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We compute the effect of the chiral phase transition of QCD on the axion mass and self-coupling; the
coupling of the axion to the quarks at finite temperature is described within the Nambu–Jona-Lasinio
model. We find that the axion mass decreases with temperature, following the response of the topological
susceptibility, in agreement with previous results obtained within chiral perturbation theory at low and
intermediate temperatures. As expected, the comparison with lattice data shows that chiral perturbation
theory fails to reproduce the topological susceptibility around the chiral critical temperature, while the
Nambu–Jona-Lasinio model offers a better qualitative agreement with these data, hence a more reliable
estimate of the temperature dependence of the axion mass in the presence of a hot quark medium. We
complete our study by computing the temperature dependence of the self-coupling of the axion, finding that
this coupling decreases at and above the phase transition. The model used in our work as well as the results
presented here pave the way to the computation of the in-medium effects of hot and/or dense quark-gluon
plasma on the axion properties.
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I. INTRODUCTION

The current theory used to describe the strong interactions
is QCD, which possesses the Uð1ÞA anomaly as well as the
spontaneous breaking of chiral symmetry as some of its
main features. Because of the nontrivial topological struc-
ture of the QCD vacuum induced by the instanton effects, a
total derivative term is expected in the QCD Lagrangian,

Lθ ∝ θF · F̃; ð1Þ

where F and F̃ denote the gluonic field strength tensor and
its dual, respectively, and the real parameter θ is known as
the θ angle. If θ ≠ 0, then QCD is not CP symmetric; it is,
however, well known that the value of θ is very small,
θ ≲ 10−11; see, for example, constraints from electric dipole
moments [1–5] as well as lattice QCD calculations [6,7].
The very small value of θ implies that strong interactions
conserve CP remarkably well. To understand why QCD is
CP conserving despite the possibility of aCP-breaking term
in its Lagrangian, a new global, chiral Uð1ÞPQ symmetry

was added to the QCD Lagrangian, and then an additional
CP-violating term originating from the Uð1ÞPQ anomaly
would exactly eliminate the θ term above. This mechanism
was proposed byPeccei andQuinn [8,9] and is often referred
to as the Peccei-Quinn (PQ) mechanism. Soon after this
proposal, it was pointed out [10,11] that a pseudo-Goldstone
boson, namely, the QCD axion (which we will call simply
the axion in the following), would arise from the sponta-
neous symmetry breaking of the Uð1ÞPQ symmetry; see also
Refs. [12–15].
Axions are weakly interacting and very light particles

and thus are good cold dark matter candidates [10,16–18].
Moreover, it has been suggested that they can form stars
[19–33] as well as a Bose-Einstein condensate [34] with a
very high condensation temperature [35]. It is therefore
clear that it is important to know how the axion properties,
in particular, the mass and the self-coupling, evolve with
temperature. This is the main scope of the present study, in
which we compute how these two quantities are affected by
temperature, focusing, in particular, for temperatures
around the critical temperature of QCD.
The study of the response of the axion to a QCD thermal

medium in proximity of the critical temperature,
T ≈ 150 MeV, calls for the use of effective field theories
and phenomenological models, due to the impossibility of
using perturbative QCD in this moderate energy regime.
One of these effective theories is the chiral perturbation
theory (χPT), which is a systematic expansion in powers of
the momenta of light mesons (namely, the pions for the case
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of two-flavor QCD) and of the current quark masses; χPT
provides a good tool to study the θ vacuum of QCD; see, for
example, Refs. [36–41] as well as the QCD axion physics at
low temperature [12]. In particular, χPT predicts a value for
the topological susceptibility at zero temperature [12] that
agrees with the lattice QCD results [42–44]. At finite
temperatures, however, and, in particular, in the proximity
of the QCD crossover, the χPT results may become
unreliable; from the physical point of view, this can be
understood because χPT is formulated in terms of pions and
contains no information about the chiral crossover at high
temperature, around and abovewhich a formulation in terms
of quarks might be more appropriate.
Because of the limitations of χPT, in this work, we adopt

the Nambu–Jona-Lasinio (NJL) model to investigate the
response of the axion to a finite temperature. With the
instanton effects taken into account, the NJL model
provides a theoretical framework to simultaneously incor-
porate the spontaneous and explicit chiral symmetry break-
ing as well as the Uð1ÞA anomaly. In fact, the interaction of
the axion with quarks can be obtained by first adding the
interaction term

