invariant mass range (Fig. 4) gives
the same qualitative results. The upper part of each plot
contains the NLO QCD ½Oðα2sÞ� prediction (blue) with its
uncertainty band obtained through the customary scale
variation (Q=2 < μR, μF < 2Q) around the central value
Q of the invariant mass range. The lower part of each plot
again shows the ratio (data-theory)/theory. We also plot the
asymptotic expansion of the resummed calculation (red
lines). The asymptotic result coincides with the fixed-order
prediction in the region of very low transverse momenta,
but it becomes very small (and eventually negative) with

increasing qT . We show the asymptotic piece in order to
obtain a rough guide concerning the region where the fixed-
order calculation may start to become reliable [32]: ideally,
when qT is large enough that the difference between the
fixed-order and asymptotic calculations (the so-called Y
term) exceeds the full (“W þ Y”) cross section, one should
switch from W þ Y to the fixed-order result to obtain more
reliable predictions. This occurs for qT values around 1 to
2 GeV in the present case. Figures 3 and 4 show the same
qualitative features seen above: the overall agreement
between theory and high-qT data is poor. In general, the
disagreement between data and theoretical predictions seems
to becomeworse with increasing Feynman xF and to be only
mildly dependent on the invariant massQ of the lepton pair.

B. R209

The R209 experiment [46,47] (two proton beams collid-
ing at a center-of-mass energy of

ffiffiffi
s

p ¼ 62 GeV) was
carried out at the CERN ISR (Intersecting Storage Rings)
to search for new particles and test scaling models.
The differential cross section dσ=dq2T for the production
of a muon pair with transverse momentum qT is reported
in [48] for the invariant mass range 5 GeV < Q < 8 GeV.
The low transverse-momentum part of these data has been

(
(

)
)

( ) ( )

( )( )

FIG. 3. E866. Comparison between experimental data and NLO QCD predictions for different xF bins. We also show the low-qT
asymptotic part of the cross section. For details, see text.
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(
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(
)

( ) ( )

( ) ( )

FIG. 4. E866. Comparison between experimental data and NLO QCD predictions for different invariant mass bins. We also show the
low-qT asymptotic part of the cross section. For details, see text.

(
)

(

( ) ( )

)

FIG. 5. (Left panel) R209 data [48] compared to NLO QCD ½Oðα2sÞ�. The dashed line shows the asymptotic part. Theoretical results
are integrated over the Q range. We have chosen μR ¼ μF ¼ Q. (Right panels) Scale variations (Q=2 < μR, μF < 2Q) at LO
and NLO.
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included in extractions of TMDs [7,9]. Studies of the whole
qT spectrum can be found in [49,50].
Comparisons of our NLO results to the R209 data are

shown in Fig. 5. Again NLO is below the data at high qT ,
although the discrepancy is not as statistically significant in
this case as for the E866 data. We note that a similar gap
between data and theory was reported in [50] in the context
of a LO calculation. There, the so-called “kT-factorization”

formalism was claimed to account for the discrepancy.
In contrast, in [49] the W þ Y formalism was reported to
match the data over the whole qT range.

C. E288

The E288 experiment [36] measured the invariant cross
section Ed3σ=d3q, at fixed photon rapidity, for the produc-
tion of μþμ− pairs in the collision of a proton beam with a

(
)

(

(
)

( ) ( ) ( )

) ( )

FIG. 6. E288. Experimental data vs NLO QCD predictions for y ¼ 0.4 and different invariant mass bins.

(
)

(
)

( ) ( )

( ) ( )( )

FIG. 7. E288. Experimental data vs NLO QCD predictions for y ¼ 0.21 and different invariant mass bins.
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fixed target composed of either Cu or Pt. The measurements
were performed using proton incident energies of 200, 300
and 400 GeV, producing three different datasets. The
respective center-of-mass energies are

ffiffiffi
s

p ¼ 19.4; 23.8;
27.4 GeV. Our results are shown in Figs. 6–9. The com-
parison to data shows the same features as before. We
have tested the importance of nuclear effects by computing
the cross sections also with the nCTEQ15 [51] and
CT14 [39] nuclear PDFs. These turn out to lead to almost

indistinguishable results. We note that the low transverse-
momentum part of the E288 data has been used for
extractions of TMDs [7,9,10,13,14].

