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We propose a novel technique for the combination of multijet merged simulations in the five-flavor
scheme with calculations for the production of b-quark associated final states in the four-flavor scheme.
We show the equivalence of our algorithm to the FONLL method at the fixed-order and logarithmic
accuracy inherent to the matrix-element and parton-shower simulation employed in the multijet merging.
As a first application, we discuss Zbb̄ production at the Large Hadron Collider.
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I. INTRODUCTION

Measurements involving heavy-flavor (HF) production
are a vital component of the physics program at the Large
Hadron Collider (LHC). With the Higgs boson decaying
predominantly into b quarks, some of the recent efforts in
the LHC experiments have focused on this decay mode in
Higgs production in association with vector bosons [1,2]
and in association with top quarks [3,4]. Furthermore,
searches for physics beyond the Standard Model (SM) also
often rely on heavy flavor final states because the couplings
to third generation fermions are sometimes assumed to be
enhanced in new physics models. While the modeling of
signal processes is relevant, it is of even higher importance
to have a precise prediction for the dominant SM back-
grounds including heavy flavor production. This is
reflected for example by the large efforts spent in the
LHC Higgs Cross Section Working Group [5] to under-
stand the modeling of the tt̄bb̄ background to tt̄Hðbb̄Þ.
Including heavy-quark mass effects in the QCD evolu-

tion, e.g., in fits of parton distribution functions (PDFs), is a
prerequisite. The fixed flavor number scheme (FFNS) as
the simplest approach assumes a fixed number of active
quarks which can be varied explicitly [6]. General-mass
variable flavor number schemes (VFNS) like ACOT
[7–10], TR [11,12], and FONLL [13,14] on the other
hand account for mass effects dynamically above the
corresponding thresholds. Hybrid schemes have also been
devised [15], and the possibility to perform the PDF
evolution for massive quarks has been investigated
recently [16]. Accordingly, higher-order corrections to

the production of a final state like Hbb̄ or Zbb̄ have been
computed for a fixed number of flavors [17–21] and in
variable flavor number schemes [22–27]. Progress in
clarifying the interplay between different schemes was
reviewed in [28], and the effect of higher-order electroweak
corrections was investigated recently [29].
For experimental analyses, a realistic simulation of

collision events at the hadron level is crucial. Such
simulations are provided by all modern Monte Carlo event
generators [30] like Herwig7 [31], Pythia8 [32], and Sherpa
[33]. The simulation of heavy-flavor production employed
in these programs varies both in method and in accuracy,
and a formal comparison to the methods used in analytical
calculations is missing so far. Typical event generator
setups employ matrix elements in the five-flavor scheme
(5FS), where the b quark is treated as massless and
included also as an initial state parton.1 Before the parton
shower is simulated, b-quark masses are restored by means
of a kinematics reshuffling, and subsequently, massive
splitting kernels and kinematics are used in the parton
shower; see, e.g., [34–38]. This procedure is necessary in
particular to avoid an excess in the g → bb splitting rate as
it would appear if the fragmentation process was simulated
with massless b quarks.
To increase the accuracy of heavy-flavor production

Monte Carlo samples, two approaches have been studied in
the literature: the matching of NLO QCD calculations in
the four-flavor scheme (4FS) to parton showers using one
of the common NLOþ PS matching formalisms [39–43].
This method has been used to simulate, for example, the
pp → Vbb process class [44–47] and the pp → ttbb
process [48–50]. An alternative option to include higher-
order QCD corrections in MCs is the use of multileg
merging methods at LO [51–59] or NLO [60–64] accuracy.Published by the American Physical Society under the terms of
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1Note that formally this would require the usage of FFNS
PDFs.
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Heavy-flavor production is then included automatically in
the 5FS using massless matrix elements and a massive
parton shower as described above. Dedicated studies of this
and a comparison to the 4FS can be found in [47].
In this paper, we propose a novel method that presents

a hybrid between these two approaches. Embedding a
massive NLOþ PS calculation for pp → Zbb into a
massless multileg merging of pp → Z þ jets, we retain
the theoretical advantages of both methods and for the first
time allow a rigorous combination of the two calculations
without overlap. The latter is not merely a technical or
academic point, but crucial to allow the usage of NLO-
accurate heavy flavor predictions in experiments: If heavy
flavor and light jet production can not be described
simultaneously, it is impossible to make predictions in
the presence of fake heavy flavor jets or evaluate exper-
imental efficiencies related to them.
This paper is organized as follows: after a short review of

multijet merging in Sec. II, we describe our method from an
algorithmic point of view in Sec. III. Its formal relation to
the FONLL method is studied in Sec. IV. Finally, in Sec. V,
we demonstrate an implementation of the new method
within the Sherpa event generator using pp → Zbb̄ pro-
duction as a test case.

II. MULTIJET MERGING IN A FIXED
FLAVOR NUMBER SCHEME

In the context of Monte-Carlo event generators, multijet
merging refers to algorithms that systematically improve
the accuracy of traditional LOþ PS simulations by adding
higher multiplicity fixed-order calculations with well-
separated parton-level jets to the simulation. Merging
algorithms are constructed such as to obtain a consistent
result that preserves both the logarithmic accuracy of the
parton shower and the fixed order accuracy of all higher-
order results. Such a treatment becomes important if
kinematics and correlations between jets have to be
accurately predicted. In the SHERPA event generator, multi-
jet merging is implemented at leading and next-to-leading
order QCD accuracy, using the MEPS@LO [57] and
MEPS@NLO [60,61] method, respectively. Both methods
are explained in full detail in their respective references;
here, we briefly summarize the main ideas that are relevant
to extend them to a variable number of parton flavors.
The combination of resummation and higher-order

perturbative calculations by merging involves two aspects:
(1) The phase space of resolvable emissions in the

resummation must be restricted to the complement
of the phase space of the fixed-order calculation.
For example, in the combination of pp → Z and
pp → Zj, with pT;j > pT;cut, the phase space of the
first emission in the resummation would be re-
stricted to p⊥ < p⊥;cut. This restriction is called
the jet veto, the variable used to separate the phase

space is called the jet criterion,2 and the separation
scale is called the merging scale.

(2) The fixed-order result must be amended by the
resummed higher-order corrections in order to
maintain the logarithmic accuracy in the overall
calculation. This is formally relevant only if the
fixed-order calculation is used in a region of phase
space where resummation is both relevant and
reliable, i.e., for merging scales smaller than the
resummation scale. This procedure consists of
(a) Reinterpreting the final-state configuration of

the fixed-order calculation as having originated
from a parton cascade [65]. This procedure is
called clustering, and the representations of
the final-state configuration in terms of parton
branchings are called parton-shower histories.

(b) Choosing appropriate scales for evaluating the
strong coupling in each branching of this cas-
cade, thereby resumming higher-order correc-
tions to soft-gluon radiation [66,67].3 This
procedure is called αs reweighting.

(c) Multiplying by appropriate Sudakov factors,
representing the resummed unresolved real
and virtual corrections [51]. This procedure is
called Sudakov reweighting, and it is usually
implemented using pseudoshowers [54].