La ¼ θF · F̃ þ a
fa

F · F̃ ð2Þ

to the NJL Lagrangian, in which, according to the PQ
mechanism, ha=fa þ θi ¼ 0; then introducing the quantum
fluctuation a ¼ hai þ δa in the above equation, renaming
δa → a where a from now on denotes the axion field; and
performing a chiral rotation that transfers the interaction of
a with F · F̃ to the interaction of the a with the quarks.
After this chiral rotation is performed, we are left with an
effective theory of the axion interacting with a thermal bath
of quarks, the latter being capable of describing the
important chiral crossover of QCD at finite temperature,
which instead lacks in χPT. In Eq. (2), fa is the axion decay
constant, 108 GeV≲ fa ≲ 1012 GeV [45].
The plan of the article is as follows. In Sec. II, we present

the NJL model augmented with the interaction with the
instanton. In Sec. III, we briefly introduce the axion at finite
temperature within the formalism of χPT. In Sec. IV, we
report our results on the axion mass and self-coupling.
Finally, we present our conclusions and an outlook
in Sec. V.

II. AXION WITHIN THE NJL MODEL

In this section, we describe the model that we use in our
calculations, namely, the NJL model with the ’t Hooft term
augmented by the interaction with the axion. We use a two-
flavor model in this article, while an extension to the three-
flavor case will be the subject of a future study. The NJL
model Lagrangian incorporating the Uð1ÞA symmetry-
breaking term is given by

L ¼ q̄ðiγμ∂μ −mÞqþ Lq̄q þ Ldet; ð3Þ

where q denote the quark fields, m is the current quark
mass, and the attractive part of the q̄q channel of the Fierz
transformed color current-current interaction is given by

Lq̄q ¼ G1½ðq̄τaqÞ2 þ ðq̄τaiγ5qÞ2�; ð4Þ

where τ0 ¼ I2×2 is the unit matrix and τi (i ¼ 1; 2; 3)
denote the Pauli matrices. Finally, we have put

Ldet ¼ 8G2½ei
a
fa detðqRqLÞ þ e−i

a
fa detðqLqRÞ�; ð5Þ

which can be obtained by a chiral rotation of the quark fields
in the path integral [46–48] starting from the Lagrangian in
Eq. (2); in the above equation, the determinant is understood
in the flavor space. The determinant term breaks the original
global symmetry, Uð2ÞL ⊗ Uð2ÞR, down to SUð2ÞL ⊗
SUð2ÞR ⊗ Uð1ÞB. The coupling constants G1 and G2 are
often assumed to be equal in the literature. This version of
the NJL model [49–54] as well as that enhanced by the
Polyakov loop [55] have been widely used to investigate the
θ effects on the QCD phase transition.
To obtain the thermodynamic potential in the one-loop

(often called the mean field) approximation, we neglect the
quantum fluctuation and replace the scalar and pseudosca-
lar fields with their corresponding condensates. The final
result is well known in the literature; therefore, we merely
quote the result here, that is,

Ωðα0; β0Þ ¼ Ωq −G2ðη2 − σ2Þ cos a
fa

þ G1ðη2 þ σ2Þ − 2G2ση sin
a
fa

; ð6Þ

where σ ¼ hq̄qi and η ¼ hq̄iγ5qi are the chiral and SU(2)
isospin-singlet pseudoscalar condensates, respectively. In
the above equation, the quark contribution reads

Ωq ¼ −8Nc

Z
d3p
ð2πÞ3

�
Ep

2
þ T logð1þ e−Ep=TÞ

�
; ð7Þ

where Nc ¼ 3 represents the number of color of quarks and

Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

q
; M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ α0Þ2 þ β20

q
ð8Þ

is the single particle energy of quarks. We have also
introduced the condensates α0 and β0, which are defined
in terms of the standard QCD ones as

α0 ¼ −2
�
G1 þ G2 cos

a
fa

�
σ þ 2G2η sin

a
fa

; ð9Þ

β0 ¼ −2
�
G1 −G2 cos

a
fa

�
ηþ 2G2σ sin

a
fa

: ð10Þ

In the following, we put G1 ¼ ð1 − cÞG0 and G2 ¼ cG0.
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The integral in Eq. (7) can be split into two parts: a zero-
temperature and a finite-temperature part, respectively,
corresponding to the first and second terms in the right-
hand side of Eq. (7). The zero-temperature contribution
measures the energy difference between the vacuum with-
out condensation and the vacuum with condensation. This
contribution is divergent in the ultraviolet: in order to
handle this divergence, we follow the standard procedure
and cut the integral at the scale Λ; on the other hand, the
thermal part is finite, and we do not regularize it. Different
regularization schemes of the zero-temperature part might
lead to slightly different quantitative results, but the
qualitative picture is usually unchanged by changing this
scheme; for this reason, we use only this simple regulari-
zation here, leaving the study of different regularization
schemes to future studies.
For a given value of a, the thermodynamic potential is a

function of σ and η or equivalently on α0 and β0; at each
temperature, the physical values of the condensates σ̄ and η̄
correspond to the solutions of the gap equations, namely,

