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The energy-energy-correlator (EEC) observable in eþe− annihilation measures the energy deposited in
two detectors as a function of the angle between the detectors. The collinear limit, where the angle between
the two detectors approaches zero, is of particular interest for describing the substructure of jets produced at
hadron colliders as well as in eþe− annihilation. We derive a factorization formula for the leading power
asymptotic behavior in the collinear limit of a generic quantum field theory, which allows for the
resummation of logarithmically enhanced terms to all orders by renormalization group evolution. The
relevant anomalous dimensions are expressed in terms of the timelike data of the theory, in particular
the moments of the timelike splitting functions, which are known to high perturbative orders. We relate the
small angle and back-to-back limits to each other via the total cross section and an integral over
intermediate angles. This relation, for the EEC in eþe− and in Higgs decay to gluons, provides us with the
initial conditions for quark and gluon jet functions at order α2s. In QCD and in N ¼ 1 super-Yang-Mills
theory, we then perform the resummation to next-to-next-to-leading logarithm, improving previous
calculations by two perturbative orders. We highlight the important role played by the nonvanishing β
function in these theories, which while subdominant for Higgs decays to gluons, dominates the behavior of
the EEC in the collinear limit for eþe− annihilation, and inN ¼ 1 super-Yang-Mills theory. In conformally
invariant N ¼ 4 super-Yang-Mills theory, reciprocity between timelike and spacelike evolution can be
used to express our factorization formula as a power law with exponent equal to the spacelike twist-two
spin-three anomalous dimensions, thus providing a connection between timelike and spacelike approaches.

DOI: 10.1103/PhysRevD.100.014009

I. INTRODUCTION

Jet and event shape observables play a crucial role in our
understanding of QCD and are interesting more generally
for understanding the structure of Lorentzian observables in
quantum field theory. A particularly interesting infrared-
safe observable is the energy-energy correlator (EEC),
originally defined in eþe− annihilation [1,2], which mea-
sures the energy in two detectors separated by an angle χ;
see Fig. 1. The EEC can be defined within QCD also for a
gluonic source, namely the decays of a Higgs boson to
hadrons that are mediated by a heavy top quark loop [3].
The EEC has also been studied in conformally invariant
N ¼ 4 super-Yang-Mills theory (SYM) for sources that are
protected by supersymmetry [4–7]. It exhibits kinematic

singularities in both the back-to-back ( χ → π) and collinear
( χ → 0) limits, allowing its behavior in these limits to be
understood to all orders in perturbation theory using
renormalization group techniques. The compatibility of
these two limits suggests a particularly rigid structure,
perhaps enabling an all orders perturbative understanding
of the EEC.
The EEC has attracted significant recent attention, which

has further revealed its perturbative simplicity. Advances
include analytic results for arbitrary χ to next-to-leading
order (NLO) in QCD [3,8] and at both NLO [7] and NNLO
[9] in N ¼ 4 SYM; an understanding of the all orders
logarithmic structure in the back-to-back limit χ → π
[10,11]; and numerical results at NNLO in QCD [12,13]
that have been matched [14] to the next-to-next-to-leading
logarithms (NNLL) in the back-to-back limit [15] and used
to determine the strong coupling [16].
Recently a description of the all-orders behavior in the

collinear limit for a conformal field theory has been given
[17,18] based on the light-ray operator formalism [19,20].
The limit is described by a spacelike operator product
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expansion (OPE) controlled by the twist-two spin-three
operator whose role was identified earlier [4,21]. Another
spacelike approach to the collinear limit in a CFT has been
developed more recently [22], based on the representation
of the EEC in terms of the Mellin amplitude of the four-
point function [5–7].
Despite this progress, the all orders logarithmic structure