The jet clustering procedure terminates when either no
more combination of particles according to the QCD
Feynman rules can be performed or when the scale
hierarchy would be violated by a new combination.
Among all possible parton-shower histories that can be
constructed, one is chosen probabilistically according to the
associated weight, to represent the event. This weight is
computed as the product of the weight of the irreducible
core process left after the clustering has terminated,
multiplied by the differential radiation probability at each
of the nodes of the branching tree. Note that these
probabilities depend on the parton-shower algorithm.
Some representative parton-shower histories, together

with different core processes, are shown in Fig. 1.
Figure 1(a) is the starting point of the jet clustering procedure
in gg → Zbb̄ configurations, which correspond to a leading-
order prediction for pp → Zbb̄ in the four-flavor scheme.
The first QCD clustering that can be performed on this
configuration is the combination of a final-state (anti)quark
and an initial-state gluon, as indicated in Fig. 1(a2). The
second would then be the combination of the other final-state
(anti)quark and the second initial-state gluon, leading to
Fig. 1(a3). The core process in this case is bb̄ → Z, which

2The jet criterion can be thought of as a jet resolution scale. It is
constructed such as to identify configurations in which the matrix
elements develop soft or collinear singularities.

3We will refer to this scale definition as the MEPS scale in the
following.
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corresponds to the lowest-order hard matrix element in the
five-flavor scheme. This example shows how the construc-
tion of parton-shower histories from hard matrix elements
provides a natural matching of the two schemes. We will
expand on this idea in Secs. III and IV. If the scale in the
second clustering step, leading from Fig. 1(a2) to Fig. 1(a3)
is lower than the scale in the first step, we speak of a
violation of the scale hierarchy in the merging. In this case,
the clustering procedure terminates after the first branching,
and the core process is gb → Zb (gb̄ → Zb̄). It is also
possible that the scale in the first clustering step exceeds all
subsequently defined scales, including the scale associated
with the core process. In this case, it may still be possible to
perform an electroweak clustering, leading to Fig. 1(a1), and
defining the core process gg → bb̄. The correct probability
for this would be given by electroweak evolution equations
[68–70], which are not yet implemented in standard parton
showers. Therefore, one can choose to either neglect this
clustering path (“exclusive clustering”) or allow it using
ad hoc clustering probabilities (“inclusive clustering”).
Eventually, if no clustering can be performed due to the
scale hierarchy, the core process may correspond to the
starting configuration in Fig. 1(a). Similar arguments apply
to the possible parton-shower histories shown in Fig. 1 right.
Again, the four-flavor scheme expression would correspond
to Fig. 1(b), and the analogue in the five-flavor scheme
would be Fig. 1(b4).

III. MULTIJET MERGING IN A VARIABLE
FLAVOR NUMBER SCHEME

In this section, we describe our new algorithm, which
combines a merged calculation in the five-flavor scheme
with a prediction for heavy quark associated production.
Both the merged and the heavy flavor prediction may be
computed at leading order or at next-to-leading order QCD.
The combination is achieved by means of a dedicated

heavy flavor overlap removal. It acts on top of multijet
merging algorithms, and we call this technique fusing.
We first explain it from a phenomenological point of view,
using the example of Z þ jets=Zbb̄ production. The formal
connection to the FONLL method will be established
in Sec. IV.
The basic idea of the fusing approach is as follows:
(1) Start with a merged simulation of the inclusive

reaction, e.g., Z þ jets and a calculation of heavy
quark associated production, e.g., Zbb̄.

(2) Process the Zbb̄ simulation as if it was part of the
multijet merged computation, i.e., apply the cluster-
ing, the αs reweighting, and the Sudakov reweight-
ing. The renormalization and factorization scales for
the core process should be calculated using a custom
scale definition, and the scales of all reconstructed
splittings should be set to the transverse momenta
in the branching [66], including higher-order cor-
rections to soft-gluon evolution [67], cf. Sec. II. This
part of the fused result will be called the direct
component, as the final-state bottom quarks are
generated in the fixed-order calculation.

(3) Remove all final-state configurations from the five-
flavor scheme merged simulation of Z þ jets that
have a parton-shower history which can also be
generated in the reweighted Zbb̄ computation. The
remainder of the five-flavor scheme result may still
contribute configurations with final-state bottom
quarks. This part of the fused result will be called
the fragmentation component.4

FIG. 1. Representative parton-shower histories for gg → Zbb̄ (a) and qq̄ → Zbb̄ (b) matrix-element configurations. The gray blobs
correspond to the irreducible core processes.

4The bottom quarks may be produced both in the fixed-order
and in the parton-shower component of the merged result. As
such, the expression fragmentation contribution is a slight
misnomer. It is a true fragmentation contribution if the maximum
jet multiplicity in the Z þ jets calculation does not exceed the
final-state multiplicity in the Zbb̄ associated calculation.
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(4) Add the modified event samples to obtain the fused
result.

The removal of overlap between the Z þ jets and the Zbb̄
calculations is eventually achieved by both the Sudakov
reweighting in step 2 and the event rejection in step 3.
The application of Sudakov vetoes to Zbb̄ restores the
correct behavior of the direct component in those regions of
phase space that feature a hierarchy between the hard scale
and the b-quark mass. The event rejection in the Z þ jets
sample removes those final-state configurations which
would otherwise be double counted. Algorithmically, this
rejection is performed as follows:
(1) Create a combined evolution history, starting from

the core process in the jet clustering, and ending with
all final state particles produced either in the hard
matrix element or by the shower.

(2) Starting from the core process, find the first con-
figuration where a bb̄ pair appears in the final state.

(3) If there is no such configuration, keep the event.
Otherwise, count the number of additional light
partons nlight (quarks or gluons) in the final state
of this configuration. This corresponds to the num-
ber of hard emissions before the bb̄-pair production
according to the ordering imposed by the cluster
(shower) algorithm. At leading order, discard the
event if nlight ¼ 0. At next-to-leading order, discard
the event if nlight ≤ 1.

Typical parton-shower histories for candidate Z þ jets events
with gluon or quark initial states are shown in Fig. 2. If the
clustering leading to configurations (a5)/(b3) proceeds along
(a3)/(b1), the scale associated with the gluon emission is
the smallest in the process. The configuration can then be

identified with a Zbb̄ topology, and the event will be
discarded. If the clustering proceeds along (a2)/(b2), the
treatment depends on whether the fusing is performed at
leading or at next-to-leading order. At leading order, the
configuration cannot be identified with a Zbb̄ topology,
and the event will be kept. At next-to-leading order, the
configuration corresponds to a real-emission configuration,
and the event will be discarded. Figure 2(a4)/2(b4) displays a
parton-shower history that does not have a counterpart in the
heavy-flavor result at leading order, such that the corre-
sponding event would be kept irrespective of the scale
hierarchy. At next-to-leading order, the event would be
discarded. The extension to histories with more partons in
the final state is straightforward and will lead to configu-
rations that contribute to the fragmentation component also
in the next-to-leading order case.
Special care has to be taken when dealing with unor-

dered configurations. They arise when the clustering
algorithm can not reconstruct a strictly kT-ordered history
leading to a pp → Z core process (cf. Sec. II). In such
cases, the clustering can either stop with a 2 → n core
process or continue by allowing to violate the scale
hierarchy. Both variants can be used for the fusing
algorithm as long as all components and all parton
multiplicities are treated identically. In this work, we
restrict ourselves to a fully ordered clustering algorithm.