∂Ω
∂σ

����
σ¼σ̄

¼ 0;
∂Ω
∂η

����
η¼η̄

¼ 0: ð11Þ

At the physical point, we can define the effective potential
for the axion as

VðaÞ ¼ Ωðσ ¼ σ̄; η ¼ η̄jaÞ: ð12Þ

The axion mass is defined in terms of the second
derivative of the effective potential at a¼0 [12,44,56–58],
that is,

m2
a ¼

d2VðaÞ
da2

����
a¼0

¼ χt
f2a

; ð13Þ

where χt corresponds to the topological susceptibility;
similarly, the axion self-coupling is defined in terms of
the fourth derivative of the effective potential at a ¼ 0,
namely,

λa ¼
d4VðaÞ
da4

����
a¼0

: ð14Þ

The topological susceptibility plays an important role in
understanding the physics of QCD vacuum as well as of the
Uð1ÞA anomaly, which has been studied previously in the
NJL model at finite temperature. It is worth remarking that
the derivative in Eq. (14) is understood as a total derivative
that takes into account the fact that the condensates may
have a dependence on a, namely,

dV
da

¼ ∂V
∂a þ ∂V

∂σ
∂σ
∂aþ ∂V

∂η
∂η
∂a : ð15Þ

III. AXION WITHIN CHIRAL PERTURBATION
THEORY

We briefly review here the axion at finite temperature
within χPT; the results shown here are well known, so we
refer to original literature for a detailed discussion (see, for
example, Refs. [12,59,60]). In the SU(2) χPT framework,
the temperature dependence of the axion potential up to the
next-to-leading order (NLO) is given by

Vða; TÞ ¼ V0ðaÞ
�
1 −

3

2

T4

π2f2πM2
a

Z
∞

0

x2 logð1 − e−EaÞdx
�
;

ð16Þ

where fπ is the pion decay constant and V0 corresponds to
the NLO axion potential at zero temperature [12]; more-
over, Ea ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þM2

a=T2
p

withMa being the leading-order
pion mass in a nonvanishing axion background, which in
the mu ¼ md limit reads [12,36,61]

M2
a ¼ m2

π cos
a
2fa

: ð17Þ

The temperature-dependent axion mass can be obtained
easily by taking the second derivative of the potential in
Eq. (16), that is,

m2
aðTÞ
m2

a
¼ 1 −

3T2

4π2f2π

Z
∞

0

x2

ET

dx
eET − 1

; ð18Þ

where ET ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þm2

π=T2
p

and we have put ma ¼
maðT ¼ 0Þ. Similarly, the self-coupling at finite temper-
ature is easily obtained,

λaðTÞ
λa

¼ 1 −
3T2

4π2f2π

Z
∞

0

x2

ET

dx
eET − 1

þ 9m2
π

8f2π

Z
∞

0

x2

π2
eET ðET þ 1Þ − 1

ðeET − 1Þ2E3
T

dx; ð19Þ

where λa ¼ λaðT ¼ 0Þ. The pion mass and the decay
constant are experimentally well known [62,63]; therefore,
the uncertainties on the axion mass and self-coupling at
zero temperature come from the quark mass ratio and the
renormalized NLO couplings [12]. From Eqs. (18) and
(19), we notice, however, that the ratios m2

aðTÞ=m2
a and

λaðTÞ=λa are independent of the quark masses and the NLO
couplings. This implies that the ratios can be evaluated with
better precision than the axion mass and self-coupling at
zero temperature within χPT, at least when the temperature
is much lower than the QCD critical temperature.

