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We study fermion mass correction to chiral kinetic equations in electromagnetic fields. Different from
the chiral limit where fermion number density is the only independent distribution, the number and spin
densities are coupled to each other for massive fermion systems. To the first order in ℏ, we derived the
quantum correction to the classical on-shell condition and the Boltzmann-type transport equations. To the
linear order in the fermion mass, the mass correction does not change the structure of the chiral kinetic
equations and behaves like additional collision terms. While the mass correction exists already at classical
level in general electromagnetic fields, it is only a first-order quantum correction in the study of the chiral
magnetic effect.
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I. INTRODUCTION

The chiral anomaly of QCD or QED has been recently
widely discussed both theoretically and experimentally.
Putting a system of chiral fermions in an external magnetic
field, the chiral imbalance between the left- and right-
handed fermions leads to an electric current along the
direction of the magnetic field. It is called the chiral
magnetic effect [1–5] and has triggered a lot of interest in
nuclear physics [6–8] and condensed matter physics [9].
Three ingredients are crucial for the generation of the chiral
magnetic effect, the magnetic field, the presence of chiral
imbalance, and the massless fermions. In high energy heavy
ion collisions,which are expected to be awayof realizing the
chiral magnetic effect, the coexistence of the first two
ingredients may occur in the quark matter created in the
initial stage of the collisions. However, all quarks in QCD
are massive, even in extremely hot quark matter. To check
the degree of the chiral anomaly in a real fermion system, it is
necessary to study the fermion mass effect on the chiral
magnetic effect. This is not a trivial problem even in the case
of small fermion mass. With nonzero mass, fermions with
different helicity are coupled to each other, and the fermion
field contains four components instead of two components
for Weyl fermions in chiral limit. It is of fundamental
necessity to find out how finite mass modifies the chiral
anomaly effects. There are already several attempts to

investigate the mass effect on the chiral imbalance
[10–13] and non-Abelian Berry curvature [14,15].
In high energy nuclear collisions, the possible chiral

magnetic effect should carry highly nonequilibrium nature,
indicated by the magnetized quark matter in the non-
equilibrium state created in the very beginning of the
collisions. For an out-of-equilibrium system, a natural
way to describe the transport phenomena is through the
kinetic theory in the Wigner function formalism [16–19].
The chiral magnetic effect in the out-of-equilibrium state in
the chiral limit has been recently widely studied in the
framework of kinetic theory [20–22]. By applying the
semiclassical expansion method to the kinetic equations, to
the first order in ℏ, the chiral anomaly related effects are
incorporated into the transport equation for the chiral
fermion distribution function [23–25]. The quantum trans-
port equation is also applied to phenomenologically study
the charge separation in the prethermal stage of heavy ion
collisions [26].
In this paper, we generally study the fermion mass

correction to the chiral kinetic equations in external electro-
magnetic fields in equal-timeWigner function formalism. In
Sec. II, we first review the kinetic equations for the spin
components of the equal-time Wigner function and their
semiclassical expansion in ℏ and then focus on the quantum
correction to the classical on-shell condition and the
Boltzmann equations to the first order in ℏ. In Sec. III, we
derive the transport equations for the chiral components and
take Taylor expansion in fermion mass to explicitly see the
mass correction to the chiral kinetic equations. In Sec. IV, we
take the mass correction to the chiral magnetic effect as an
example of the obtained kinetic theory and analytically solve
the transport equation. We summarize the study in Sec. V.
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II. EQUAL-TIME KINETIC EQUATIONS

The moving of charged fermions in external electro-
magnetic fields is controlled by the QED Lagrangian
density

L ¼ ψ̄ðiγμDμ −mÞψ −
1

4
FμνFμν; ð1Þ

where m is the fermion mass, Fμν ¼ ∂μAν − ∂νAμ is the
electromagnetic field tensor, and the covariant derivative
Dμ ¼ ∂μ þ iQAμ couples the quark field ψ with electric
charge Q to the electromagnetic fields Aμ. The covariant
fermion Wigner function Wðx; pÞ is defined as the ensem-
ble average of the Wigner operator in the vacuum state, and
the Wigner operator is the four-dimensional Fourier trans-
form of the covariant density matrix [27],

Wðx;pÞ¼
Z

d4yeipyhψðxþÞeiQ
R

1=2

−1=2
dsAðxþsyÞy

ψ̄ðx−Þi; ð2Þ

where the exponential function of the electromagnetic
fields is the gauge link between the two points x� ¼
x� y=2, which guarantees the gauge invariance of the
kinetic theory. It is easy to see that the Wigner function is
the analogy to the probability distribution in quantum
mechanics. When the gauge fields are external fields,
the gauge link can be taken out from the ensemble
average h…i.
To extract particle distribution functions from theWigner

function and solve the kinetic equations as an initial value
problem, one usually introduces the equal-time Wigner
function [28]

Wðx;pÞ¼
Z

d3yeipyhψðxþÞeiQ
R

1=2

−1=2
dsAðxþsyÞy

ψ†ðx−Þi ð3Þ

with y ¼ ð0; yÞ. It is clear that the equal-time Wigner
function is not Lorentz covariant and the two Wigner
functions are related to each other through the energy
integration,