IV. RELATION TO THE FONLL METHOD

This section will establish the relation between our
merging algorithm and the FONLL method [23,24]. In
the FONLL technique, the cross section of the combined
event sample is generated as

FIG. 2. Example parton-shower histories for gg → Zbb̄g (a), and qq̄ → Zbb̄g (b). Depending on the clustering path, configurations
(a5) and (b3) may be identified with a Zbb̄ topology at leading order, while configurations (a4) and (b4) may not. At next-to-leading
order, all configurations can be identified with a Zbb̄ topology.
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σFONLL ¼ σð5Þ − σð4Þ;ð0Þ þ σð4Þ; ð1Þ

where σð5Þ and σð4Þ are the cross sections in the five- and
four-flavor scheme, respectively, and σð4Þ;ð0Þ is the four-
flavor scheme result in the limit mb → 0. Eventually, all
results should only depend on the PDFs and strong
coupling in the five-flavor scheme. Formally, this is
achieved by writing the cross section as

σð4Þ ¼
Z

dx1

Z
dx2

X
ij¼q;g

fð5Þi ðx1; Q2Þfð5Þj ðx2; Q2Þ

× Bij

�
x1x2; α

ð5Þ
s ðQ2Þ; Q

2

m2
b

�
: ð2Þ

The hard coefficients Bij can then be expanded in powers of
the strong coupling as

Bij

�
τ; αð5Þs ðQ2Þ; Q

2

m2
b

�
¼

X
n¼2

�
αð5Þs ðQ2Þ

2π

�
n
BðnÞ
ij

�
τ;
Q2

m2
b

�
;

ð3Þ

and are determined such that the four-flavor scheme result
in terms of four-flavor PDFs is eventually recovered at the
target accuracy given by the upper limit of the sum.

The coefficients σð4Þ;ð0Þ, needed for removal of the
overlap between the fully massive and the massless
calculation, can be extracted from the five-flavor scheme
result [24] by expressing the b-quark PDF up to OðαsÞ in
terms of the four-flavor scheme light quark and gluon PDFs
using the matching coefficients from [71], and sub-
sequently, reexpressing the result in terms of five-flavor
scheme PDFs and αs [14]. The result is

fð5Þb ðx;Q2Þ ¼ αsðμ2RÞ
2π

Z
1

x

dz
z
Að1Þ
gb ðz; LÞfð5Þg

�
x
z
;Q2

�

þ α2sðμ2RÞ
ð2πÞ2

Z
1

x

dz
z

�
Að2Þ
gb ðz; LÞfð5Þg

�
x
z
;Q2

�

þ Að2Þ
Σb ðz; LÞfð5ÞΣ

�
x
z
;Q2

��
; ð4Þ

where L ¼ lnQ2=m2
b and fΣ ¼ P

a¼q;q̄faðx;Q2Þ. We can
now use the OðαnsÞ five-flavor scheme partonic cross
sections σ̂ðnÞ to define the massless limit of the coefficient
functions BðnÞ. In the processes of interest to us, the
partonic cross section is invariant under exchange of b
and b̄. The Oðα2sÞ terms are then given by

Bð0Þ;ð2Þ
qq̄

�
τ;
Q2

m2
b

�
¼ σ̂ð2Þqq̄ ðτÞ þ 2

Z
1

τ

dz
z
Að2Þ
qq;bðz; LÞσ̂ð0Þqq̄

�
τ

z

�
;

Bð0Þ;ð2Þ
gg

�
τ;
Q2

m2
b

�
¼ σ̂ð2Þgg ðτÞ þ 4

Z
1

τ

dz
z
Að1Þ
gb ðz; LÞσ̂ð1Þgb

�
τ

z

�
þ 2

Z
1

τ

dz
z

Z
1

z

dy
y
Að1Þ
gb ðy; LÞAð1Þ

gb

�
z
y
; L

�
σ̂ð0Þ
bb̄

�
τ

z

�
: ð5Þ

The Oðα3sÞ terms are given by

Bð0Þ;ð3Þ
gg

�
τ;
Q2

m2
b

�
¼

Z
1

τ

dz
z

�
4Að1Þ

gb ðz; LÞσ̂ð2Þgb

�
τ

z
; L

�
þ 4Að2Þ

gb ðz; LÞσ̂ð1Þgb

�
τ

z
; L

��

þ
Z

1

τ

dz
z

Z
1

z

dy
y

�
2Að1Þ

gb ðy; LÞAð1Þ
gb

�
z
y
; L

�
σ̂ð1Þ
bb̄

�
τ

z

�
þ 4Að2Þ

gb ðy; LÞAð1Þ
gb

�
z
y
; L

�
σ̂ð0Þ
bb̄

�
τ

z

��
;

Bð0Þ;ð3Þ
gq

�
τ;
Q2

m2
b

�
¼

Z
1

τ

dz
z

�
2Að1Þ

gb ðz; LÞσ̂ð2Þqb

�
τ

z
; L

�
þ 2Að2Þ

Σb ðz; LÞσ̂ð1Þgb

�
τ

z
; L

��

þ
Z

1

τ

dz
z

Z
1

z

dy
y
2Að2Þ

Σb ðy; LÞAð1Þ
gb

�
z
y
; L

�
σ̂ð0Þ
bb̄

�
τ

z

�
þ
Z

1

τ

dz
z
2Að2Þ

qq;bðz; LÞσ̂ð1Þgq

�
τ

z
; L

�
;

Bð0Þ;ð3Þ
qq̄

�
τ;
Q2

m2
b

�
¼

Z
1

τ

dz
z
2Að2Þ

qq;bðz; LÞσ̂ð1Þqq̄

�
τ

z
; L

�
: ð6Þ

The matching coefficients in Eq. (4) can be expanded in a power series in L as
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Að1Þ
gb ðz; LÞ ¼ að1;1Þgb ðzÞL;

Að2Þ
gb ðz; LÞ ¼ að2;2Þgb ðzÞL2 þ að2;1Þgb ðzÞLþ að2;0Þgb ðzÞ;

Að2Þ
Σb ðz; LÞ ¼ að2;2ÞΣb ðzÞL2 þ að2;1ÞΣb ðzÞLþ að2;0ÞΣb ðzÞ;

Að2Þ
qq;bðz; LÞ ¼ að2;2Þqq;b ðzÞL2 þ að2;1Þqq;b ðzÞLþ að2;0Þqq;b ðzÞ: ð7Þ

In the parton-shower approach, each logarithm L arises
from integrating Eq. (A7) over ln t from m2

b to Q2. By

comparing to Eq. (4), we find that Að1Þ
gb ðz; LÞ ¼ PgqðzÞL.

