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We study details of QCD sum rules à la Shifman-Vainshtein-Zakharov for exotic tetraquark states. We
point out that duality relations for correlators involving exotic currents have fundamental differences
compared with the duality relations for the correlators of bilinear quark currents: namely, the Oð1Þ and
OðαsÞ (αs the strong coupling constant) terms in the operator product expansion for the exotic correlators
exactly cancel against the contributions of the two-meson states on the hadron side of QCD sum rules. As a
result, the tetraquark properties turn out to be related to the specific nonfactorizable parts of the exotic
Green functions; the relevant nonfactorizable diagrams start at order Oðα2sÞ.
DOI: 10.1103/PhysRevD.100.014010

I. MOTIVATION

Motivated by increasing experimental evidence for
narrow near-threshold hadron resonances with favorable
interpretation as tetraquark and pentaquark hadrons (of
minimal parton configurations consisting of four and five
quarks, respectively) [1–3], extensive theoretical studies of
such objects have been carried out. This paper focuses on
subtleties of the description of tetraquark mesons by
Shifman-Vainshtein-Zakharov (SVZ) sum rules in QCD
[4]; we demonstrate that some essential criteria for select-
ing QCD diagrams relevant for tetraquark properties within
QCD sum rules have not been properly taken into account.
For a proper QCD analysis of possible tetraquarks and

for the selection of the appropriate Feynman diagrams, the
understanding of the four-quark singularities of Feynman
diagrams plays a crucial role. In Refs. [5–14], the four-
quark singularities of Feynman diagrams describing the
four-point functions Γ4j of bilinear quark-antiquark cur-
rents j have been carefully studied. References [13,14]
introduced the notion of tetraquark-phile (T-phile) dia-
grams: the T-phile diagrams are those Feynman diagrams
that have four-quark singularities in the relevant kinematic
variable. For Γ4j, those diagrams that contain at least two

gluon exchanges of special topology have been shown to
belong to the set of T-phile diagrams.
Independently of this line of research, numerous works

deal with the analysis of tetraquark states by QCD sum rules
(see Refs. [15,16] and references therein). QCD sum rules
exploit dispersion representations to calculate QCD Green
functions, the time-ordered (T) products of local hadron
interpolating currents built of quark and gluon fields, in two
different ways: First, one calculates the Green function by
converting the T-product into a sum of local operators via
Wilson’s operator product expansion (OPE). Power correc-
tions, reflecting the modification of quark and gluon
propagators at small momentum transfers due to QCD
confinement, are given via QCD condensates; they may
be calculated, for each QCD diagram, according to well-
known rules [4]. In this way, one obtains the sum rule’s
theoretical (OPE) side. Second, one calculates the same
Green function by inserting a complete set of hadron states.
This yields the sum rule’s phenomenological (hadronic) side.
For Green functions of currents j, the hadron continuum

is counterbalanced by the perturbative QCD contributions
beyond an appropriate effective threshold. Then, parame-
ters of ordinary hadrons are related to the low-energy
region of perturbative QCD diagrams supplemented by
appropriate condensate contributions [4]. We demonstrate
that, for Green functions involving tetraquark currents, this
picture requires serious modifications.
References [15,16] focused on two-point functions

ΠθθðxÞ ¼ hTfθðxÞθð0Þgi of tetraquark interpolating cur-
rents θðxÞ ¼ q̄ðxÞqðxÞq̄ðxÞqðxÞ and three-point functions
Γθjjð0jx;yÞ¼hTfθð0ÞjðxÞjðyÞgi, involving one tetraquark
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current θ and two ordinary currents jðxÞ ¼ q̄ðxÞqðxÞ; h…i
denotes averaging over the vacuum. (The currents’ quark
flavor content will be specified below.) All previous
applications of SVZ sum rules (SR) to exotic states share
one common feature: they adopt the leading-order Oð1Þ
diagrams (and sometimes also radiative corrections) and
power corrections induced by these diagrams, and borrow
exactly the same criteria for continuum subtraction as
prescribed for ordinary mesons [4]. Consequently, the
tetraquark contribution is found to be dual to the low-
energy spectral integral of the relevant QCD diagrams.
Specifically, tetraquarks receive substantial contributions of
Oð1Þ and OðαsÞ QCD diagrams.
Wewill prove that the procedures adopted in SR analyses

of exotic states [15,16] do not take proper account of the
cancellations between the Oð1Þ and OðαsÞ diagrams on the
OPE side and the two-meson contributions on the hadron
side. Let us start with two almost self-evident observations:

(i) QCD sum rules utilize local interpolating currents,
so it suffices to consider tetraquark interpolating
currents in the form of products of two colorless
bilinear quark currents [17]. All other color struc-
tures of tetraquark currents are reduced to products
of colorless bilinears by Fierz transformations. For
the singlet-singlet color structure of θ, any diagram
describing Πθθ and Γθjj may be obtained from the
diagrams of Γ4j by merging two pairs of vertices (in
the case of Πθθ) or one pair of vertices (in the case of
Γθjj). Technically, the relationship between the
Green functions involving tetraquark currents and
Γ4j corresponds to defining the local θðxÞ as the
product of two point-split colorless currents j by
sending their displacement δ to zero: θðxÞ ¼
limδ→0jðxÞjðxþ δÞ.1

(ii) All previous QCD SR applications to exotic states
[15,16] relate tetraquark properties to those contri-
butions to Πθθ and Γθjj that are obtained by merging
vertices in non-T-phile diagrams of Γ4j. Recall that
such contributions to Γ4j have no four-quark cuts
[20] and therefore may not be related to tetraquark
properties [10–12]. One may therefore doubt that the
procedures adopted in Refs. [15,16] are consistent.

We will show that quark-hadron duality relations for
Green functions involving exotic tetraquark currents
exhibit a specific feature: an exact cancellation of the
Oð1Þ and OðαsÞ contributions on the OPE side against the
two-meson contribution on the hadron side of the SVZ sum
rule by virtue of quark-hadron duality relations for corre-
lation functions of colorless currents j. (This property is
quite general and does not depend on the color structure of

θ but is most easily demonstrated for θ taken as the product
of two colorless j; we therefore present here the analysis of
this case.) Hence, upon taking into account these cancella-
tions a QCD SR for any exotic state assumes the following
form: the OPE side for Πθθ and Γθjj has merely contribu-
tions of T-phile diagrams, obtained from T-phile diagrams
for Γ4j by merging appropriate vertices; the hadron side has
the suspected tetraquark pole and the interacting mesons.
One may then assume, similarly to conventional QCD sum
rules for ordinary correlators, that the tetraquark contribu-
tion is dual to the low-energy part of the T-phile contri-
butions to Πθθ and Γθjj.

II. DIRECT GREEN FUNCTIONS INVOLVING
TETRAQUARK CURRENTS

Let us consider tetraquarks involving two quarks of
flavors a and c and two antiquarks of flavors b and d, and
thus define interpolating currents with two different flavor
structures, θābc̄d ¼ jābjc̄d and θādc̄b ¼ jādjc̄b, with
jāb ¼ q̄aqb. We need not specify the Dirac structure of
θ, since it does not change our argument.
An appropriate definition of θ may be given by point-

splitting in the product of two currents j. From this
perspective, any diagram involving some θ may be
obtained from the four-point function of two currents j
studied in detail in [11]. We distinguish between Feynman
diagrams where quark flavors in initial and final state are
combined in the same way (direct diagrams) and in a
different way (recombination diagrams), since they have
different topologies and different structures of four-quark
singularities. Accordingly, the resulting duality relations
should be discussed separately.