Wðx;pÞ ¼
Z

dp0Wðx; pÞγ0: ð4Þ

The two Wigner functions are equivalent to each other
only when the particles are on the energy shell. In the
quantum off-shell case, the covariant Wigner function is
equivalent to the collection of all the energy momentsR
dp0pn

0Wðx; pÞγ0 with n ¼ 0; 1; 2;…. The equal-time
Wigner function Wðx;pÞ is only the zeroth-order energy
moment of the covariant oneWðx; pÞ. We will see soon the
hierarchy among all the energy moments in general
quantum case.
The covariant and equal-time kinetic equations in exter-

nal electromagnetic fields are systematically investigated

by Vasak et al. [27], Bialynicki-Birula et al. [28], and
Zhuang and Heinz [29]. Since neither the covariant nor the
equal-time Wigner functions are positive definite, the
physical phase-space densities are defined through their
spin components Γaðx; pÞ with a ¼ 1; 2; 3;…; 16 or
fiðx;pÞ and giðx;pÞ with i ¼ 0, 1, 2, 3,

W ¼ 1

4

�
F þ iγ5Pþ γμVμ þ γμγ5Aμ þ 1

2
σμνSμν

�
;

W ¼ 1

4
½f0 þ γ5f1 − iγ0γ5f2 þ γ0f3 þ γ5γ0γ · g0

þ γ0γ · g1 − iγ · g2 − γ5γ · g3�: ð5Þ
By calculating the physical densities of the system like
charge, energy, momentum, and angular momentum in
terms of the equal-time Wigner function, one can establish
the physical meaning of the equal-time components [28].
For instance, f0 is the charge density, f3 is the mass
density, g0 is the spin current, g1 is the number current, and
g3 is the intrinsic magnetic moment. Taking the derivatives
of the density matrix ψðxþÞψ̄ðx−Þ with respect to x and y
and using the Dirac equations controlling the motion of the
fermion fields ψ and ψ̄ , one derives the kinetic equations
for the 16 covariant spin components [27],

ΠμVμ ¼ mF;

ℏDμAμ ¼ 2mP;

2ΠμF − ℏDνSνμ ¼ 2mVμ;

−ℏDμPþ ϵμνσρΠνSσρ ¼ 2mAμ;

ℏðDμVν −DνVμÞ þ 2ϵμνσρΠσAρ ¼ 2mSμν;

ℏDμVμ ¼ 0;

ΠμAμ ¼ 0;

ℏDμF ¼ −2ΠνSνμ;

4ΠμP ¼ −ℏϵμνσρDνSσρ;

2ðΠμVν − ΠνVÞ ¼ ℏϵμνσρDσAρ; ð6Þ
where the covariant derivative Dμ and generalized momen-
tum Πμ in phase space are defined as

Dμðx; pÞ ¼ ∂μ −Q
Z

1=2

−1=2
dsFμνðx − iℏs∂pÞ∂ν

p;

Πμðx; pÞ ¼ pμ − iQℏ
Z

1=2

−1=2
dssFμνðx − iℏs∂pÞ∂ν

p: ð7Þ

We have explicitly shown the ℏ-dependence here in order to
be able to discuss the semiclassical expansion of the kinetic
equations in the following. We now take the relation (4)
between Wðx;pÞ and Wðx; pÞ. By doing p0-integration of
the covariant equations (6), one obtains the equal-time
transport equations which are the extension of the classical
Boltzmann equation [29,30],
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ℏðDtf0 þ D · g1Þ ¼ 0;

ℏðDtf1 þ D · g0Þ ¼ −2mf2;

ℏDtf2 − 2Π · g3 ¼ 2mf1;

ℏDtf3 − 2Π · g2 ¼ 0;

ℏðDtg0 þDf1Þ − 2Π × g1 ¼ 0;

ℏðDtg1 þDf0Þ − 2Π × g0 ¼ −2mg2;

ℏðDtg2 −D × g3Þ þ 2Πf3 ¼ 2mg1;

ℏðDtg3 þ D × g2Þ þ 2Πf2 ¼ 0; ð8Þ

and the equal-time constraint equations which are the
extension of the classical on-shell condition [29,30],

Z
dp0p0V0−Π ·g1þΠ0f0¼mf3;Z
dp0p0A0þΠ ·g0−Π0f1¼0;

Z
dp0p0Pþ

1

2
ℏD ·g3þΠ0f2¼0;

Z
dp0p0F−

1

2
ℏD ·g2þΠ0f3¼mf0;Z

dp0p0Aþ1

2
ℏD×g1þΠf1−Π0g0¼−mg3;Z

dp0p0V−
1

2
ℏD×g0þΠf0−Π0g1¼0;

Z
dp0p0S0iei−

1

2
ℏDf3þΠ×g3−Π0g2¼0;

Z
dp0p0Sjkϵjkiei−ℏDf2þ2Π×g2þ2Π0g3¼2mg0; ð9Þ

where the equal-time operators are defined as

Dt ¼ ∂t þQ
Z

1=2

−1=2
dsEðxþ isℏ∇pÞ · ∇p;