We will comment on the remaining coefficients in
Sec. IV B. The nonlogarithmic terms, að2;0ÞðzÞ, are needed
only for matching beyond NLL accuracy and can therefore
be ignored in our approach. The leading and subleading
logarithmic terms can be derived from renormalization and
collinear mass factorization of the operator matrix elements
for heavy quark production [72]. They take the simple
form,

að1;1Þgb ðzÞ ¼ PgqðzÞ;

að2;2Þgb ðzÞ ¼ 1

2

Z
1

z

dx
x
PgqðxÞPqq

�
z
x

�
þ β0PgqðzÞ −

1

2

Z
1

z

dx
x
PggðxÞPgq

�
z
x

�
; að2;1Þgb ðzÞ ¼ Pð1Þ

gq ðxÞ;

að2;2ÞΣb ðzÞ ¼ −
1

2

Z
1

z

dx
x
PqgðxÞPgq

�
z
x

�
; að2;1ÞΣb ðzÞ ¼ PS;ð1Þ

qq ðxÞ;

að2;2Þqq;b ðzÞ ¼ −
1

2
β0;bPqqðzÞ; að2;1Þqq;b ðzÞ ¼ PV;ð1Þ

qq;Q ðxÞ: ð8Þ

The leading-order and relevant next-to-leading order
splitting functions entering Eqs. (8) are given in
Appendix B. The negative term in að2;2Þgb ðzÞ and the
coefficient að2;2ÞΣb ðzÞ are collinear mass factorization coun-
terterms that arise from the different number of quark
flavors in the infrared and the ultraviolet regime [71,72].

A. Leading order and leading logarithmic accuracy

In order to prove that the heavy flavor overlap removal
algorithm proposed in this publication amounts to a variant
of the FONLL method, we need to show that the removal of
events from the five-flavor sample as proposed in Sec. III is
equivalent to the subtraction of σð4Þ;ð0Þ in the FONLL
technique. We will start at leading order and leading
logarithmic accuracy and comment on next-to-leading order
and next-to-leading logarithmic accuracy in the next section.

The simplest configurations are σ̂ð2Þqq̄ and σ̂ð2Þgg in Eq. (5).
They correspond to removal of the double-real radiative
corrections to the bb̄ → Z process, which have a counter-
part in the four-flavor scheme. Note that, in the notation of

Eq. (5), σ̂ð2Þqq̄ and σ̂ð2Þgg are integrated over the double-real
radiative phase space and combined with the renormalized
virtual corrections and collinear mass factorization counter-

terms, which renders both σ̂ð2Þqq̄ and σ̂ð2Þgg individually finite.
In the MS scheme, the factorization scale dependent
remainder combines with the PDF evolution to give the
second and third expression on the right-hand side of
Eq. (5). In a multijet merging approach, no singularities
arise because we effectively use a cutoff regulator for
collinear mass singularities that is defined by the jet cuts.
For gg initial states, we obtain

Bð0Þ;ð2Þ
gg;MEPS

�
τ;
Q2

m2
b

�
¼

Z
dΦ2

dσ̂ð2Þgg ðτÞ
dΦ2

ΘðQ1 −QcutÞΘðQ2 −QcutÞ

þ 4

Z
Q2

m2
b

dt
t

Z
1

τ

dz
z
PgqðzÞ

Z
dΦ1

dσ̂ð1Þgb ðτ=zÞ
dΦ1

ΘðQ1 −QcutÞΘðQcut −Q2Þ

þ 2

Z
Q2

m2
b

dt
t

Z
1

τ

dz
z

Z
t

m2
b

dt0

t0

Z
1

z

dy
y
PgqðyÞPgq

�
z
y

�
σ̂ð0Þ
bb̄

�
τ

z

�
ΘðQcut −Q1Þ

≈ Bð0Þ;ð2Þ
gg

�
τ;
Q2

m2
b

�����
LL
; ð9Þ
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where the subscript LL indicates leading logarithmic
accuracy. The scales Q1 and Q2 denote the jet resolution
in the final and next-to-final clustering of the merging
algorithm, while Qcut stands for the merging scale. The Θ
functions represent the phase-space partitioning in the
merging procedure with at least two jets in addition to
the production of the inclusive final state in the five-flavor
scheme. The last approximation is valid if the merging cut
is small enough that below it we can factorize σ̂ð2Þgg and σ̂ð1Þgb
into σ̂ð0Þ

bb̄
and Pgb, and if we can ignore the finite remainder

of the virtual corrections included in Eq. (5). The sub-
traction of σð4Þ;ð0Þ from σð5Þ in Eq. (1) can therefore be
achieved by using the algorithm in Sec. III. In the case of gg
initial states it proceeds as follows:
(1) Construct a parton-shower history according to the

multijet merging procedure, perform the parton

shower, and add any splittings that were generated
to the history.

(2) Starting at the core interaction identified in the
merging, trace the parton-shower history. Veto the
event if
(a) the core process is bb̄ → Z, followed by an

initial-state g → bb̄ and g → b̄b branching,
(b) the core process is gb → Zb (gb̄ → Zb̄), fol-

lowed by an initial-state g → bb̄ (g → b̄b)
branching,

(c) the core process is gg → Zbb̄.
The solution is similar for quark initial states, only the
sequence of parton-shower splittings differs. The multijet
merged expression reads

Bð0Þ;ð2Þ
qq̄;MEPS

�
τ;
Q2

m2
b

�
¼

Z
dΦ2

dσ̂ð2Þqq̄ ðτÞ
dΦ2

ΘðQ2 −QcutÞΘðQ1 −QcutÞ

þ
Z

Q2

m2
b

dt
t

Z
1

0

dzzPgqðzÞ
Z

dΦ1

dσ̂ð1Þqq̄ ðτÞ
dΦ1

ΘðQ1 −QcutÞΘðQcut −Q2Þ

þ 2

Z
Q2

m2
b

dt
t

Z
1

τ

dz
z

Z
t

m2
b

dt0

t0

Z
1

0

dyyPgqðyÞPqqðzÞσ̂ð0Þbb̄

�
τ

z

�
ΘðQcut −Q1Þ

≈ Bð0Þ;ð2Þ
qq̄

�
τ;
Q2

m2
b

�����
LL
: ð10Þ

The origin of að2;2Þqq;b ðzÞ contained in Bð0Þ;ð2Þ
qq̄ jLL is explained

in Sec. IV B.

B. Next-to-leading order and next-to-leading
logarithmic accuracy

In order to achieve next-to-leading logarithmic accuracy
according to the FONLL method, the parton shower
employed in the merging must implement all coefficient
functions in Eq. (8). We start with the β0 dependent

contribution to að2;2Þgb ðzÞ. Making use of the expansion of
the strong coupling in the four-flavor scheme to OðαsÞ,

αsðm2
bÞ ¼ αs

�
1þ αs

2π
β0L

�
; ð11Þ

this term can either be implemented explicitly, or absorbed
into the scale choice connected to the evaluation of

að1;1Þgb ðzÞ. In the latter case, the strong coupling in initial-

state g → bb̄ splittings should be computed at m2
b. Because

we use a strong coupling in the five-flavor scheme, an
additional counterterm of the form αs=ð2πÞβ0;bL will then
be required.