D. E605

We also consider the set of measurements of Ed3σ=d3q
in the E605 [52] experiment, extracted from an 800-GeV
proton beam incident on a copper fixed target (

ffiffiffi
s

p ¼
38.8 GeV). Results at fixed xF ¼ 0.1 are shown in

(
)

( ) ( )

( )( )

(
)

FIG. 8. Additional plots for E288. Experimental data vs NLO QCD predictions for y ¼ 0.03 and different invariant mass bins.
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Fig. 10. The low transverse-momentum part of these data
has also been included in extractions of TMDs [7,9,13].

E. PHENIX

Finally, we also compare to the recent measurement
[53] performed by the PHENIX Collaboration at the
Relativistic Heavy Ion Collider in pp collisions at

ffiffiffi
s

p ¼ 200 GeV. The experimental points are taken from
Fig. 33 of [53] and compared to LO QCD and NLO QCD,
including theoretical uncertainties, in Fig. 11. The asymp-
totic expansion of the W term to NLO is also shown.
Evidently, the comparison between NLO and the data is
overall satisfactory in this case. It thus appears that there is
a qualitative difference between the fixed-target and
collider regimes.

(

( ) ( ) ( )

)

FIG. 9. Additional plots for E288. Experimental data vs NLO QCD predictions for y ¼ 0.03 and different invariant mass bins.

(
)

FIG. 10. E605. Experimental data vs NLO QCD predictions for xF ¼ 0.1 and different invariant mass bins.
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IV. THRESHOLD RESUMMATION

As we have seen in Fig. 2, the NLO corrections to the qT-
differential cross sections are quite sizable. It is therefore
important to investigate in how far beyond-NLO perturba-
tive corrections might be relevant for obtaining better
agreement with the data. For the kinematics relevant for
the Fermilab and CERN experiments, the invariant mass
and transverse momentum of the Drell-Yan pair are such
that the production is relatively close to partonic threshold,
where a new class of logarithms (separate from that
mentioned above at low qT) arises. The summation of
these logarithms to all orders is known as threshold
resummation. We note that large corrections from threshold
resummation have been found previously in purely had-
ronic single-inclusive processes such as pp → πX [54,55],
which motivates a corresponding study for the high-qT
Drell-Yan cross section pp → γ�X → lþl−X that will be
carried out in this section. The relevant formalism has been
developed in Refs. [56–60], although inmost of these papers
only fixed-order (NNLO) expansions of the resummed cross
sections have been considered, and in [61] for the closely
related high-qT Higgs production cross section. We follow
here the approach taken in the latter reference.

A. Factorized cross section and Mellin moments

For simplicity we will focus here just on the transverse-
momentum distribution of the lepton pair and integrate over
the full range of allowed rapidities of the virtual photon.
We therefore consider

dσ
dQ2dq2T

¼
Z

yþ

y−
dy

dσ
dQ2dq2Tdy

; ð7Þ

where

yþ ¼ −y− ¼ 1

2
ln
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4sm2

T=ðsþQ2Þ2
p

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4sm2

T=ðsþQ2Þ2
p ; ð8Þ

with mT ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ q2T

p
the transverse mass. The integrated

differential cross section for h1h2 → l−lþX may be
written in factorized form as

dσ
dQ2dq2T

¼
X
a;b

Z
1

0

dx1fa=h1ðx1; μ2FÞ

×
Z

1

0

dx2fb=h2ðx2; μ2FÞ
dσ̂ab

dQ2dq2T

≡ σ0
q2TQ

2

X
a;b

Z
1

y2T

dx1fa=h1ðx1; μ2FÞ

×
Z

1

y2T=x1

dx2fb=h2ðx2; μ2FÞ

× ωab

�
ŷT ; r;

μ2F
Q2

;
μ2R
Q2

; αsðμ2RÞ
�
; ð9Þ

where σ0 ¼ 4πα2=ð9Q2Þ, fa=h1 and fb=h2 are the PDFs, and
where ŝ ¼ sx1x2 is the partonic center-of-mass energy
squared. In the second line we have written out the variables
that the dimensionless hard-scattering functions ωab may
depend on. It is convenient to write the kinematical argu-
ments of ωab as