in the collinear limit remains less well understood for a
generic quantum field theory. The leading logarithms (LL)
in the χ → 0 limit have been resummed to all orders in
QCD using the jet calculus approach [21,23–26]. However,
there has not been a systematic framework for resumming
subleading logarithms. In addition to being of formal
interest, the collinear limit is particularly relevant for the
study of jets and their substructure at the Large Hadron
Collider (LHC), motivating an improved quantitative
understanding.
In this paper we present a factorization formula describ-

ing the χ → 0 limit of the EEC in a generic massless
quantum field theory, conformal or asymptotically free. All
logarithms in the perturbative expansion can be resummed
using the renormalization group evolution of certain jet
functions appearing in the factorization formula. We show
that the anomalous dimensions of these functions are
related to the timelike twist-two anomalous dimensions
governing the evolution of fragmentation functions for
identified hadrons. These timelike splitting kernels, along
with the corresponding hard functions or matching coef-
ficients, are known through NNLO in QCD [27–31]. These
results facilitate the determination of the asymptotic behav-
ior of the EEC in the χ → 0 limit to high perturbative
orders. We explicitly resum the EEC to NNLL accuracy in
QCD and in N ¼ 1 SYM, improving by two logarithmic
orders the best known results in the literature. In the
particular case of N ¼ 4 SYM, a reciprocity that relates
timelike and spacelike anomalous dimensions [32–40]
allows us to express our result as a power law, where
the exponent is the twist-two spin-three spacelike anoma-
lous dimension [4]. This relation provides a link between
timelike dynamics and spacelike data.

An outline of this paper is as follows. In Sec. II we
review the definition of the EEC observable. In Sec. III we
present our factorization formula for the collinear limit of
the EEC. In Sec. IV we discuss a sum rule arising from the
overall normalization of the cross section and how this
enables us to obtain the two loop jet function for the
EEC. In Secs. V, VI and VII we study the behavior of
the collinear limit of the EEC in QCD, N ¼ 1 SYM and
N ¼ 4 SYM, highlighting several interesting features of
each case. We conclude in Sec. VIII and discuss a number
of interesting future directions. We also provide an ancil-
lary file supplying an iterative solution through nine loops
to the NNLL jet function evolution equations in QCD.

II. OBSERVABLE DEFINITION

The EEC is defined as [1]

dσ
dz

¼
X
i;j

Z
dσ

EiEj

Q2
δ

�
z −

1 − cos χij
2

�
; ð1Þ

where dσ is the product of the squared matrix element and
the phase-space measure, Ei and Ej are the energies of
final-state partons i and j in the center-of-mass frame, and
their angular separation is χij. For convenience, we have
chosen to work with the variable z satisfying

0 ≤ z ¼ 1 − cos χ
2

≤ 1: ð2Þ

Due to the fact that Q2 ¼ ðPiEiÞ2 ¼
P

i;jEiEj, the EEC
observable satisfies the normalization condition,Z

1

0

dz
dσ
dz

¼ σtot: ð3Þ

As we will see in Sec. IV, this relation places strong
constraints on the cross section, and in particular, links the
singular behavior at the two kinematic end points.
In the collinear limit, z → 0, the perturbative contribu-

tions to the EEC exhibits a single logarithmic series,

dσ
dz

¼
X∞
L¼1

XL−1
j¼−1

�
αsðμÞ
4π

�
L
cL;jLjðzÞ þ…; ð4Þ

where L−1ðzÞ ¼ δðzÞ and LjðzÞ ¼ ½lnj z=z�þ for j ≥ 0

denotes a standard plus distribution. The ellipses denote
terms with a less singular power than 1=z. [Note that
δðzÞ ∼ 1=z.] One of our primary goals will be to describe
this logarithmic structure to all orders.