The coefficients að2;2ÞðzÞ can be expressed in the parton-

shower formalism as the convolution of að1;1Þgb ðzÞ with the
emission and no-emission probability of the parton shower,
expanded to second order in the strong coupling and
integrated over the evolution parameter from m2

b to Q2.
To show this, we employ the correspondence between
inclusive and exclusive parton evolution summarized in
Appendix A. Making use of Eq. (A8) and the boundary
condition fbðx;m2

bÞ ¼ 0, a single step in the parton-shower
backward evolution, generating a resolved g → bb̄ tran-
sition at scale Q2, can be written formally as

fbðx;Q2Þ ¼
Z

Q2

m2
b

dt
t
αs
2π

Z
1

x

dz
z
PgqðzÞfg

�
x
z
; t

�
: ð12Þ

Upon expansion to OðαsÞ, we obtain the leading-order
coefficient of Eq. (4). To reconstruct the first term in

að2;2Þgb ðzÞ, we need to account for a second step in the parton-
shower evolution, preceding the g → bb̄ transition. This
gives

MULTIJET MERGING IN A VARIABLE FLAVOR NUMBER … PHYS. REV. D 100, 014011 (2019)

014011-7



Z
Q2

m2
b

dt
t
αs
2π

Z
1−ε

x

dz
z

�
PgqðzÞΔqðt; Q2Þ þ

Z
Q2

t

dt̄
t̄
αs
2π

Z
1−ε0

z

dy
y
Pgq

�
z
y

�
P̂qqðyÞΔqðt̄; Q2Þ

�
fg

�
x
z
; t

�
: ð13Þ

Subtracting the leading-order term in Eq. (12) and expanding to second order in the strong coupling, we can write

α2s
ð2πÞ2

Z
Q2

m2
b

dt
t

Z
1−ε

x

dz
z

Z
Q2

t

dt̄
t̄

�
−PgqðzÞ

X
a¼q;g

Z
1−ε0

0

dζζP̂qaðζÞ þ
Z

1−ε0

z

dy
y
Pgq

�
z
y

�
P̂qqðyÞ

�
fg

�
x
z
;Q2

�
: ð14Þ

Using Eqs. (A2) and (A3), and taking the limit ε; ε0 → 0, gives

α2s
ð2πÞ2

Z
Q2

m2
b

dt
t

Z
1

x

dz
z

Z
Q2

t

dt̄
t̄

Z
1

z

dy
y
Pgq

�
z
y

�
PqqðyÞfg

�
x
z
;Q2

�
: ð15Þ

Finally, we make use of the fact that atOðα2sÞ there is no further dependence on t and t̄. Integrating them out, we obtain the

contribution of the first term in að2;2Þgb ðzÞ to Eq. (4),

α2s
ð2πÞ2

L2

2

Z
1

x

dz
z

Z
1

z

dy
y
Pgq

�
z
y

�
PqqðyÞfg

�
x
z
;Q2

�
: ð16Þ

The coefficient að2;2ÞΣb ðzÞ and the final term in að2;2Þgb ðzÞ are derived in a similar way. The difference compared to the previous
case is that the hierarchy betweenm2

b andQ
2 is ill-defined, because the second branching happens at smaller scales than the

g → bb̄ transition. The complete parton-shower expression for the splitting kernel in að1;1Þgb ðzÞ and one step of the subsequent
evolution reads

Z
Q2

m2
b

dt
t
αs
2π

Z
1−ε

x

dz
z

�
PgqðzÞΔgðq2; tÞ þ

X
a¼q;g

Z
t

q2

dt̄
t̄
αs
2π

Z
1−ε0

z

dy
y
P̂ag

�
z
y

�
PgqðyÞΔgðt̄; tÞ

�
fg

�
x
z
; t
�
: ð17Þ

Note that we have introduced an auxiliary scale, q2, in order to perform the integral over the second branching. Subtracting
the leading-order term in Eq. (12) and expanding to second order in the strong coupling, we can write

α2s
ð2πÞ2

Z
Q2

m2
b

dt
t

Z
1−ε

x

dz
z

Z
t

q2

dt̄
t̄

�
− PgqðzÞ

X
a¼q;g

Z
1−ε0

0

dζζP̂gaðζÞfg
�
x
z
;Q2

�
þ

X
a¼q;g

Z
1−ε0

z

dy
y
P̂ag

�
z
y

�
PgqðyÞfa

�
x
z
;Q2

��
:

ð18Þ

Using again Eqs. (A2) and (A3), taking the limit ε; ε0 → 0, and integrating over t and t̄, we obtain

α2s
ð2πÞ2

L
2
ln
m2

bQ
2

q4

Z
1

x

dz
z

X
a¼q;g

Z
1

z

dy
y
Pag

�
z
y

�
PgqðyÞfa

�
x
z
;Q2

�
: ð19Þ

Note that q2 plays the role of the collinear mass factorization scale, while Q2 corresponds to the UV renormalization scale.
In the parton-shower approach, the two are strictly ordered, as the second branching cannot take place before the first one. In
a fixed-order computation, we can instead set q ¼ Q. This corresponds to treating the UV renormalization and collinear
mass factorization counterterms in Eqs. (3.15) and (3.20) of [72] on the same footing, which is eventually mandated by the

choice to set ϵUV ¼ ϵIR. Using the same scheme in Eq. (19), i.e., setting q → Q, we obtain the contribution of að2;2ÞΣb ðzÞ and
the final term in að2;2Þgb ðzÞ to Eq. (4),

−
α2s

ð2πÞ2
L2

2

Z
1

x

dz
z

X
a¼q;g

Z
1

z

dy
y
Pag

�
z
y

�
PgqðyÞfa

�
x
z
;Q2

�
: ð20Þ
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The coefficient að2;2Þqq;b ðzÞ can be derived in a similar fashion. The difference compared to að2;2ÞΣb ðzÞ lies in the fact that the

phase space for the final-state branching of the intermediate gluon into bb̄ can be integrated out, leading to the coefficient
−β0;b. The complete parton-shower expression reads

Z
Q2

m2
b

dt
t
αs
2π

X
a¼b;b̄

Z
1−ε0

0

dyyPgaðyÞ
�
Δqðt; Q2Þ þ

Z
Q2

t

dt̄
t̄
αs
2π

Z
1−ε

x

dz
z
PqqðzÞΔqðt̄; Q2Þ

�
fg

�
x
z
; t

�
: ð21Þ

This can be expanded to second order in the strong coupling as in Eqs. (14) and (18). Taking the limit ε; ε0 → 0 and

integrating over t and t̄, we obtain the contribution of að2;2Þqq;b ðzÞ to Eq. (4),