A. Two-point function Πdir
θθ

Figure 1 shows the direct four-point function Γdir
4j and the

corresponding two-point function of tetraquark currents:
only diagrams in (c) are T-phile, so the rhs diagrams (a), (b)
should drop out from the tetraquark SR. Diagrams with
one-gluon exchanges between disconnected loops are null.
To show that this indeed happens, we inspect the OPE

and the hadron representation for the two-point direct
correlation function Πθθ, Fig. 2. (In Figs. 2–4, we do
not explicitly show power corrections: for any Feynman
diagram, they are calculated according to well-known rules
[4].) There is an infinite subset of diagrams in the OPE for
Πdir

θθ that factorize in coordinate space into two parts
separated by the red dash-dotted line; the Oð1Þ and
OðαsÞ diagrams belong to this subset. On the hadron side,
there is also an infinite subset of meson contributions that
factorize in coordinate space. It is straightforward to check
that the OPE factorizable subset exactly equals the hadron
factorizable subset by using the QCD SR for the two-point
function Πjj of ordinary currents j (Fig. 3). Canceling out
the equal factorizable parts on both sides of the SR of

1The parameter δ finally sent to zero must not be confused with
the finite physical separation between clusters inside tetraquarks
discussed in dynamical models for the tetraquark structure,
e.g., [18,19].
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Fig. 2, we arrive at the tetraquark SR of Fig. 4. Now,
similarly to the case of ordinary mesons, we consider a
single spectral representation in p2 of the QCD diagrams in
the lhs of Fig. 4 and introduce an effective threshold
seff [21–23] such that the contribution of the QCD diagrams
in the lhs of Fig. 4 above seff cancels the nonfactorizable
meson-meson interaction diagrams on the rhs of Fig. 4.
Then, after Borel transformation from p2 to Borel variable
τ [4], we obtain the ultimate tetraquark SR

ðfābc̄dT Þ2 expð−M2
TτÞ ¼

Z
seff

ð4mqÞ2
ds expð−sτÞρdirT ðsÞ

þ power corrections: ð2:1Þ
Here, 4mq ≡ma þmb þmc þmd, ρdirT is the spectral
density in the variable s of the rhs of Fig. 1(c) with

two-gluon exchanges of order Oðα2sÞ. Power corrections
in Eq. (2.1) correspond to condensate insertions in the
diagram of Fig. 1(c). Power corrections generated by the
rhs diagrams in Figs. 1(a) and 1(b) do not contribute to
the tetraquark SR (2.1): they cancel against the factorizable
meson-meson contributions.MT is the tetraquark mass and
fābc̄dT ¼ hTjθābc̄dj0i. Only the T-phile diagram of Fig. 1(c)
and the corresponding power corrections contribute to the
tetraquark SR (2.1).

B. Three-point function Γdir
θjj

Direct Green functions Γdir
θjj may be found from Γdir

4j by
merging in the latter just one (say, the left) coordinate pair,
as shown in Fig. 5; here, only diagram (c) is T-phile, so the
rhs diagrams (a) and (b) should not contribute to the
tetraquark coupling to two mesons. For Γdir

θjj, this is easily
shown: the tetraquark would lead to a pole 1=ðp2 −M2

TÞ in
Γdir
θjj (p is the total momentum of the currents) with residue

+....... + +=

FIG. 3. Conventional QCD SR for the two-point function Πdir
jj

of ordinary currents j: the lhs shows its OPE (the diagram with
two gluon lines with dots in between represents the sum of
diagrams with an arbitrary number of gluon exchanges, starting
with the quark loop with no gluons); the rhs shows its meson
representation.

(a)

(b)

(c)

FIG. 1. Feynman diagrams for a direct two-point function of
tetraquark currents Πdir

θθ , obtained by merging vertices in Γdir
4j . In

the left column, diagrams (a) and (b) do not contain four-quark
singularities in the s channel, whereas diagram (c) is the lowest-
order diagram that contains the four-quark s cut and is thus the
only T-phile diagram.

+ ...

...

...

...

+

Hadron side of SROPE side of SR

+

+ +
....

....