ŷT ≡ qT þmTffiffiffî
s

p ;

r≡ qT
mT

: ð10Þ

Note that in terms of these we have qT=
ffiffiffî
s

p ¼ ŷTr=ð1þ rÞ
and Q2=ŝ ¼ ŷ2Tð1 − rÞ=ð1þ rÞ. In (9) we have also intro-
duced the corresponding hadronic variable

yT ≡ qT þmTffiffiffi
s

p ¼ ffiffiffiffiffiffiffiffiffi
x1x2

p
ŷT : ð11Þ

From Eq. (8) we see that yT ≤ 1. Likewise, we also have
ŷT ≤ 1, which immediately leads to the limits on x1 and
x2 given in Eq. (9). The rapidity-integrated cross section
thus takes the form of a convolution of the hard-scattering
functions ωab with the PDFs. The perturbative expansion of
the ωab reads

ωab ¼
αsðμ2RÞ

π
ωð0Þ
ab þOðα2sÞ: ð12Þ

There are two LO partonic channels, qq̄ → γ�g and
qg → γ�q. As before, μF and μR in (9) denote the
factorization and renormalization scales.
For ŷT → 1 the partonic center-of-mass energy is just

sufficient to produce the lepton pair with mass Q and
transverse momentum qT . Therefore, ŷT ¼ 1 sets a thresh-
old for the process. As is well known [62,63], the partonic
cross sections receive large logarithmic corrections near
this threshold. At the kth order of perturbation theory for
theωab, there are logarithmically enhanced contributions of

FIG. 11. PHENIX. Experimental data vs NLO QCD predic-
tions for 1.1 < jyj < 2.2 and 4.8 GeV < Q < 8.2 GeV.
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the form αks lnmð1 − ŷ2TÞ, with m ≤ 2k. These logarithmic
terms are due to soft- and/or collinear gluon radiation and
dominate the perturbative expansion when the process is
kinematically close to the partonic threshold. We note that
ŷT becomes especially large when the partonic momentum
fractions approach their lower integration limits. Since the
PDFs rise steeply toward small argument, this enhances the
relevance of the threshold regime, and the soft-gluon effects
are relevant even when the hadronic center-of-mass energy
is much larger than the produced transverse mass and
transverse momentum of the final state. In the following,
we discuss the resummation of the large logarithmic cor-
rections to all orders in αs.
The resummation of the soft-gluon contributions is carried

out in Mellin-N moment space, where the convolutions in
Eq. (9) between parton distributions and subprocess cross
sections factorize into ordinary products. We take Mellin
moments of the hadronic cross section in y2T :Z

1

0

dy2Tðy2TÞN−1 dσ
dQ2dq2T

¼ σ0
q2TQ

2

X
a;b

f̃aðNþ 1;μ2FÞf̃bðNþ 1;μ2FÞ

× ω̃ab

�
N;r;

μ2F
Q2

;
μ2R
Q2

;αsðμ2RÞ
�
; ð13Þ

where the corresponding moments of the partonic hard-
scattering functions are

ω̃ab

�
N; r;

μ2F
Q2

;
μ2R
Q2

; αsðμ2RÞ
�

≡
Z

1

0

dŷ2Tðŷ2TÞN−1ωab

�
ŷT ; r;

μ2F
Q2

;
μ2R
Q2

; αsðμ2RÞ
�
; ð14Þ

andwhere the f̃a;bðN þ 1; μ2FÞ are themoments of the parton
distributions. The threshold limit ŷ2T → 1 corresponds to
N → ∞, and the leading soft-gluon corrections now arise as
terms ∝ αks lnm N, m ≤ 2k. The next-to-leading-logarithmic
(NLL) resummation procedure we present here deals with
the “towers” αks lnm N for m ¼ 2k, 2k − 1, 2k − 2.

B. Resummation to NLL

In Mellin-moment space, threshold resummation results
in exponentiation of the soft-gluon corrections. In the
case of lepton pair production at high qT , the resummed
y-integrated cross section reads [61]

ω̃ðresÞ
ab ðNÞ ¼ Cab→γ�cΔa

Nþ1Δb
Nþ1J

c
Nþ1Δ

ðintÞab→γ�c
Nþ1 ω̃ð0Þ

ab ðNÞ;
ð15Þ

where for simplicity we have suppressed the arguments of
all functions other than the Mellin variable N. Each of the

“radiative factors” Δa;b
N , JcN , Δ

ðintÞab→γ�c
N is an exponential.