D ¼ ∇þQ
Z

1=2

−1=2
dsBðxþ isℏ∇pÞ × ∇p;

Π0 ¼ iQℏ
Z

1=2

−1=2
dssEðxþ isℏ∇pÞ · ∇p;

Π ¼ p − iQℏ
Z

1=2

−1=2
dssBðxþ isℏ∇pÞ × ∇p: ð10Þ

We have here directly used the electromagnetic field
strengths E and B instead of the fields Aμ, Ei ¼ F0i and
Bi ¼ 1=2ϵijkFjk. It is clear that the constraint equations
couple the equal-time components fi and gi with the
first-order energy moments

R
dp0p0Γaðx; pÞ. Only in the

classical limit with on-shell condition p0 ¼ �Ep, the first-
order moments are reduced to �Epffi;gig, and the

transport and constraint equations become a group of
closed kinetic equations for the equal-time Wigner func-
tion. In the general case with the quantum off-shell effect,
all the energy moments of different orders are independent,
and they couple to each other and form a hierarchy of
kinetic equations [31,32].
To see explicitly the classical limit and quantum cor-

rection order by order, we now make semiclassical expan-
sions for the covariant and equal-time components and
operators,

Γa ¼ Γð0Þ
a þ ℏΓð1Þ

a þ � � � ;
fi ¼ fð0Þi þ ℏfð1Þi þ � � � ;
gi ¼ gð0Þ

i þ ℏgð1Þ
i þ � � � ;

Dt ¼ Dð0Þ
t þ ℏDð1Þ

t þ � � � ;
D ¼ Dð0Þ þ ℏDð1Þ þ � � � ;
Π0 ¼ Πð0Þ

0 þ ℏΠð1Þ
0 þ � � � ;

Π ¼ Πð0Þ þ ℏΠð1Þ þ � � � ð11Þ

with the classical operators Dð0Þ
t ¼ ∂t þQE · ∇p, Dð0Þ ¼

∇þQB × ∇p, Π
ð0Þ
0 ¼ 0 and Πð0Þ ¼ p.

Substituting the expansions into the equal-time transport
and constraint equations, we first consider the classical limit
with ℏ ¼ 0. Taking the classical on-shell condition for the
positive and negative energy parts of the Wigner function
Wðx; pÞ ¼ Wþðx; pÞδðp0 − EpÞ þ W−ðx; pÞδðp0 þ EpÞ,
the constraint equations (9) automatically determine
the position of the shell, namely the particle energy
Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
, and reduce the number of independent

spin components. In the general quantumcase, all the 16 spin
components are independent. In the classical limit, however,

only the fermion number densityfð0Þ0 and spin currentgð0Þ
0 are

independent, and the other components can simply be
expressed in terms of them [29,30],

fð0Þ�1 ¼ � p
Ep

· gð0Þ�
0 ;

fð0Þ�2 ¼ 0;

fð0Þ�3 ¼ � m
Ep

fð0Þ�0 ;

gð0Þ�
1 ¼ � p

Ep
fð0Þ�0 ;

gð0Þ�
2 ¼ p × gð0Þ�

0

m
;

gð0Þ�
3 ¼ ∓E2

pg
ð0Þ�
0 − ðp · gð0Þ�

0 Þp
mEp

: ð12Þ
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Note that the classical limit of the transport equations (8)
provides only a part of the above relations and does not
contribute any new information.
To include quantum correction to the first order in

ℏ, a straightforward idea is the extension of the on-
shell condition, Wðx; pÞ ¼ Wþðx; pÞδðp0 − Ep − ℏδEpÞþ
W−ðx; pÞδðp0 þ Ep þ ℏδEpÞ. The particles are still on the
shell, but the position of the shell is shifted from Ep to
Ep þ ℏδEp, where δEp is a spin-independent shell
shift induced by the quantum correction. Using the
ℏ-expansion for the δ function δðp0 − Ep − ℏδEpÞ ¼
δðp0 − EpÞ − ℏδEpδ

0ðp0 − EpÞ and doing the integrationsR
dp0p0Γ

ð0Þ�
a ðx; pÞδ0ðp0 ∓ EpÞ by parts, the constraint

equations (9) at the first order in ℏ become

� Epf
ð1Þ�
0 þ ΔE�

p0 − p · gð1Þ
1 ¼ mfð1Þ3 ;

� Epf
ð1Þ�
1 þ ΔE�

p1 − p · gð1Þ
0 ¼ 0;

� Epf
ð1Þ�
2 þ ΔE�

p2 −
1

2
Dð0Þ · gð0Þ

3 ¼ 0;

� Epf
ð1Þ�
3 þ ΔE�

p3 −
1

2
Dð0Þ · gð0Þ

2 ¼ mfð1Þ0 ;

� Epg
ð1Þ�
0 þ ΔE�

p0 − pfð1Þ1 −
1

2
Dð0Þ × gð0Þ

1 ¼ mgð1Þ
3 ;

� Epg
ð1Þ�
1 þ ΔE�

p1 − pfð1Þ0 −
1

2
Dð0Þ × gð0Þ

0 ¼ 0;