III. FACTORIZATION FORMULA

It is convenient to work in terms of the cumulant of
the EEC,

(a)

(b)

FIG. 1. (a) The EEC observable for a generic angle χ. (b) In the
collinear limit the EEC factorizes into a hard function, HðxÞ,
describing the production of a parton of momentum fraction x
from the source, and a collinear jet function, Jðx; χÞ, describing
the measurement.
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Σ
�
z; ln

Q2

μ2
; μ

�
≡ 1

σ0

Z
z

0

dz0
dσ
dz

�
z0; ln

Q2

μ2
; μ

�
; ð5Þ

where σ0 is the Born-level total cross section. The cumulant
maps ½lnj z=z�þ → 1=ðjþ 1Þ × lnjþ1 z and δðzÞ → 1. The
μ-dependence in the last arguments of Σ and dσ=dz is
entirely through the strong coupling αsðμÞ; we just write it
as μ to save space. One of the main results of this paper is a
factorization formula for Σ in the z → 0 limit,

Σ
�
z; ln

Q2

μ2
;μ

�
¼
Z

1

0

dxx2J⃗

�
ln
zx2Q2

μ2
;μ

�
· H⃗

�
x;
Q2

μ2
;μ

�
:

ð6Þ

This formula factorizes the dynamics in the collinear limit
into a hard functionH, which describes the dynamics of the
source, but is independent of the measurement, z, and a jet
function, J, which describes the z dependence, but is
independent of the source. This is illustrated in Fig. 1.
Both the hard function and jet function are vectors in flavor
space. For the particular case of QCD, where we have
quarks and gluons, we have J⃗¼fJq;Jgg and H⃗¼fHq;Hgg.
It is not necessary to distinguish q and q̄ due to the charge
conjugation invariance of QCD and the symmetry of the
source. Corrections to this factorization formula are sup-
pressed by an integer power of z, as can be shown from the
known structure of higher twist distribution functions [41].
The jet functions are gauge invariant nonlocal operators.

The quark jet function is defined as

JqðzÞ¼
X
X

X
i;j∈X

h0j χ̄njXi
EiEj

ðQ=2Þ2Θðθij < χÞhXjχnj0i; ð7Þ

where χn is a gauge invariant collinear quark field in SCET
[42–45]. The Θ function on the parton separation angle θij
is appropriate for the cumulant definition of J⃗ in Eq. (6).
The gluon jet function is defined in a similar manner, using
a gauge invariant gluon field. (In a more general context,
Q=2 would be replaced by the jet energy in an appro-
priate frame.)
The jet and hard functions both satisfy renormalization

group (RG) evolution equations which allow for the
resummation of logarithms of z. The RG equation for
the hard function is given by

dH⃗ðx; Q2

μ2
; μÞ

d ln μ2
¼ −

Z
1

x

dy
y
P̂Tðy; μÞ · H⃗

�
x
y
;
Q2

μ2
; μ

�
; ð8Þ

where P̂T is the singlet timelike splitting kernel matrix,

P̂T ¼
�
Pqq Pqg

Pgq Pgg

�
: ð9Þ

The jet function obeys the RG equation

dJ⃗ðln zQ2

μ2
; μÞ

d ln μ2
¼
Z

1

0

dyy2J⃗

�
ln
zy2Q2

μ2
; μ

�
· P̂Tðy; μÞ: ð10Þ

This equation can be derived by requiring the cumulant Σ in
Eq. (6) to be RG invariant, combined with the evolution
equation (8) for the hard function.
As indicated in Eq. (6), logarithms in the jet function are

minimized at the scale μ2 ¼ zx2Q2 ≡ q2T , which physically
corresponds to a transverse momentum scale qT ≈ χxQ=2
associated with the splitting at momentum xQ and angle χ
measured by the EEC. The logarithms of the hard function
are minimized at the scale μ2 ¼ Q2, which corresponds to
the energy scale of the source. Resummation is achieved
by computing the boundary values of the jet and hard
functions at these scales, and then performing the RG
evolution from one scale to the other.
The factorization formula in Eq. (6) is more complicated

than the standard jet calculus formula which describes the
leading logarithms [21,23–26], due to the presence of the
convolution in the momentum variable x. This convolution
is only required beyond LL; at LL it suffices to set x ¼ 1 in
the argument of J⃗. The evolution equation (10) then
simplifies to a multiplicative renormalization,