The factors Δa;b
N represent the effects of soft-gluon radiation

collinear to initial partons a and b. The function JcN embodies
collinear, soft or hard, emission by the parton c that recoils
against the lepton pair. Large-angle soft-gluon emission is

accounted for by the factors ΔðintÞab→γ�c
N , which depend on

the partonic process under consideration. Finally, the coef-
ficients Cab→γ�c contain N-independent hard contributions
arising from one-loop virtual corrections and nonlogarithmic
soft corrections. The structure of the resummed expression
is similar to that for the large-qT W-boson production cross
section [56–59] or, in the massless limit, to that for prompt-
photon production in hadronic collisions [64,65].
The expressions for the radiative factors are

lnΔa
N ¼

Z
1

0

dz
zN−1 − 1

1 − z

Z ð1−zÞ2Q2
0

μ2F

dq2

q2
Aaðαsðq2ÞÞ;

ln JcN ¼
Z

1

0

dz
zN−1 − 1

1 − z

�Z ð1−zÞQ2
0

ð1−zÞ2Q2
0

dq2

q2
Acðαsðq2ÞÞ

þ 1

2
Bcðαsðð1 − zÞQ2

0ÞÞ
�
;

lnΔðintÞab→γ�c
N ¼

Z
1

0

dz
zN−1 − 1

1 − z
Dab→γ�cðαsðð1 − zÞ2Q2

0ÞÞ;

ð16Þ
where Q2

0 ≡ qTðqT þmTÞ. Each of the coefficients C ¼
Aa, Ba, Dab→γ�c is a power series in the coupling constant
αs, C ¼ P∞

i¼1ðαs=πÞiCðiÞ. The universal LL and NLL

coefficients Að1Þ
a , Að2Þ

a and Bð1Þ
a are well known [66,67]:

Að1Þ
a ¼ Ca; Að2Þ

a ¼ 1

2
CaK; Bð1Þ

a ¼ γa; ð17Þ
with

K ¼ CA

�
67

18
−
π2

6

�
−
5

9
Nf; ð18Þ

where Cg¼CA¼Nc¼3, Cq¼CF¼ðN2
c−1Þ=2Nc¼4=3,

γq ¼ −3=2CF and γg ¼ −ð11CA − 2NfÞ=6. The process-
dependent coefficients Dab→γ�c may be obtained as for the
Higgs production cross section considered in [61]:

Dab→γ�c ¼ ðCa þ Cb − CcÞ ln
1þ r
r

: ð19Þ
The coefficient is evidently just proportional to a combi-
nation of the color factors for each hard parton participating
in the process. This simplicity is due to the fact that there
is just one color structure for a process with only three
external partons.
The final ingredients for the resummed cross section in

(15) are the lowest-order partonic cross sections in Mellin-
moment space, ω̃ð0Þ

ab ðNÞ, and the coefficients Cab→γ�c. The
expressions for the former are presented in Appendix A.
At NLL accuracy, we only need to know the first-order

terms in the expansion Cab→γ�c¼1þP∞
i¼1ðαs=πÞiCðiÞ

ab→γ�c.
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These coefficients may be obtained by comparison to the
full NLO results given in Ref. [18] (see also [59]), after
transforming to moment space. Our explicit results for the

one-loop coefficients Cð1Þ
ab→γ�c are given in Appendix B.

In order to organize the resummation according to the
logarithmic accuracy of the Sudakov exponents we expand
the latter to NLL as [68]

lnΔa
Nðαsðμ2RÞ; Q2

0=μ
2
R;Q

2
0=μ

2
FÞ

¼ ln N̄hð1Þa ðλÞ þ hð2Þa ðλ; Q2
0=μ

2
R;Q

2
0=μ

2
FÞ;

ln JaNðαsðμ2RÞ; Q2
0=μ

2
RÞ

¼ ln N̄fð1Þa ðλÞ þ fð2Þa ðλ; Q2
0=μ

2
RÞ;

lnΔðintÞab→γ�c
N ðαsðμ2RÞÞ

¼ Dð1Þ
ab→γ�c

2πb0
lnð1 − 2λÞ; ð20Þ

with λ ¼ b0αsðμ2RÞ ln N̄. Here, N̄ ¼ NeγE where γE is the
Euler constant. The LL and NLL functions hð1;2Þ and fð1;2Þ
are given in Appendix C.