� Epg
ð1Þ�
2 þ ΔE�

p2 þ p × gð1Þ
3 þ 1

2
Dð0Þfð0Þ3 ¼ 0;

� Epg
ð1Þ�
3 þ ΔE�

p3 − p × gð1Þ
2 ¼ mgð1Þ

0 ð13Þ

with the definition ΔE�
pi ¼ δEpðfð0Þ�i þ Ep∂fð0Þ�i =∂EpÞ

and ΔE�
pi ¼ δEpðgð0Þ�

i þ Ep∂gð0Þ�
i =∂EpÞ controlled by

the shell shift and classical components. Since fð0Þi and

gð0Þ
i must satisfy the classical constraints (12), it is impossible

to find a shell shift δEp which satisfies all the 16 first-order
constraints (13). Thismeans that when quantum correction is
included there is no longer an energy shell for the particles.
We also tried component-dependent shell shifts δEpa

by assuming Γaðx; pÞ ¼ Γþ
a ðx; pÞδðp0 − Ep − ℏδEpaÞ þ

Γ−
a ðx; pÞδðp0 þ Ep þ ℏδEpaÞ. In this case, the constraint

equations (13) are still valid, but δEp in ΔE�
pi and ΔE�

pi is
replaced by δEpa. Again,we cannotwork outΔE�

pi andΔE�
pi

which satisfy both the classical and first-order constraints
(12) and (13).
The spin component–dependent shell at Ep þ δEpa is

not a real energy shell for particles; it is already a specific
expression of the off-shell effect. To include a general off-
shell effect in the kinetic theory, we add a continuous

function of p0 to the classical on-shell condition; namely,
we take

Γaðx; pÞ ¼ Γþ
a ðx; pÞðδðp0 − EpÞ − ℏAðpÞÞ

þ Γ−
a ðx; pÞðδðp0 þ EpÞ þ ℏAðpÞÞ; ð14Þ

where the spectral function AðpÞ is a quantum correction
to classical particles. By substituting the covariant compo-
nents Γa into the original constraint equations (9),
we obtain again their first-order equations (13) with
ΔEpa characterized by the continuous spectrum AðpÞ,
ΔEpa ¼

R
dp0p0Γ

ð0Þ
a AðpÞ. Note that the Γð0Þ

a multiplied by
the spectral function AðpÞ are not on the shell. Therefore,
ΔEpa are not constrained by the classical relations (12);
they are controlled only by the constraint equations (13).
By eliminating the first-order components in (13), we
obtain ΔEpa in the local rest frame of the medium,

ΔE�
p0 ¼∓B · gð0Þ�

0

2Ep
;

ΔE�
p1 ¼ −

B · p
2E2

p
fð0Þ�0 ;

ΔE�
p2 ¼

E · gð0Þ�
0

2m
;

ΔE�
p3 ¼�p · ðE× gð0Þ�

0 Þ
2mEp

−
B · gð0Þ�

0

2m
þ ðB · pÞðp · gð0Þ�

0 Þ
2mE2

p
;

ΔE�
p0 ¼�

�
∓E× p

2E2
p

þm
B
2Ep

�
fð0Þ�0 ;

ΔE�
p1 ¼∓E× gð0Þ�

0

2Ep
−
Bðp · gð0Þ�

0 Þ
2E2

p
;

ΔE�
p2 ¼

mE
2E2

p
fð0Þ�0 ;

ΔE�
p3 ¼

mB
2E2

p
fð0Þ�0 : ð15Þ

The constraint equations (13) not only determine the
quantum correction to the classical mass shell but also
reduce the number of independent spin components at the
first order in ℏ. Similar to the classical case, fð1Þ0 and gð1Þ

0

are still the independent spin components, and the other
components are determined by them and their classical
limit,
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fð1Þ�1 ¼�p ·gð1Þ�
0

Ep
�p ·B
2E3

p
fð0Þ�0 ;

fð1Þ�2 ¼−
Dð0Þ ·gð0Þ�

0

2m
þp · ðp ·Dð0ÞÞgð0Þ�

0

2mE2
p

−
ðB×pÞ ·gð0Þ�

0

mE2
p

∓E ·gð0Þ�
0

2mEp
;

fð1Þ�3 ¼�mfð1Þ0

Ep
∓ ðp×Dð0ÞÞ ·gð0Þ�

0

2mEp
þp · ðE×gð0Þ�

0 Þ
2mE2

p

∓B ·gð0Þ�
0

2mEp
∓ ðB ·pÞðp ·gð0Þ�

0 Þ
2mE3

p
;

gð1Þ�
1 ¼� p

Ep
fð1Þ0 � 1

2Ep
Dð0Þ×gð0Þ

0 þ E
2E2

p
×gð0Þ�

0

�Bðp ·gð0Þ�
0 Þ

2E3
p

;

gð1Þ�
2 ¼p×gð1Þ�

0

m
�
�
pðp ·EÞ
2mE3

p
−

E
2mEp

�
fð0Þ�0

þ p
2mE2

p
p ·Dð0Þfð0Þ�0 −

1

2m
Dð0Þfð0Þ�0 ;

gð1Þ�
3 ¼∓

�
Ep

m
gð1Þ�
0 −

p ·gð1Þ�
0

mEp
p

�
þ
�
E×p
2mE2

p
∓mB
2E3

p

�
fð0Þ�0

∓ 1

2mEp
p×Dð0Þfð0Þ�0 : ð16Þ

We now calculate the dynamical equations controlling
the evolution of the independent spin components f0 and

g0 at the classical level. The behavior of fð0Þ0 and gð0Þ
0 is

controlled by the transport equations (8) to the first order
in ℏ,

Dð0Þ
t fð0Þ0 þDð0Þ · gð0Þ

1 ¼ 0;