α2s
ð2πÞ2

L2

2

�X
a¼b;b̄

Z
1

0

dyyPgaðyÞ
�Z

1

x

dz
z
PqqðzÞfg

�
x
z
; t
�

¼ −
α2s

ð2πÞ2
L2

2
β0;b

Z
1

x

dz
z
PqqðzÞfg

�
x
z
; t
�
: ð22Þ

Combining the parton-shower effects leading to Eqs. (16),
(20), (22), and (11), we obtain all double logarithmic
coefficients in Eq. (8). The single logarithmic coefficients
are not reproduced by a standard parton shower and must
be implemented separately. In the case of að2;1ÞΣb and að2;1Þqq;b ,
this can be achieved using the algorithm derived in [73].
Although a complete Monte-Carlo implementation has
not yet been presented for að2;1Þgb , it is clear that it can be
constructed using the techniques of [73] and [74]. In the
foreseeable future, it will therefore be possible to achieve
next-to-leading logarithmic accuracy according to the
FONLL classification by using our approach.
In order to achieve next-to-leading order accuracy

according to the FONLL method, we must reconstruct
the coefficient functions in Eq. (6). The modification of
the leading-order result, Eq. (5), by the multijet merging
procedure has already been discussed in Sec. IVA. In
complete analogy, the terms proportional to σ̂bb̄ in Eq. (6)
are modified byΘðQcut −Q1ÞΘðQcut −Q2Þ in the merging,
while the terms proportional to σ̂gb and σ̂qb are modified by
ΘðQ1 −QcutÞΘðQcut −Q2Þ. It remains to adjust the result
for the fact that the four-flavor scheme coefficients in the
perturbative expansion are determined using a strong
coupling in the five-flavor scheme. We use Eqs. (8) and
(9) of [24] to correct this mismatch. Technically, this is
achieved by modifying the event weight w of four-flavor
scheme S-events with gg or qq̄ initial-state as

wnew
qq̄ ¼ wqq̄

�
1 −

4

3
TR ln

μ2R
Q2

wBorn

wME

�

wnew
gg ¼ wgg

�
1 −

4

3
TR ln

μ2R
m2

b

wBorn

wME

�
; ð23Þ

where wBorn and wME are the matrix-element weights of the
Born contribution and the full S-event, respectively.

V. RESULTS

The algorithm described in Sec. III has been imple-
mented in the Sherpa event generator in full generality and
will be investigated in the following for the example of
heavy flavor production in association with a Z boson.
As argued in Sec. IV B, a NLO-accurate parton shower

would be needed to fully match the next-to-leading
logarithmic accuracy of the FONLL method. Such a
shower is not available yet but recent studies indicate that
the central predictions provided by it should be close to the
LO result [73,74]. We thus base our new approach on the
established MEPS@NLO algorithm, which we have
extended to provide the necessary fully ordered clustering
and combined parton-shower history for Sherpa version
2.2.7. The event filter for the overlap removal described in
Sec. III and the counterterms described in Eq. (23) are
implemented as user hooks. The event filter can either
directly be used to veto events or store the veto information
as alternative event weight. This allows us to produce a
Z þ jets sample, which is usable both standalone or within
a fused prediction by applying the corresponding event
weight and adding a dedicated sample only for the direct
component.
In the next sections, we compare predictions obtained by

the newly developed algorithm against existing predictions
in the 5FS and the 4FS. In all of them, the matrix elements
are generated using Sherpa’s internal matrix element
generators AMEGIC++ [75] and COMIX [76] for tree-level
diagrams. Virtual diagrams are interfaced from OPENLOOPS
1.3.1 [77], using CUTTOOLS [78] and ONELOOP [79].
In the 5FS prediction and for the fragmentation compo-

nent, matrix elements are calculated for pp → lþl−þ
0; 1; 2j@NLOþ 3j@LO. Here, lþ;l− refers to either
electrons or muons and j to a well separated parton.
The merging cut Qcut is set to 20 GeV if not stated
otherwise. The direct component and the standalone 4FS
prediction are based on pp → lþl−bb̄ matrix elements at
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next-to-leading order, matched to the parton shower using
the formalism in [42].
For both components of the fusing approach, and for

the standalone 5FS and 4FS predictions, all scales are
evaluated according to the METS scheme with inclusive
clustering.5 In all predictions, except for the standalone 4FS
prediction, the clustering is required to be fully ordered.
The factorization and (where applicable) renormalization
scales in the core process are evaluated according to

μ2core ¼

8>>>>><
>>>>>:

m2
ll for Z;

1
4
m2⊥;ll for Zj;

1
4

−1
1=ŝþ1=t̂þ1=û for jetþ jet;

1
4
ðm⊥;ll þ

P
jets

m⊥;jetÞ2 for unordered Z þ jets:

ð24Þ

We use the NNPDF3.0 set [80] at NNLO with five active
flavors for both components of the fusing approach and for
the 5FS prediction, and with four active flavors for the 4FS
prediction. These PDF sets are interfaced to Sherpa using
LHAPDF [81]. We use the CS-shower [35] as implemented
in Sherpa with two minor modifications. Firstly, the strong
coupling in g → bb̄ splittings is evaluated at the virtuality
of the intermediate parton, to account for the fact that there
is no soft gluon emission, and therefore, no higher-order

corrections enhanced by αs=ð2πÞβ0 ln k2T=Q2. Secondly, we
choose the evolution variables of scheme 1 in [82], but we
add the squared masses of the final-state partons in the
branching. The default multiple interactions [83] and
hadronization models [84] implemented in Sherpa are
employed in all simulations. Analyses of the event samples
are performed within the RIVET framework [85]. Scale
variations (μF, μR) are studied using the on-the-fly-variation
method as implemented in Sherpa [86].

A. Validation in inclusive Z phase space

If the event selection does not explicitly require any b jet,
our fusing approach is expected to agree with the
MEPS@NLO prediction. This is validated here with
7 TeV data from ATLAS [87]. In this measurement, Z
bosons decaying to electrons or muons were measured in
association with jets. Leptons are required to have a
transverse momentum of pl⊥ > 20 GeV and a combined
invariant mass with 66 GeV < mll < 116 GeV. Jets are
defined by the anti-kt algorithm with R ¼ 0.4 with a
transverse momentum of pj

⊥ > 30 GeV and a minimal
angular distance to the leptons, ΔRðj;lÞ > 0.5.
In Fig. 3, the transverse momentum spectrum pZ⊥ of the Z

boson and the scalar sum of the jet transverse momenta, ST ,
are shown. As expected, the fusing prediction is dominated
by the fragmentation component in this region of phase
space. The full 4FS prediction still reaches up to 10% of the
cross section, showing the necessity for a rigorous combi-
nation. In both distributions, the new prediction is com-
patible with the experimental data, and the agreement with

FIG. 3. Comparison of the newly developed algorithm with the established MEPS@NLO method and data from ATLAS in a Z þ jets
region of phase space. The fused prediction is shown in solid blue; its both components are given as dashed and dotted blue lines. The
5FS MEPS@NLO and the 4FS MC@NLO are shown for comparison in red and green.

5Ad hoc electroweak cluster steps have found to be relevant if
the p⊥ of the Z boson becomes of order 100 GeV.
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the MEPS@NLO prediction demonstrates that the fusing
algorithm does not induce any unexpected features.