IV. RESULTS

In this section, we summarize the results for the axion
mass and its self-coupling obtained within the NJL model
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around and above the QCD critical temperature, and we
compare these with the same quantities computed within
χPT. The parameters of the NJL model are those of
Refs. [49,50], that is, Λ ¼ 590 MeV, G0 ¼ 2.435=Λ2,
c ¼ 0.2, and m ¼ 6 MeV: they are fixed by fitting the
physical pion mass mπ ¼ 140.2 MeV, the pion decay
constant fπ ¼ 92.6 MeV, and the chiral condensate at
zero temperature σ0 ¼ 2ð−241.5 MeVÞ3. When we com-
pare the NJL results with the χPT ones, for the latter, we use
the parameters of Ref. [12]. For completeness, we will first
present shortly some result about the axion potential as well
as the topological susceptibility at finite temperature.

A. Effective potential and topological susceptibility

In Fig. 1, we plot the effective potential defined in
Eq. (12) as a function of a=fa, for several values of the
temperature, computed within the NJL model. At each
temperature, we have subtracted the value of the potential at
a ¼ 0. We notice that at zero temperature the effective
potential shows a valley-hill structure, with degenerate
vacua at a=fa¼0modð2πÞ and local maxima at a=fa ¼
πmodð2πÞ. This potential attains a minimum at a ¼ 0 in
agreement with theVafa-Witten theorem.On the other hand,
as the temperature is increased up to, and above, the critical
temperature for chiral symmetry restoration, the effective
potential becomes flatter, reflecting the suppression of the
height of the potential barrier at finite temperature. The
effect of the temperature described here is in qualitative
agreement with that of the magnetic field [51].
In Fig. 2, we show the ratio of the chiral condensate to the

value in the vacuum for two typical values of a. Clearly, the
chiral condensate depends both on temperature and a now.
In the considered temperature range, the chiral condensates
all decrease monotonously with increasing temperature,
reflecting the effective restoration of the chiral symmetry.
Next, we turn to the topological susceptibility. First, we

notice that from Eq. (13) the topological susceptibility at
zero temperature can be obtained within the NJL model as

χ1=4t ¼ 79.87 MeV, which is in fair agreement with
Ref. [64] as well as with χPT [12] χ1=4t ¼ 77.8ð4Þ MeV
and lattice simulations [42] χ1=4t ¼ 78.1ð2Þ MeV in the
isospin symmetric case. In Fig. 3, we plot (the fourth
root of) the topological susceptibility as a function of
temperature; we show the result obtained within the NJL
model (dashed blue line), χPT (solid red line), and lattice
simulations (shadow area).
We notice that both the NJL model and χPT are in

agreement with lattice data up to T ≲ 140 MeV, namely, up
to approximately the pseudocritical temperature of QCD.
Qualitatively, a difference betweenNJL and χPT is observed
at higher temperatures: the NJL contains the information of
the partial chiral symmetry restoration at finite temperature;
therefore, it is capable of reproducing at least qualitatively
the behavior of the topological susceptibility measured in
latticeQCD.On the other hand, χPTcontains no information
about chiral symmetry restoration at large temperature, and
this leads to a big discrepancy of this effective theory with

Ω
Ω

FIG. 1. Effective potential for several values of the temperature.
At each temperature, the potential is measured with respect to the
potential at a ¼ 0.

FIG. 2. The chiral condensate σ, scaled by the corresponding
zero-temperature value σ0 in the vacuum, as a function of the
temperature for a=fa ¼ 0 and 2π=3.

NJL

40

50 150 250

1/
4

FIG. 3. Fourth root of the topological susceptibility obtained
from several methods as a function of the temperature. The
shadow area represents the lattice data taken from Ref. [42].

ZHEN-YAN LU and MARCO RUGGIERI PHYS. REV. D 100, 014013 (2019)

014013-4



QCD when the temperature is approximately equal to or
larger than the critical temperature.

B. Axion mass and its self-coupling constant

Wenowdiscuss the axionmass and its self-couplingwithin
theNJLmodel at finite temperature. It is worth reminding the
reader here that the mass is an interesting quantity, for
example, in cavity microwave experiments that aim to detect
axions by stimulating their conversion to photons in a strong
magnetic field [13,65,66]. From Eq. (13), the axion mass at
zero temperature within the NJL model is

ma ¼ 6.38 ×
103

fa
MeV2; ð20Þ

in agreement with the result of χPT, ma ¼ 6.06ð5Þ ×
103=fa MeV2 in the isospin symmetric case, as well as with
that of the invisible axion model,ma ≃ 6.0 × 103=fa MeV2

[67–70]. The axion self-coupling might play some role in the
formation of the so-called axion stars [24,71]. At zero
temperature, this can be computed within the NJL model,
namely,