C. Matching and inverse Mellin transform

When performing the resummation, one wants to make
full use of the available fixed-order cross section, which in
our case is NLO [Oðα2sÞ]. Therefore, one matches the
resummed result to the fixed-order expression. This is
achieved by expanding the resummed cross section to
Oðα2sÞ, subtracting the expanded result from the resummed
one, and adding the full NLO cross section,

dσðmatchÞ

dQ2dq2T
¼

X
a;b

Z
CMPþi∞

CMP−i∞

dN
2πi

ðy2TÞ−Nfa=h1ðN þ 1; μ2FÞ

× fb=h2ðN þ 1; μ2FÞ½ω̃ðresÞ
ab ðNÞ − ω̃ðresÞ

ab ðNÞjOðα2sÞ�

þ dσðNLOÞ

dQ2dq2T
; ð21Þ

where ω̃ðresÞ
ab is the resummed cross section for the partonic

channel ab → γ�c as given in Eq. (15). In this way, NLO is
fully taken into account, and the soft-gluon contributions
beyond NLO are resummed to NLL. The procedure avoids
any double counting of perturbative orders.
Since the resummation is achieved in Mellin-moment

space, one needs an inverse Mellin transform in order to
obtain a resummed cross section in yT space. This requires
a prescription for dealing with the Landau poles at λ ¼ 1=2
and λ ¼ 1 in Eqs. (C1) and (C2) arising from the singularity
in the perturbative strong coupling constant at scale ΛQCD.
We employ the “minimal prescription” developed in
Ref. [68], for which one uses the NLL expanded forms
Eq. (20) and Eqs. (C1) and (C2), and chooses a Mellin
contour in complex-N space that lies to the left of the poles
at λ ¼ 1=2 and λ ¼ 1 in the Mellin integrand.

D. Numerical results

Numerical results for the above formalism are shown in
Figs. 12 and 13, for a fixed value of Q and several values offfiffiffi
s

p
. We have chosen μF ¼ μR ¼ Q. To obtain predictions

for a given experimental rapidity bin, we rescale the
resummed cross section (which above was determined
after integration over all y) by the ratio of NLO cross
sections integrated over the y bin used in experiment and
integrated over all y, respectively:Z
Δybin

dy
dσres

dQ2dq2Tdy
≈

dσres

dQ2dq2T

×

R
Δybin dydσ

NLO=dQ2dq2TdyR
ally dydσ

NLO=dQ2dq2Tdy
: ð22Þ

This approximation assumes that the rapidity dependence is
similar at NLO and in the resummed case, an expectation
that was confirmed in Ref. [69] for the closely related
prompt-photon cross section.
We first notice from Figs. 12 and 13 that the NLO

expansion of the resummed formula (black dashed curve)

(
)

( ) ( )

FIG. 12. E288. Experimental data vs threshold-resummed predictions at NLLþ NLO QCD for two different rapidity bins and two
different center-of-mass energies.
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accurately reproduces the NLO result (blue solid curve,
with uncertainty bands). This provides some confidence
that threshold resummation correctly describes the domi-
nant parts of the cross section to all orders, and that
subleading contributions not addressed by resummation are
reasonably small. In the left part of Fig. 12 we also show
the scale uncertainty band for the NLL matched result (red
dotted-dashed curve), which is barely broad enough to be
visible. Evidently, resummation leads to a strong reduction
in scale dependence, as one would expect from a result that
incorporates the dominant contributions to the cross section
at all orders.
Overall, we find a further significant increase of the

cross section due to NLL resummation, with respect to the
NLO results shown in Sec. III. The enhancement is more
pronounced for the case of E288 than for E866 since, for a
givenQ, at E288 energy one is closer to threshold because
of the lower c.m. system energy. However, despite the
increase, the NLL result unfortunately still remains well
below the E288 and E866 experimental data at high qT .
We thus conclude that NLL high-qT threshold resumma-
tion is not able to lead to a satisfactory agreement with
the data.