=

FIG. 2. QCD SR for the two-point function Πdir
θθ : The lhs shows its OPE. The rhs shows its meson representation; assuming that the

hadron spectrum contains a tetraquark, its contribution appears on the hadron side. The first line on both sides of the SR shows diagrams
factorizable into two parts, separated by the red dash-dotted line; the second line on both sides shows nonfactorizable contributions.
Note that the set of factorizable diagrams on the OPE side includes diagrams (a) and (b) of the rhs of Fig. 1. Diagrams in the first line on
both sides of the SR are equal to each other by virtue of QCD sum rules for Πjj, Fig. 3.

...+=

FIG. 4. Final tetraquark QCD SR relating the nonfactorizable
OPE contributions to the two-point functionΠdir

θθ to the sum of the
tetraquark pole and the nonfactorizable meson-interaction dia-
grams. The dots in the meson diagrams denote the sum of meson
diagrams of the same (nonfactorizable) topology.
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related to the tetraquark’s coupling to ordinary mesons of
appropriate flavor content, T → MābMc̄d. Clearly, the
diagrams of Figs. 5(a) and 5(b) cannot contribute to the
pole, as their dependence on p2 is at most polynomial, due
to traces over quark loops. The Borel transform of the rhs of
Figs. 5(a) and 5(b) vanishes. So the rhs diagram of Fig. 5(c)
is the lowest-order diagram that gives a nontrivial con-
tribution to the tetraquark pole. Introducing an effective
threshold seff and performing the Borel transform yields
the SR

fābc̄dT expð−M2
TτÞAðT→ jābjc̄dÞ

¼
Z

seff

ð4mqÞ2
ds expð−sτÞΔdir

T ðsÞþpower corrections: ð2:2Þ

Here, AðT → jābjc̄dÞ is the momentum-space amplitude
h0jTfjābðxÞjc̄dð0ÞgjTðpÞi and Δdir

T ðsÞ the spectral density
in the variable s of the rhs of Fig. 5(c). As before, power
corrections generated by non-T-phile diagrams do not
appear in the tetraquark SR.

III. RECOMBINATION GREEN FUNCTIONS
INVOLVING TETRAQUARK CURRENTS

For correlators with recombination topology (Fig. 6),
where the initial and final quark color singlets have
different flavor structures, again only the diagrams of
Fig. 6(c) are T-phile and contribute to the tetraquark SR.
The proof of this is not as straightforward as before.

However, in Ref. [11] it has been shown that the recombi-
nation Green functions (a), (b) on the lhs of Fig. 6 do not
contribute to tetraquark poles and are related to meson
amplitudes without s-channel four-quark singularities. This
holds even after merging initial and/or final vertices. Thus,
the rhs diagrams (a), (b) of Fig. 6 still do not contribute
to the tetraquark pole: only the diagrams in Fig. 6(c) are
T-phile. Similar considerations apply, mutatis mutandis, to
the recombination three-point functions. Hence, we arrive
at the tetraquark sum rules

fābc̄dT fādc̄bT expð−M2
TτÞ ¼

Z
seff

ð4mqÞ2
ds expð−sτÞρrecT ðsÞ

þ power corrections; ð3:1Þ

fābc̄dT AðT→ jādjc̄bÞexpð−M2
TτÞ

¼
Z

seff

ð4mqÞ2
ds expð−sτÞΔrec

T ðsÞþpower corrections: ð3:2Þ

Here, 4mq ≡ma þmb þmc þmd and ρrecT ðsÞ and Δrec
T ðsÞ

are the spectral densities in the variable s of the Oðα2sÞ
diagrams with two-gluon exchanges [cf. the rhs of
Fig. 6(c)]. The coupling constants are defined by fābc̄dT ¼
hTjθābc̄dj0i and fādc̄bT ¼ hTjθādc̄bj0i.

(b)

(c)

(a)

FIG. 5. Feynman diagrams for a direct three-point function as
obtained by merging vertices in Γdir

4j . Diagrams (a), (b) depend on
p2 at most polynomially and therefore cannot contribute to
tetraquark properties. Only diagrams (c) are T-phile and therefore
contribute to the tetraquark SVZ SR.