λa ¼ −
�
55.64 MeV

fa

�
4

; ð21Þ

in agreement with the χPT prediction, λa ¼
−ð55.79ð92Þ MeV=faÞ4 [12] in the case of two degenerate
quark flavors.
In Fig. 4, we show the axion mass obtained within the

NJL model (dashed blue line) and χPT (solid red line),
scaled by their corresponding zero-temperature values, as a
function of the temperature. We find a rapid drop of ma
around the QCD chiral crossover, 140 MeV≲ T≲
200 MeV, within the NJL model, which is just a different
way to represent the rapid decrease of the topological

susceptibility in this temperature range. On the contrary, the
prediction of χPT for the axion mass is that this quantity is
almost insensitive to the chiral crossover and stays almost
constant in the aforementioned temperature range, a result
in agreement with the behavior of the topological suscep-
tibility discussed in the previous subsection.
In Fig. 5, we plot the axion self-coupling normalized to

its zero-temperature value, as a function of the temperature;
the lines and colors conventions are the same used in Fig. 4.
Despite the fact that χPT does not contain information
about the chiral crossover, we notice that the NJL model
results agrees with χPT well up to T ≈ 200 MeV; this
suggests that the chiral crossover does not considerably
affect the axion self-coupling. Above this temperature, the
self-coupling from the NJL model experiences a quick
drop, while that computed within χPT experiences only a
moderate decrease.

V. CONCLUSIONS

In this article, we have studied the effect of the coupling
of the QCD axion to a QCD-like thermal medium, study-
ing, in particular, the effect of the temperature and of the
QCD crossover on its mass and its self-coupling. The QCD
medium at finite temperature has been described by the
NJL model with two flavors, which is capable of qualita-
tively reproducing the chiral crossover of QCD; we have
compared the results obtained within the NJL model with
those obtained previously by means of χPT. The latter
contains no information about the chiral crossover and is
thus expected to work well only for temperatures consid-
erably smaller than the critical temperature of QCD; this
motivates the need to use another model, namely, the NJL
model, to take into account the (partial) restoration of chiral
symmetry at finite temperature and compute the effect of this
on some phenomenological properties of the QCD axion.
We have found that below the critical temperature both

the axion mass and the self-coupling do not show a
substantial temperature dependence. On the other hand,

FIG. 4. The thermal behavior of the temperature dependence
of the axion mass from the NJL model scaled by its zero-
temperature value. For comparison, we also show the results from
the χPT [12] and recent lattice data [42].

0.9

0.7

0.5

0.4
50 150 250

NJL

FIG. 5. The thermal behavior of the axion self-coupling scaled
by its zero-temperature value.
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the axion mass is very sensitive to the chiral crossover,
showing a drop of its value within the crossover temper-
ature range, 140 MeV≲ T ≲ 200 MeV, an aspect that
cannot be captured by χPT since this contains no informa-
tion about the critical temperature and is expected to be
valid only for temperatures much smaller than the critical
temperature. The axion self-coupling shows a less pro-
nounced temperature dependence within both the NJL
model and χPT. We have found some substantial decrease
of the coupling only for temperatures of the order of, or
larger than, approximately 250 MeV. This means that if a
hypothetical axion star is as hot as a young neutron star
[72], T ≲ 1010 ∼ 1011 K, then the temperature dependence
of the self-coupling can be ignored; however, for a medium
with a much higher temperature [33,35], this temperature
dependence should be taken into account.
We want to conclude this article by remarking that our

main objective has not been that of performing a complete
phenomenological analysis of the low-energy properties of
the QCD axion; instead, we have pointed out that it is
possible to study the interaction of this elusive particle with
a QCD hot medium by using an effective QCD model that
is capable of capturing at least the qualitative aspects of the
QCD phase diagram, in particular, the existence of a
smooth crossover to a high-temperature phase in which
chiral symmetry is approximately restored. This cannot be
taken into account by using χPT since the latter does not
contain any information about the QCD structure at high
temperature; therefore, the results obtained within χPT are
reliable only for temperatures lower than the QCD critical
temperature, while the present work aims to extend the

study of thermal properties of the QCD axion up to, and
beyond, the QCD critical temperature. For a possible
outlook of the research presented here, we mention that,
keeping in mind the well-known limitations of the NJL
model, it is possible to extend this study to other contexts:
for example, it is interesting to compute in-medium proper-
ties of the axion coupled to hot and dense quark matter as
well as to derive the temperature and density dependence of
the low-energy axion Lagrangian. We plan to report on
these topics in the future.
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