Dð0Þ
t fð0Þ1 þDð0Þ · gð0Þ

0 ¼ −2mfð1Þ2 ;

p · gð1Þ
3 ¼ −mfð1Þ1 ;

Dð0Þ
t fð0Þ3 − 2p · gð1Þ

2 ¼ 0;

Dð0Þ
t gð0Þ

0 þDð0Þfð0Þ1 − 2p × gð1Þ
1 ¼ 0;

Dð0Þ
t gð0Þ

1 þDð0Þfð0Þ0 − 2p × gð1Þ
0 ¼ −2mgð1Þ

2 ;

Dð0Þ
t gð0Þ

2 −Dð0Þ × gð0Þ
3 þ 2pfð1Þ3 ¼ 2mgð1Þ

1 ;

Dð0Þ
t gð0Þ

3 −Dð0Þ × gð0Þ
2 þ 2pfð1Þ2 ¼ 0: ð17Þ

Substituting the classical relation between gð0Þ
1 and fð0Þ0 into

the first equation leads to the Boltzmann-type transport

equation for the particle number density fð0Þ0 ,

�
Dð0Þ

t � p
Ep

·Dð0Þ
�
fð0Þ�0 ¼ 0: ð18Þ

Combining the second and the last equations to eliminate

the first-order component fð1Þ2 and then taking into account

the classical relations between fð0Þ1 , gð0Þ
2 , gð0Þ

3 , and gð0Þ
0 , we

obtain the second Boltzmann-type transport equation for

the particle spin density gð0Þ
0 ,

�
Dð0Þ

t � p
Ep

·Dð0Þ
�
gð0Þ�
0

¼ 1

E2
p
½p × ðE × gð0Þ�

0 Þ ∓ EpB × gð0Þ�
0 �; ð19Þ

which is the phase-space version of a generalized Bargmann-
Michel-Telegdi equation [33,34] and describes spin preces-
sion in external electromagnetic fields. It is clear that the

particle number density fð0Þ0 and spin density gð0Þ
0 are

independent of each other; they are not coupled in the
transport equations. Since we do not include interaction
among particles in the Lagrangian density, there is no
collision term on the right-hand side of the transport equation

for fð0Þ0 . However, for the spin density gð0Þ
0 , the interaction

between spin angular momentum and electromagnetic fields
results in collision terms in the transport equation.
The dynamical evolution of the particle number density

fð1Þ0 and spin density gð1Þ
0 to the first order in ℏ is controlled

by the transport equations (8) to the second order in ℏ.
Taking the classical and first-order constraints (12) and (16)
and using the classical transport equations (18) and (19), a
straightforward but tedious calculation leads to
�
Dð0Þ

t � p
Ep

·Dð0Þ
�
fð1Þ�0

¼ E
2E2

p
·Dð0Þ × gð0Þ�

0 ∓ 1

2E3
p
B · ðp ·Dð0ÞÞgð0Þ�

0

þ B × p
E4
p

·E × gð0Þ�
0 ;

�
Dð0Þ

t � p
Ep

·Dð0Þ
�
gð1Þ�
0

¼ 1

E2
p
½p × ðE × gð1Þ�

0 Þ ∓ EpB × gð1Þ�
0 �

∓
�

B
2E3

p
� E × p

2E4
p

�
p · Dð0Þfð0Þ�0

∓
�ðp ·EÞðE × pÞ

E5
p

� p × ðB ×EÞ
2E4

p

�
fð0Þ�0 : ð20Þ

It is obvious that the number density f0 which comes from
the covariant vector component Vμ and the spin density g0

which comes from the covariant axial vector component Aμ
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are coupled to each other at the quantum level. There are
now collision terms in the transport equation for the

number density fð1Þ0 due to the spin interaction with the
electromagnetic fields. With an appropriate initial condi-
tion, one can solve first the classical transport equations and
then the quantum transport equations order by order. The
higher-order quantum corrections can be derived in a
similar way.