V. INTRINSIC-kT SMEARING
AND POWER CORRECTIONS

The factorized cross section given in Eq. (9) receives
corrections that are suppressed by inverse powers of
Q ∼ qT . Little is known so far about the structure and size
of such power corrections for the high-qT Drell-Yan cross
section. It is an interesting question as to whether the
discrepancies between perturbative predictions and the
high-qT experimental data seen above might be explained
by power corrections. We will try here to address this
question from a phenomenological point of view.
As a simple way of modeling power corrections we

estimate below the impact of a nonperturbative partonic
“intrinsic” transverse momentum kT on the Drell-Yan qT

spectrum. Such an “intrinsic-kT smearing” is a phenom-
enological model that has been invoked in the early
literature in cases where collinear factorization was found
to underestimate transverse-momentum spectra, like for
inclusive prompt photon and pion production in hadronic
collisions (see, for instance, [8,70,71]). For inclusive
processes such as these and the high-qT Drell-Yan process
considered here, no general factorization theorem is known
that would extend to arbitrary kinematics of the partonic
process. For prompt photons, factorization has been estab-
lished, however, for near-threshold kinematics and low kT
in the framework of the “joint resummation” formalism
[72–74], and for high-energy (small-x) dynamics [75].
A technical challenge for all these approaches is the
potential for an artificial singularity when the total trans-
verse momentum of the initial state partons is comparable
to the observed transverse momentum. A method for
dealing with this issue was proposed in Ref. [76] and
found to give rise to power corrections to the cross section.
A full treatment of the Drell-Yan cross section may require
implementation of perturbative joint resummation along
with a study of corrections in inverse powers of Q or qT.
Rather than pursuing this elaborate framework, for the
purpose of obtaining a simple estimate of the potential size
of such higher-order perturbative and power-suppressed
nonperturbative effects, we resort to an implementation
of a simple model of intrinsic-kT smearing that will be
described now.

A. Overview of the formalism

The collinear factorization formula for the process
h1h2 → γ�X may be adapted from Eq. (9) and reads at LO
½OðαsÞ�

E
d3σ
d3q

≡ dσ
dyd2qT

¼
X
a;b

Z
dxadxbfa=h1ðxa;Q2Þfb=h2ðxb;Q2Þ

×
dσ̂ab→γ�c

dt̂
ŝ
π
δðŝþ t̂þ û−Q2Þ; ð23Þ

where as before the fa=hðxa;Q2Þ are the usual collinear
PDFs for partons a ¼ q; q̄; g in hadron h. If one allows
the incoming partons to have a small transverse momentum
kT , Eq. (23) becomes [8]

E
d3σ
d3q

¼
X
a;b

Z
dxad2kaTdxbd2kbTFa=h1ðxa;kaT; Q2Þ

× Fb=h2ðxb;kbT;Q2Þ ŝ
xaxbs

dσ̂ab→γ�c

dt̂
ŝ
π

× δðŝþ t̂þ û −Q2Þ; ð24Þ
where the functions Fa=h are a generalization of the PDFs,
including a dependence on transverse momentum. Notice
that the partonic Mandelstam invariants must be modified
with the inclusion ofkT , and consequently a factor ŝ=ðxaxbsÞ
must be inserted to account for the modification of the

FIG. 13. E866. Experimental data vs threshold-resummed
predictions at NLLþ NLO QCD for a selected (xF, Q) bin.
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partonic flux (see Appendix A of [8]). The modification of
the partonic four-momenta is most often done according
to two criteria: (1) the partons remain on shell: paμp

μ
a ¼ 0,

and (2) the light-cone momentum fractions retain the usual
meaning, e.g., xa ¼ pþ

a =Pþ
a . This leads to the following

choice, in terms of Minkowski components [8,77]:

pμ
a ≑

�
xa

ffiffiffi
s

p
2

þ k2aT
2xa

ffiffiffi
s

p ;kaT; xa

ffiffiffi
s

p
2

−
k2aT

2xa
ffiffiffi
s

p
�
; ð25Þ

and likewise for the other parton’s momentum. Note that
we use LO cross sections in Eq. (24) since a higher-order
formulation is not really warranted for our simple model.
As mentioned above, the framework must become

unreliable when kaT or kbT become of the order of the
observed transverse momentum, and arguably well before.
Large values of kaT can make the partonic Mandelstam in
the denominators of the LO hard-scattering cross sections
unphysically small. In [8], the following condition was
chosen to limit the size of, for example, kaT :