dJ⃗LLðln zQ2

μ2
; μÞ

d ln μ2
¼ J⃗LL

�
ln
zQ2

μ2
; μ

�
·
Z

1

0

dyy2P̂ð0Þ
T ðyÞ

¼ −J⃗LL
�
ln
zQ2

μ2
; μ
�
· γð0ÞT ; ð11Þ

where γT ≡ γTð3Þ is the N ¼ 3 moment of the LO timelike
singlet splitting kernel. At LO, the timelike and spacelike
moments are identical, and are given by

γð0ÞT ¼
 

25
6
CF − 7

15
nf

− 7
6
CF

14
5
CA þ 2

3
nf

!
: ð12Þ

We adopt the conventions of Refs. [28–31] for splitting
kernels and anomalous dimensions, which are related by a
Mellin transform,

γTðNÞ≡ −
Z

1

0

dyyN−1P̂TðyÞ: ð13Þ

We also use the perturbative expansion parameter
as ≡ αs=ð4πÞ.
An exact solution to Eq. (11) is given by

J⃗LL

�
ln
zQ2

μ2
;μ

�
¼ð1;1Þ ·V

"�
αsð

ffiffiffi
z

p
QÞ

αsðμÞ
�

−
γ⃗
ð0Þ
T
β0

#
D

V−1; ð14Þ
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where β0 ¼ ð11CA − 2nfÞ=3, V is the matrix that diago-

nalizes γð0ÞT , and γ⃗ð0ÞT is the diagonal vector of the diagon-
alized matrix. Substituting this solution into Eq. (6),
using that

H⃗LLðxÞ ¼
� 1

2
δð1 − xÞ

0

�
; ð15Þ

and differentiating Σ to obtain dσ=dz, we reproduce
the LL resummation formula obtained using jet calculus.
Beyond LL, the convolution in the momentum fraction
variable, x, cannot be eliminated. Indeed, we will see
in Sec. VII that this convolution is crucial to obtain a
correspondence with the spacelike picture in a conformal
field theory (CFT).

IV. JET FUNCTIONS AND SUM RULES

The hard function and the timelike splitting kernel
entering our factorization formula are known in QCD to
NNLO [28–31]; however, the EEC jet functions are new.
They can be computed from their operator definition,
which at NLO is equivalent to integrating the splitting
functions against the EEC measurement function. One
subtlety when computing the jet functions is that the
EEC detectors can both be placed on the same particle.
This is in fact essential to obtain an IR finite jet func-
tion. Representative one-loop diagrams for the quark jet
functions are

ð16Þ

where the red dots denote insertions of the EEC operators.
Writing the perturbative expansion of the jet functions as

Jq;g ¼
P

La
L
s J

ðLÞ
q;g , with J

ð0Þ
q;g ¼ 1, a simple calculation gives

the one-loop quark jet function,

Jð1Þq ¼ 3CF

�
−

1

ϵUV
þ ln

zQ2

μ2

�
þ jq1 þOðϵÞ; ð17Þ

jq1 ¼ −
37

3
CF: ð18Þ

Renormalization leads to mixing between the quark and
gluon jet functions. The one-loop gluon jet function can be
computed in a similar manner; the result is

Jð1Þg ¼
�
14

5
CAþ

1

5
nf

��
−

1

ϵUV
þ ln

zQ2

μ2

�
þjg1þOðϵÞ; ð19Þ

jg1 ¼ −
898

75
CA −

14

25
nf: ð20Þ

The pole and lnðzQ2=μ2Þ coefficient are again dictated by

the anomalous dimensions, here γð0Þqg þ γð0Þgg .
The direct perturbative calculation of the jet function at