It is not necessary to choose the number density f0 and
spin density g0 as the independent spin components; this
can be seen from the classical and first-order constraints
(12) and (16). In some time, it becomes better to take f0 and
the magnetic moment g3 as the independent ones; see the
next section. In this case, we need the transport equations

for gð0Þ
3 and gð1Þ

3 ,

p ·

�
Dð0Þ

t � p
Ep

·Dð0Þ
�
gð0Þ�
3 ¼ −

p2

E2
p

�
E� p

Ep
×B

�
· gð0Þ�

3 ∓ m2

E3
p
p · ðB × gð0Þ�

3 Þ;

p ·

�
Dð0Þ

t � p
Ep

·Dð0Þ
�
gð1Þ�
3 ¼ −

p2

E2
p

�
E� p

Ep
×B

�
· gð1Þ�

3 ∓ m2

E3
p
p · ðB × gð1Þ�

3 Þ

þ m
2E4

p
ðp ·BÞðp · Dð0ÞÞfð0Þ�0 ∓ m

2E3
p
p · ðE ×Dð0ÞÞfð0Þ�0

� 3m
2E5

p
ðp ·BÞðp · EÞfð0Þ�0 �mp2

2E5
p
ðB ·EÞfð0Þ�0 : ð21Þ

III. TRANSPORT EQUATIONS
FOR CHIRAL COMPONENTS

In chiral limit, while the vector and axial vector currents
Vμ and Aμ are coupled to each other, their combinations
Jμ ¼ Vμ þ Aμ and Jμ ¼ Vμ − Aμ are decoupled. The phys-
ics behind this is the number conservation of left-handed
and right-handed fermions. To see the mass correction to

the chiral conservation, we still introduce the chiral currents
Jχμ ¼ Vμ þ χAμðχ ¼ �Þ in covariant formalism or fχ ¼
f0 þ χf1 and gχ ¼ g1 þ χg0 in equal-time formalism. In
the chiral limit, Jχμ represent the currents of fermions with
definite chirality. From the classical and quantum relations
(12) and (16), the zeroth- and first-order chiral components
gχ can be expressed as

gð0Þ�
χ ¼ gð0Þ�

1 þ χgð0Þ�
0

¼ � p
Ep

fð0Þ�χ ∓ χ
m
Ep

gð0Þ�
3 ;

gð1Þ�
χ ¼ gð1Þ�

1 þ χgð1Þ�
0

¼ � p
Ep

fð1Þ�χ −
χ

2

�
pðp · BÞ

E4
p

þm2B
E4
p

� p ×E
E3
p

� p · B
E3
p

þ p
E2
p
×Dð0Þ

�
fð0Þ�χ

∓ χ
m
Ep

gð1Þ�
3 ∓ mE × gð0Þ�

3

2E3
p

−
mDð0Þ × gð0Þ�

3

2E2
p

−
m
2E4

p
gð0Þ�
3 × ðB × pÞ: ð22Þ

In the chiral limit with m ¼ 0, gð0Þ
χ ¼ p

Ep
fð0Þχ , and gð1Þ

χ is a

linear combination of fð0Þχ and fð1Þχ . The 2 degrees of
freedom for a massive fermion system (number fχ and
current gχ) are reduced to 1 for a massless fermion system
ðfχÞ. For massless fermions with certain chirality, the spin
is not an independent degree of freedom but is always
parallel or antiparallel to the momentum, and the spin

distribution can be determined by the number density. For
massive fermions, gχ and fχ are, however, independent
components, as the spin direction does not follow the
momentum direction. In this case, gχ is related to not only
fχ but also the magnetic moment g3 or the spin density g0.
Using the transport equations for fð0Þ�0 and fð1Þ�0 derived

in Sec. II, we have
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p

�
Dð0Þ

t � p
Ep

· Dð0Þ
�
fð0Þ�1 ¼ m

��
Dð0Þ

t � p
Ep

· Dð0Þ
�
gð0Þ�
3 � 1

Ep
B × gð0Þ�

3

�
;

p

�
Dð0Þ

t � p
Ep

· Dð0Þ
�
fð1Þ�1 ¼ m

��
Dð0Þ

t � p
Ep

· Dð0Þ
�
gð1Þ�
3 � 1

Ep
B × gð1Þ�

3

�

�
�

p
2E3

p
p · ðE ×Dð0ÞÞ þ m2

2E3
p
E ×Dð0Þ ∓

�
pðp ·BÞ
2E4

p
þm2B

2E4
p

�
p ·Dð0Þ

�
fð0Þ�0

�
�ðE ·BÞp

2E3
p

−
3ðp ·EÞðp ·BÞp

2E5
p

−
3m2ðp ·EÞB

2E5
p

�
fð0Þ�0 ð23Þ

for fð0Þ�1 and fð1Þ�1 and then the transport equations for

the classical and quantum chiral components fð0Þ�χ and

f̃ð1Þ�χ ¼ fð1Þ�χ ∓ χ p·B
2E3

p
fð0Þ�χ ,

�
Dð0Þ

t � p
Ep

· Dð0Þ
�
fð0Þ�χ ¼ χmF1½gð0Þ

3 �;
�
Dð0Þ

t � p
Ep

· Dð0Þ
�
f̃ð1Þ�χ � χ

p ·B
2E3

p
Dð0Þ

t fð0Þ�χ

þ χ

�
pðp · BÞ

E4
p

�E × p
2E3

p

�
·Dð0Þfð0Þ�χ

¼ χmF1½gð1Þ
3 � þmF2½gð0Þ

3 �; ð24Þ

where we have shifted the first-order distribution from fð1Þχ

to f̃ð1Þχ to remove the infrared divergence in the chiral limit
[20,35] and F1 and F2 are two functions of the magnetic
moment g3.
The sum of the two equations in (24) leads to