kaT < min
h
xa

ffiffiffi
s

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xað1 − xaÞs

p i
: ð26Þ

This ensures that each parton moves predominantly along
the direction of its parent hadron, and that its energy
does not exceed the hadron’s energy. However, for

ffiffiffi
s

p
≃

40 GeV (E866 and E605 experiments), this condition
implies that kaT may still reach values as high as
20 GeV. In our numerical analysis we therefore prefer to
introduce an additional cutoff kTmax on both kaT and kbT
and will test the dependence of the results on this cutoff.
For the generalized PDFs in Eq. (24), the most common

choice is

Fa=hðxa;kaT; Q2Þ ¼ fa=hðxa;Q2Þ 1

πhk2Ti
exp

�
−

k2aT
hk2Ti

�
;

ð27Þ

where hk2Ti is independent of flavor3 and momentum
fraction xa, but does depend logarithmically onQ2 because
of soft-gluon radiation. Instead of Eq. (27), one could also
consider using the transverse-momentum dependent PDFs
extracted from the low-qT spectra of Drell-Yan experiments
(as given, for instance, in Refs. [7,9,13,14]). However,
these functions show a non-negligible tail at large kT ,
where they lose physical meaning. Hence, if they are used
inside a convolution such as Eq. (24), the result will
strongly depend on the choice of the cutoff kTmax, since
the integrations (24) include contributions from this tail.
This dependence will be mostly unphysical and is, in fact,
precisely a manifestation of the artificial singularity arising
in the partonic scattering functions at really large kaT and
kbT . For this reason, we stick with Eq. (27); however, we
tune hk2Ti to the width of the TMD PDFs taken from [13],
evolved to the givenQ2. This is shown in Fig. 14 where the
dashed lines show the evolved TMD of Ref. [13], evolved
toQ ¼ 4.7 GeV, normalized by dividing by its integral over
d2kT . We compare it to a pure Gaussian with a width tuned
in such a way that the two distributions become very similar,
except for the high-kT tail. This “equivalent Gaussian” turns
out to have a width of hk2Ti ¼ ð0.95 GeVÞ2). It is this
Gaussian that we use for our numerical studies presented
below.
Our choice of an x-independent Gaussian width in

Eq. (27) is motivated by the fact that the x dependence
of hk2Ti is still not well constrained in the present TMD fits
[13]. Different parametrizations have been proposed in
the literature [7,9], including also x-independent choices
[10,14,78]. A dependence of hk2Ti on x is a natural feature
in the joint resummation formalism [76]. In any case,

FIG. 14. Comparison between the TMD of Ref. [13], evolved to the scaleQ ¼ 4.7 GeV and divided by its integral over d2kT (dashed
line), with the Gaussian (27) with hk2Ti ¼ ð0.95 GeVÞ2 (full line). (Left panel) Linear scale. (Right panel) Logarithmic scale.

3We remark that the initial parton “a” can also be a gluon.
Every kT -smearing model has to make an assumption for the
average gluon transverse momentum, which is usually taken to be
the same as that for the quarks. We note that perturbative
resummations predict dependence of hk2Ti on parton flavor [76].
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for the mostly exploratory study presented here, an
x-independent value of hk2Ti appears to be adequate.
Since our goal is to give an upper limit for the kT-smearing
effects, we use the largest value of hk2Ti found in [13] (see
Fig. 10 there), which occurs at x ¼ 0.06.

B. Numerical results

In Fig. 15 we show the effect of kT smearing, Eq. (24), for
E866 kinematics. The hk2Ti of the Gaussian is taken as in
Fig. 14. The impact of smearing on the cross section overall
remains mild, as long as the cutoff kTmax is chosen below
2GeV. Especially the regime qT ≃Q is only slightly affected
by kT smearing. We conclude that, although kT smearing
does somewhat improve the comparison with the data, its
effects do not appear to be sufficiently large to lead to a
satisfactory agreement. We note that at lower c.m. system
energies as relevant for E288, one is forced to choose smaller
cutoffs since the reach in qT is more limited in these cases.