B. Results in Zbb phase space

For the validation of our newly developed approach in a
Zbb region, we use 8 TeV data taken by CMS [88]. There,
the Z boson is reconstructed from either two electrons or two
muons in a mass window between 71 GeV and 111 GeV.
These leptons are required to have p⊥ > 20 GeV and
jηj < 2.4, and are dressed with photons within a cone of
ΔR < 0.1. Jets are defined by the anti-kt algorithm with
R ¼ 0.5, p⊥ > 30 GeV and jηj < 2.4. Only jets with no
overlap (ΔR > 0.5) to leptons are taken into account. b jets
are identified by ghost association [89] and have to pass the
same jet cuts as described above.
Again, we compare our newly obtained prediction to the

experimental data and to predictions obtained in the 4FS
and 5FS. In addition, we estimate the perturbative uncer-
tainties and the uncertainties related to the merging scale.
The former are given by 7-point variations of μR and μF

6

coherently in the matrix elements and the parton shower.
The latter are studied by a variation of the merging cut to
values of 15 or 30 GeV. The total cross sections for having
at least one or at least two b jets are displayed in Table I
and differential distributions for one (two) b-jet observables
are shown in Fig. 4 (Fig. 5).
In the one b-jet region, the predicted cross sections of the

fused result and the 4FS prediction are in good agreement
with the data, whereas the 5FS prediction exceeds it by
34%. Differential cross sections for several distributions are
given in Fig. 4. In general, the fused prediction is in good
agreement with the data and in between the 4FS and 5FS
predictions. Whereas the former slightly undershoots the
data, the latter has a significantly larger cross section. This
holds in particular for small transverse momenta of either
the b jet or the Z boson or if the b jet is close to the Z boson.
Both fusing components are equally relevant in all dis-
tributions, with a highly nontrivial phase-space dependence
of their relative contributions. While they are relatively flat
and equal in the transverse-momentum spectrum of the
leading b jet, the direct component dominates around the
peak of p⊥ðZÞ. A different composition is found in the ST
distribution and for ΔΦðZ; bÞ. At large ST or small

ΔΦðZ; bÞ, the fragmentation contribution takes over and
the direct one only contributes with around 20%. At the
same time, the 4FS prediction undershoots the high ST
region. This region is sensitive to a good modeling of
multiple hard jets, which can only be predicted reliably by
multijet matrix elements. This is the case in the fusing
procedure, where in the fragmentation component the hard
emissions are generated first by matrix elements and b
quarks may be produced later on in the shower. In the 4FS
prediction on the other hand, the b quarks are always
described by matrix elements and additional emissions of
light partons by the parton shower can form hard jets in the
end. Thus, the modeling of this region with a 4FS
prediction becomes very sensitive to the parton shower
which is applied outside its region of validity. The
uncertainties related to the merging scale in the fragmen-
tation component and the perturbative uncertainties are
depicted in the lower ratio plots in Fig. 4 for all distribu-
tions. The perturbative uncertainties are at the level of
15%–20% in all observables. Results with different merg-
ing cuts are all within the perturbative uncertainty band and
in good agreement with each other. The Qcut ¼ 15 GeV
curve has significantly higher statistical uncertainties,
which is a typical feature for multijet merged predictions
with very low merging scales.
In the two-b-jet region, the total predicted cross sections

of both the 4FS and 5FS are in good agreement with the
experimentally measured ones. The fused prediction is
slightly lower but still matches the data within the uncer-
tainties. Differential distributions for this region of phase
space are given in Fig. 5. Here, both the 4FS and the 5FS
curve are in good agreement with each other and with the
experimental data. The fused prediction follows very
closely the 4FS result but has a slightly smaller cross
section in some bins. In all regions of phase space, the
direct component gives the dominant contribution of the
fused prediction. Only for b-jet pairs which are collimated
or have a small invariant mass, the fragmentation compo-
nent exceeds the 20% threshold, which demonstrates the
expected transition towards unresolved one-b-jet configu-
rations. The perturbative uncertainties are reduced in
comparison to the one-b-jet region. They are at the level
of 5% for low values of pZ⊥ and reach up to 15% for larger
values. Again, all merging cut variations are within the
perturbative uncertainty band, with the Qcut ¼ 15 GeV
curve again yielding large statistical uncertainties in

TABLE I. The total cross section for having at least one or at least two b jets. Different predictions are compared to data from CMS.
The uncertainties given for the data are combined uncertainties; the predictions are given with their statistical (all) and perturbative (only
fusing) uncertainties.

Data [pb] Fusing [pb] Zbb, 4F [pb] Z þ jets [pb]

Zþ ≥ 1b 3.55� 0.24comb 3.80� 0.05stat � 0.83
0.33 pert 3.14� 0.03stat 4.77� 0.10stat

Zþ ≥ 2b 0.331� 0.037comb 0.282� 0.004stat � 0.027
0.022 pert 0.305� 0.006stat 0.358� 0.012stat

6We vary μR and μF independently by factors of 0.5 and 2,
excluding variations in opposite directions.
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FIG. 4. Comparison of the newly developed algorithm with data from CMS in a phase space region with at least one b jet. The new
fusing prediction is shown in solid blue; its both components are given as dashed and dotted blue lines. The 5FS MEPS@NLO and the
4FSMC@NLO are shown for comparison in red and green. The uncertainties for the fused prediction are shown in the second ratio plot.
They include a simultaneous seven-point variation of μF and μR for both, matrix element and parton shower emissions, and a merging cut
variation for Qcut ¼ 15ð30Þ GeV.

HÖCHE, KRAUSE, and SIEGERT PHYS. REV. D 100, 014011 (2019)

014011-12



FIG. 5. Comparison of the newly developed algorithm with data from CMS in a phase space region with at least two b jets. The new
fusing prediction is shown in solid blue; its both components are given as dashed and dotted blue lines. The 5FS MEPS@NLO and the
4FSMC@NLO are shown for comparison in red and green. The uncertainties for the fused prediction are shown in the second ratio plot.
They include a simultaneous seven-point variation of μF and μR for both, matrix element and parton shower emissions, and a merging cut
variation for Qcut ¼ 15ð30Þ GeV.
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some bins. It is worth noting that the fused prediction has a
significantly smaller statistical uncertainty than the 5FS
prediction, although the fragmentation component was
generated with the same number of events. This is expected
in all regions of phase space where the direct component
dominates since only a small fraction of 5FS events will
yield two b jets. The direct component profits from its
explicit production of heavy-flavor final states and can fill
the phase space more efficiently.