(a)

(b)

(c)

FIG. 6. Feynman diagrams for a recombination two-point
function of tetraquark currents as obtained by merging vertices
in the recombination four-point function of bilinear quark
currents. Diagrams (a) and (b) on the lhs do not contain four-
quark singularities in the s channel. Diagram (c) on the lhs is the
lowest-order diagram that contains a four-quark s cut; thus, only
diagram (c) on the lhs is the T-phile diagram. Also, among the
diagrams on the rhs, only diagram (c) contributes to the OPE side
of the tetraquark SVZ sum rule (3.1).
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IV. CONCLUSIONS

We scrutinized the derivation of SVZ sum rules for
exotic correlation functions of tetraquark currents θ,
namely, two-point functions Πθθ and three-point functions
Γθjj involving one tetraquark current and two bilinear quark
currents j. Our insights may be summarized as follows:

(i) The duality relations for exotic correlators are
fundamentally different from those for correlators
of bilinear quark currents: theOð1Þ andOðαsÞ terms
in the OPE for exotic correlators exactly cancel
against the contributions of two-meson states on the
hadron side of QCD SR. Thus, the properly for-
mulated tetraquark SVZ sum rules, Eqs. (2.1), (2.2),
(3.1), and (3.2), relate tetraquark properties to
specific T-phile nonfactorizable parts of the OPE
for exotic Green functions; the corresponding non-
factorizable diagrams start at order Oðα2sÞ.
This result is quite general and valid for any color

structure of θ, even if of diquark-antidiquark form.
Merely the proof of this statement becomes techni-
cally more involved: start with the momentum-space
diagrams generated by the diquark-antidiquark, per-
form Fierz transformations reducing the diagrams to
the ones of singlet-singlet currents, and only then
exploit the ordinary QCD sum rules for the two-point
functions of color-singlet currents. Since Fierz trans-
formations do not change a diagram’s perturbative
order, one again observes the cancellation of the
Oð1Þ, OðαsÞ, and the factorizable part of the Oðα2sÞ
contributions on theOPE side against the factorizable
two-meson contributions on the hadron side.

(ii) For clarity, we demonstrated the aforementioned
general property by considering currents θ involving
quarks of four different flavors, which case exhibits
the simplest topology of the direct Green function. If
some of the quark flavors in θ coincide, the direct
Green functions receive contributions similar to
those of their recombination counterparts. The
cancellation of theOð1Þ, OðαsÞ, and the factorizable
part of the Oðα2sÞ contributions on the OPE side

against the factorizable two-meson contributions on
the hadron side of QCD sum rules becomes tech-
nically more involved but has been verified.

(iii) The cancellation of Oð1Þ, OðαsÞ, and factorizable
part of the Oðα2sÞ contributions in T-adequate sum
rules holds independently of the color structure of θ.
The singlet-singlet color structure, however, has a
decisive advantage related to the algorithm of
selecting T-phile Oðα2sÞ diagrams: for θ chosen as
the product of two color singlets, the set of T-phile
diagrams contributing to the properties of some
exotic state involves only diagrams obtainable from
T-phile diagrams of four-point functions of ordinary
currents j by merging the appropriate vertices. This
observation reduces the analysis of duality relations
for tetraquark correlation functions to the analysis of
four-quark singularities in four-point functions of
currents j. For other color structures of θ, the
selection criteria for the T-phile Oðα2sÞ diagrams
cannot be formulated in such a direct manner: the
T-phile diagrams for other color structures of θ are
just the Fierz-transformed T-phile diagrams estab-
lished for the singlet-singlet color structure of θ.

The proper application of tetraquark QCD SR requires
the knowledge of presently unknown nonfactorizable
Oðα2sÞ radiative corrections and calls for further efforts
in order to obtain reliable conclusions about tetraquark
candidates.
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