VI. CONCLUSIONS

We have shown that theoretical predictions based on
fixed-order perturbation theory fail to describe Drell-Yan
data from Fermilab and CERN ISR at large values qT ∼Q
of the transverse momentum of the lepton pair, the
experimental cross sections being significantly larger than
the theoretical ones. This is the region where collinear-
factorized perturbation theory is expected to accurately
describe the cross section. This disagreement is observed
for several experiments, and across a range of different
kinematics in xF, y and Q, although admittedly the
experimental uncertainties are in some cases quite large.
We have, on the other hand, found an essentially

satisfactory agreement between perturbative calculations
and experimental points in the case of PHENIX data taken

at
ffiffiffi
s

p ¼ 200 GeV, suggesting that the disagreement is
present only in the fixed-target regime. Indeed, at yet
higher energies, ATLAS Drell-Yan data (

ffiffiffi
s

p ¼ 8 TeV)
have been shown to be consistently described by NNLO
QCD supplemented with next-to-next-to-next-to-leading-
logarithmic resummation (see, for instance, Figs. 10 and
11 in [79]), even though some tension is still present in the
lowest invariant mass bins (see Fig. 18 in [80]).
Barring the possibility of sizable normalization uncertain-

ties in the experiments, it is important to identify the
theoretical origins of the discrepancies observed in the
fixed-target regime. We have first implemented perturbative
threshold resummation and found that it improves the
situation somewhat; a significant discrepancy remains,
however. This leaves the investigation of power-suppressed
corrections, which we have modeled by implementing a
simple Gaussian intrinsic-kT smearing into the LO cross
section.We find that this again helps somewhat, but does not
lead to a satisfactory description of the data. Ultimately, a
more detailed study of power corrections may be required in
this case. Generically, on the basis of resummed perturbation
theory [76], one would expect even power corrections of
the form λ2=ðQ2ð1 − y2TÞ2Þ ∼ λ2=ðq2Tð1 − y2TÞ2Þ, possibly
modified by logarithms, where λ is a hadronic mass scale.
Given the kinematics of the experiments, it is hard to see how
such corrections could become of the size needed for an
adequate description of the data.
Our findings are in line with those reported for the SIDIS

cross section in Ref. [31]. We close by stressing the
importance of obtaining a thorough understanding of the
full Drell-Yan and SIDIS qT spectra in the fixed-target
regime. Low-qT Drell-Yan and SIDIS cross sections
measured at fixed-target experiments are a prime source
of information on TMDs. At present, the theoretical
description for the important matching regime around

FIG. 15. (Left panel) The effect of kT smearing (dashed blue lines), with the cutoff kTmax in Eq. (24) set to 2 GeV. The bands
correspond to variation of factorization and renormalization scales between Q=2 and 2Q. For comparison, the calculation in ordinary
collinear factorization at LO is also shown (red dotted lines). (Right panel) The effect of varying the cutoff kTmax in Eq. (24). Here, the
curves correspond to the central values μR ¼ μF ¼ Q. For kTmax ≥ 2 GeV, which corresponds to the 99% percentile of the Gaussian in
Eq. (27), independence from the cutoff is reached.
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qT ¼ 2 GeV is not robust, as we have argued. Given the
shape of the experimental spectra, it appears that TMD
physics may extend to such large qT and may well remain
an important ingredient even beyond. This view is cor-
roborated by the fact that the qT-integrated Drell-Yan cross
section is well described by fixed-order perturbation theory
at these energies. In any case, a reliable interpretation of
data in terms of TMDs, including the matching to collinear
physics, is only possible if the cross sections are theoretically
understood over the full transverse-momentum range, which
includes the regime of qT ∼Q we have addressed here.
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APPENDIX A: LO CROSS SECTIONS

The explicit expressions for the Mellin moments of the LO partonic cross sections are given by
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where r ¼ qT=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2T þQ2

p
, CF ¼ 4=3, TR ¼ 1=2, and where 2F1 is the hypergeometric function.

APPENDIX B: ONE-LOOP COEFFICIENTS

The one-loop coefficients Cð1Þ
ab→γ�c for the subprocesses read
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and
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where Q2
0 ¼ qTðqT þmTÞ and b0 ¼ ð11CA − 2NfÞ=12π. In the limit Q → 0 (or r → 1) these coefficients agree with the

ones found for prompt-photon production in Ref. [64].

APPENDIX C: LL AND NLL FUNCTIONS

The explicit expressions for the LL and NLL functions in Eq. (20) are
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b0 ¼
11CA − 2Nf

12π
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are the first two coefficients of the QCD β function.
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