VI. CONCLUSIONS

We have presented a novel event generation algorithm to
simulate heavy-flavor associated production in collider
experiments. Building upon the established merging algo-
rithms for multijet matrix elements and parton showers, we
propose a technique to include massive matrix elements
for heavy-quark production, effectively leading to an MC
simulation in a variable-flavor-number scheme, which we
call fusing.
The overlap between the five- and four-flavor scheme

calculations is removed based on a parton-shower inter-
pretation of the full parton evolution from the hard scale to
the parton shower cutoff. This evolution history is also used
to supplement the massive matrix elements with all higher-
order corrections necessary to maintain the logarithmic
accuracy of the multijet merged calculation.
Our algorithm allows us to combine the advantages of

inclusive five-flavor scheme calculations with the higher
precision of four-flavor scheme calculations in regions of
phase space where the bottom quark mass sets a relevant
scale. Such a combined prediction is crucial for heavy-
flavor measurements in LHC experiments, since they will
always be affected by the presence of fake heavy-flavor
tagged jets.
The fusing algorithm can be applied at leading order

or next-to-leading order QCD. Its logarithmic accuracy
depends on the parton shower used in the merging and
might be extended to NLL in the near future. The relation to
the FONLL method has been established by analytically
identifying the known FONLL matching coefficients
within the fused parton shower expressions.
Using an implementation in the Sherpa event generator,

we show a first application to heavy-flavor production in
association with a Z boson. Cross-checks of exclusive
observables and a comparison of the results for heavy-
flavor production to experimental data demonstrate the
improvement over existing multijet merging algorithms.
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APPENDIX A: CORRESPONDENCE
BETWEEN INCLUSIVE AND EXCLUSIVE

PARTON EVOLUTION

In this appendix, we summarize the correspondence
between the exclusive parton evolution implemented by
parton showers and the underlying inclusive evolution
equations. In the collinear limit, the evolution of parton
densities faðx; tÞ is determined by the DGLAP equations
[90–93],

dxfaðx; tÞ
d ln t

¼
X
b¼q;g

Z
1

0

dτ
Z

1

0

dz
αs
2π

½zP̂baðzÞ�þτfbðτ; tÞδðx − τzÞ:

ðA1Þ

In this context, P̂ba are the unregularized DGLAP evolution
kernels, which can be expanded into a power series in the
strong coupling. The plus prescription is employed to
enforce the momentum and flavor sum rules as

zPbaðzÞ ¼ ½zP̂baðzÞ�þ ¼ lim
ε→0

zP̂baðz; εÞ; ðA2Þ

where

P̂baðz; εÞ ¼ P̂baðzÞΘð1 − z − εÞ

− δab
X

c∈fq;gg

Θðz − 1þ εÞ
ε

Z
1−ε

0

dζζP̂acðζÞ:

ðA3Þ

For finite ε, the end point subtraction in Eq. (A2) can be
interpreted as the approximate virtual plus unresolved real
corrections, which are included in the parton shower
because the Monte-Carlo algorithm implements a unitarity
constraint [94]. The precise value of ε is determined in
terms of an infrared cutoff on the evolution variable, by
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means of four-momentum conservation [95]. For
0 < ε ≪ 1, Eq. (A1) can be written as

1

faðx; tÞ
dfaðx; tÞ
d ln t

¼ −
X
c¼q;g

Z
1−ε

0

dζζ
αs
2π

P̂acðζÞ

þ
X
b¼q;g

Z
1−ε

x

dz
z
αs
2π

P̂baðzÞ
fbðx=z; tÞ
faðx; tÞ

:

ðA4Þ
Using the Sudakov factor of the parton shower,

Δaðt0;tÞ¼ exp

�
−
Z

t

t0

dt̄
t̄

X
c¼q;g

Z
1−ε

0

dζζ
αs
2π

P̂acðζÞ
�
; ðA5Þ

one can define the generating function for splittings of
parton a as

F aðx; t; μ2Þ ¼ faðx; tÞΔaðt; μ2Þ: ðA6Þ
Equation (A4) can then be reduced to

dlnF aðx;t;μ2Þ
dlnt

¼
X
b¼q;g

Z
1−ε

x

dz
z
αs
2π

P̂baðzÞ
fbðx=z;tÞ
faðx;tÞ

: ðA7Þ

It is solved using the Markovian Monte-Carlo techniques
implemented by parton showers. Note that Eq. (A7) is
structurally equivalent to the inclusive result, Eq. (A1),
which can be written as

d ln faðx; tÞ
d ln t

¼
X
b¼q;g

Z
1

x

dz
z
αs
2π

PbaðzÞ
fbðx=z; tÞ
faðx; tÞ

: ðA8Þ

In the context of our analysis in Sec. IV B, it is important to
remember this formal correspondence, which can be
rephrased as the equivalence of the regularized DGLAP
splitting kernels, PabðzÞ, and the splitting kernels,
Pabðz; εÞ, defined in Eq. (A3) as ε → 0. While this limit
cannot be taken in the parton shower in practice [95], it is a
useful theoretical construction to prove that the Monte-
Carlo algorithm and the inclusive parton evolution generate
formally identical results to any logarithmic accuracy that is
implemented by both calculations.

APPENDIX B: LEADING AND NEXT-TO-
LEADING ORDER COEFFICIENT FUNCTIONS

The leading-order DGLAP splitting functions used in
Sec. IV are defined as [90,92,93]

PqqðzÞ ¼ CF
1þ z2

ð1 − zÞþ
þ 3

2
CFδð1 − zÞ;

PqgðzÞ ¼ CF
1þ ð1 − zÞ2

z
;

PgqðzÞ ¼ TRð1 − 2zð1 − zÞÞ;

PggðzÞ ¼ 2CA

�
z

ð1 − zÞþ
þ 1 − z

z
þ zð1 − zÞ

�

þ β0δð1 − zÞ: ðB1Þ

The next-to-leading order splitting functions needed to
evaluate Eq. (8) are given by [96–101]

PS;ð1Þ
qq ðzÞ ¼ CFTR

�
−ð1þ zÞln2zþ

�
8

3
z2 þ 5zþ 1

�
ln z −

56

9
z2 þ 6z − 2þ 20

9z

�
;

Pð1Þ
gq ðzÞ ¼ CFTR

�
2 −

9

2
z −

�
1

2
− 2z

�
ln z −

�
1

2
− z

�
ln2zþ 2 lnð1 − zÞ þ

�
ln2

1 − z
z

− 2 ln
1 − z
z

−
π2

3
þ 5

�
PgqðzÞ
TR

�

þ CATR

�
91

9
þ 7

9
zþ 20

9z
þ
�
68

3
z −

19

3

�
ln z − 2 lnð1 − zÞ − ð1þ 4zÞln2zþ S2ðzÞ

Pgqð−zÞ
TR

þ
�
−
1

2
ln2zþ 22

3
ln z − ln2ð1 − zÞ þ 2 lnð1 − zÞ þ π2

6
−
109

9

�
PgqðzÞ
TR

�
:

PV;ð1Þ
qq;Q ðzÞ ¼ CFTR

�
−
�
2

3
ln zþ 10

9

�
1þ z2

1 − z
−
4

3
ð1 − zÞ

�
þ
: ðB2Þ

The auxiliary function S2 is defined as [102]

S2ðzÞ¼−2Li2

�
1

1þz

�
þ1

2
log2z− log2ð1−zÞþπ2

6
: ðB3Þ

The β function coefficients used in Sec. IV are

β0 ¼
11

6
CA −

2

3
TRnf; β0;b ¼ −

2

3
TR: ðB4Þ

Note that nf counts the number of light parton flavors
only [72].
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