the transport equation for the chiral component

fχ ¼ fð0Þχ þ ℏf̃ð1Þχ ,
�
Dð0Þ

t � p
p
·Dð0Þ

�
f�χ � χℏ

p ·B
2p3

Dð0Þ
t f�χ

þ χℏ

�
pðp ·BÞ

p4
� E × p

2p3

�
·Dð0Þf�χ

¼ χmF1½g�
3 � þ ℏmF2½gð0Þ�

3 �: ð25Þ
To see clearly the mass correction to the chiral kinetic
equations, we have taken here the Taylor expansion in
terms of the fermion mass m and kept only the linear terms
inm which are explicitly shown on the right-hand side with
m-independent functions F1 and F2,

F1½g3� ¼ −
E · g�

3

p2
;

F2½g3� ¼ � 1

2p3
Dð0Þ · ðE × g�

3 Þ þ
1

2p4
ðp · Dð0ÞÞðB · g�

3 Þ

∓ 3

2p5
ðp × BÞ · ðE × g�

3 Þ: ð26Þ

We should emphasize again that, different from the chiral
limit, the transport equations for the magnetic moment g3

listed in the end of the last section are needed to close this
kinetic equation for the chiral component fχ .
To compare with the known results in chiral limit, we

take in the following homogeneous electromagnetic fields
E and B. By introducing the Berry curvature [36]
b ¼ χp=2p3, dispersion relation ϵp¼pð1−ℏQB ·bÞ, and
velocity vp¼∇pϵp¼p=pð1þ2ℏQb ·BÞ−ℏQðp=p ·bÞB
in chiral limit, the transport equation can be simplified as

∂tf�χ þ _x · ∇f�χ þ _p · ∇pf�χ ¼ χm
F1½g�

3 �ffiffiffiffi
G

p þ ℏm
F2½gð0Þ�

3 �ffiffiffiffi
G

p

ð27Þ

with the phase-space factor G ¼ ð1þ ℏQB · bÞ2 and the
equations of motion

_x ¼ 1ffiffiffiffi
G

p ½vp þ ℏQðvp · bÞBþ ℏQE × b�;

_p ¼ Qffiffiffiffi
G

p ½vp ×BþEþ ℏðE ·BÞb�: ð28Þ

In comparison with the chiral kinetic equation for
massless fermions [37,38],

∂tf�χ þ _x · ∇f�χ þ _p · ∇pf�χ ¼ 0; ð29Þ

the two kinetic equations with and without fermion mass
have the same structure: the berry curvature, the equations
of motion, and the phase-space factor are exactly the same.
The only difference is the nonzero collision terms on the
right-hand side generated by the interaction between
particle spin and electromagnetic fields.
We now discuss the relation between the particle energy

and spin magnetic moment. From the Dirac equation for
fermions with finite mass m, it is easy to obtain the
dispersion relation ϵ2p − E2

p − ℏQσ ·BþOðB2Þ ¼ 0 which
determines the quantum correction to the fermion energy
Δϵp ¼ ϵp − Ep ¼ −ℏQEpb ·B to the linear order in the
field B, where b ¼ σ=ð2E2

pÞ is the effective Berry
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curvature. In the nonrelativistic limit with p ≪ m, the
quantum correction Δϵp ¼ −ℏμB ·B comes exactly from
the spin magnetic moment μB ¼ Qσ=ð2mÞ in the field.
In the ultrarelativistic limit with p ≫ m, on the other
hand, the quantum correction becomes δϵp¼−ℏQpb ·B
with Berry curvature b ¼ σ=ð2p2Þ ¼ p=ð2p3Þ due to the
spin-momentum locking for Weyl fermions. This is the case
we discussed above.

IV. SOLUTION TO THE MASS CORRECTION

Given the above kinetic equation (27) for fermion
systems with small mass, it is of great interest to find
possible analytic solutions. The great complexity in the
general case, as we pointed out above, is the mass-induced
coupling between the chiral component fχ and the other
independent distribution g3. However, when we turn off the
electric field E and keep only the magnetic field B,
corresponding to the physics of chiral magnetic effect,
the effective collision term with F1 which is coupled to g3

vanishes, and the other collision term is only related to the

classical distribution gð0Þ
3 , which can be solved through the

classical transport equation before. In this case, the colli-

sion term ℏmF2½gð0Þ
3 �= ffiffiffiffi

G
p

in the linear nonhomogeneous
differential equation is known, and the equation can be
analytically solved [39].
Considering the three independent vectors B, p, and

B × p in the case with only magnetic field, gð0Þ
3 should

include three components parallel to the three elementary
vectors. From the explicit expression of F2, see (26), the
last component does not contribute to the collision term,

and we can assume a general form gð0Þ
3 ¼ G1pþ G2B with

two scalar functions G1 and G2. It is also easy to see the
disappearance of the momentum derivative in the collision

term, ðp · ðB × ∇pÞÞðB · gð0Þ
3 Þ ¼ 0. Finally, the transport

equation can be simplified as

∂tf�χ þ _x ·∇f�χ þ _p ·∇pf�χ ¼ ℏm
1

2
ffiffiffiffi
G

p
p4

ðp ·∇ÞðB ·gð0Þ�
3 Þ:

ð30Þ

The other point in the case with only magnetic field is
that the mass correction is only a quantum correction, since
the collision term is at the first order in ℏ. This leads to the
conclusion that the mass correction to the chiral magnetic
effect should be small. When the electric field is turned on,
the mass correction appears already at classical level; see
the first collision term with F1 in (27). Therefore, in the
case with only electrical field or both electrical and
magnetic fields, the mass correction will become more
important.
We first consider the collisionless limit, namely the

chiral kinetic equation (29). In this limit, the particles will
simply undergo free-streaming according to the trajectory

determined from the equations of motion (28). Note that
such a trajectory is different from the usual classical
trajectory due to the anomalous terms. For a particle with
initial position x0 and initial momentum p0 at time t0, its
position xðx0;p0; t0; tÞ and momentum pðx0;p0; t0; tÞ at
time t are given by [26]

x ¼ x0 þ
1

QB
½px0 sin θ þ py0ð1 − cos θÞ�;

y ¼ y0 þ
1

QB
½−px0ð1 − cos θÞ þ py0 sin θ�;

z ¼ z0 þ
ζffiffiffiffi
G

p
p
pz0ðt − t0Þ;

px ¼ px0 cos θ þ py0 sin θ;

py ¼ −px0 sin θ þ py0 cos θ;

pz ¼ pz0 ð31Þ

with the definition ζ ¼ 1þ χ QBpz

p3 and θ ¼ ζQBffiffiffi
G

p
p
ðt − t0Þ,

where we have assumed a space and time independent
magnetic field along the z-axis B ¼ Bez.
Equivalently, a particle found to have position x and

momentum p at time t can be traced back to a state of
x0ðx;p; t; t0Þ and p0ðx;p; t; t0Þ at initial time t0,

x0 ¼ x −
1

QB
½px sin θ − pyð1 − cos θÞ�;

y0 ¼ y −
1

QB
½pxð1 − cos θÞ þ py sin θ�;

z0 ¼ z −
ζffiffiffiffi
G

p
p
pzðt − t0Þ;

px0 ¼ px cos θ − py sin θ;

py0 ¼ px sin θ þ py cos θ;

pz0 ¼ pz: ð32Þ

Therefore, given an initial condition fχ0ðx0;p0; t0Þ, the
solution of the chiral kinetic equation is simply

f�χ ðx;p; tÞ ¼ f�χ0ðx0ðx;p; t; t0Þ;p0ðx;p; t; t0Þ; t0Þ: ð33Þ

We now solve the nonhomogeneous differential equation,
namely the kinetic equation (30) with known mass-induced

collision term βðx;p; tÞ≡ ℏm
2
ffiffiffi
G

p
p4 ðp · ∇ÞðB · gð0Þ�

3 Þ. The sol-
ution can be analytically written as

f�χ ðx;p; tÞ¼ f�χ0ðx0ðx;p; t; t0Þ;p0ðx;p; t; t0Þ; t0Þ

þ
Z

t

t0

βðxðx0;p0; t0; t0Þ;pðx0;p0; t0; t0Þ; t0Þdt0:

ð34Þ
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The first term is the solution of the corresponding homo-
geneous differential equation, namely the solution of the
chiral kinetic equation in chiral limit, and the second term is
the correction from the small fermion mass.

V. SUMMARY

While the quantum chiral anomaly and related phenom-
ena in fermion systems are widely discussed in chiral limit,
the mass correction in real case should be seriously
considered. For a non-equilibrium system, a systematic
way to study quantum correction to particle transport
phenomena is the kinetic theory in Wigner function
formalism. In this paper we systematically studied the
fermion mass correction to the chiral kinetic equations in
external electromagnetic fields in the frame of equal-time
transport theory.
In chiral limit, fermions are always on mass shell,

although quantum correction may change the position of
the shell. For massive fermions, the on-shell condition is no
longer a solution of the equal-time constraint equations at
quantum level, and the off-shell effect should be included in
the quantum kinetic theory. At first order in ℏ, we fixed the
off shell–induced terms by analytically solving the con-
straint equations. With the help of these constraints, we

derived the transport equations for the particle number and
spin densities at the classical level and to the first-order
quantum correction. To see clearly the fermion mass
correction to the chiral kinetic equations, we take Taylor
expansion in terms of the mass, and to the linear order, we
obtained kinetic equations for massive fermions. The mass
correction is reflected as effective collision terms in the
transport equations. Different from chiral limit where the
chiral number density is the only independent quantity and
its transport equation controls the evolution of the system,
spin density becomes independent for massive fermions,
and the chiral number density and spin density are coupled
to each other. Only in the case with only magnetic field, the
two densities are decoupled. In this case, the mass
correction is a quantum correction, and the chiral number
density can be analytically solved. In the general case with
electric field, the mass correction appears already at
classical level, and the effect on chiral properties should
be more important.
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