NNLO is nontrivial due to the appearance of triple collinear
splitting functions [46,47] and the constraints on the three-
particle phase space. Instead of performing a direct calcu-
lation, we can obtain the jet function by exploiting the sum
rule (3). Using the sum rule atOðα2sÞ requires knowledge of
the singular behavior in the back-to-back limit [10,15] and
the analytic form of the NLO EEC for both eþe−
annihilation [8] and hadronic Higgs decay [3]. It also
needs the perturbative corrections to the total cross section,
which are known in QCD to Oðα4sÞ [48,49].
To illustrate this idea, we recompute the NLO jet

constants using this sum rule. The LO EEC in eþe−,
including its end point contributions, is given by

1

σ0

dσðz; μ ¼ QÞ
dz

����
a1s

¼
�
1

2
jq1 þ hq1 þ hg1

�
δðzÞ þ CF

�
ð−2ζ2 − 4Þδð1 − zÞ þ 3

2

1

½z�þ
− 2

�
lnð1 − zÞ
1 − z

�
þ
−

3

½1 − z�þ
þ 1

2z5
½−9z4 − 6z3 − 42z2 þ 36zþ 4ð−z4 − z3 þ 3z2 − 15zþ 9Þ lnð1 − zÞ�

	
: ð21Þ

The factorization formula (6) provides the δðzÞ term,
where hq1 ¼ 131=16CF and hg1 ¼ −71=48CF are the
N ¼ 3 moments of the NLO quark and gluon hard
functions (normalized to be half the sum of the T
and L angular coefficient functions in Ref. [28], as
explained in the Appendix). The one-loop result for the
total cross section is

R
1
0 dzdσ=dz ¼ 3CFσ0as. The bulk

integral, defined to be the integral omitting the delta
functions and plus distributions (the latter integrate to
zero), is

1

σ0

Z
1

0

dz
dσbulk

dz

����
a1s

¼ CF

�
2ζ2 þ

155

24

�
: ð22Þ

Combining these results, we can extract jq1 ¼ −37=3CF,
which agrees precisely with Eq. (18). Note that this
computation requires the knowledge of the δð1 − zÞ term.
In order to extract the two two-loop jet function con-

stants, we integrated the NLO EEC bulk cross sections for
eþe− and Higgs decay [3,8] numerically to high accuracy
and reconstructed the result in terms of ζ values using the
PSLQ algorithm. The result is
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1

σ0

Z
1

0

dz
dσbulkeþe−

dz

����
a2s

¼ CFnf

�
8

3
ζ3 −

457

180
ζ2 −

3016223

216000

�
þ CFCA

�
30ζ4 −

422

3
ζ3 þ

893

45
ζ2 þ

19871011

162000

�

þ C2
F

�
−92ζ4 þ 164ζ3 −

697

12
ζ2 −

286843

5184

�
; ð23Þ

1

σ0

Z
1

0

dz
dσbulkH

dz

����
a2s

¼ n2f

�
−
6

5
ζ2 þ

4371

500

�
þ CFnf

�
−
104

15
ζ3 þ

23

10
ζ2 −

42509

12000

�

þ CAnf

�
64

15
ζ3 þ

3334

225
ζ2 −

191416183

1620000

�
þ C2

A

�
−62ζ4 þ

44

3
ζ3 −

8213

450
ζ2 þ

122348527

405000

�
: ð24Þ

Combined with the singular prediction in the z → 1 limit [10,15], as well as the Oðα2sÞ δð1 − zÞ term [50], this information
enables us to extract the jet function constants. We find

jq2 ¼ CFnf

�
9

5
ζ2 þ

703847

24000

�
þ CFCA

�
−76ζ4 þ 280ζ3 þ

1063

15
ζ2 −

164883727

324000

�

þ C2
F

�
152ζ4 − 478ζ3 − 106ζ2 þ

3498505

5184

�
; ð25Þ

jg2 ¼ n2f

�
−

8

15
ζ2 þ

2344

1125

�
þ CFnf

�
4ζ3 þ

14

5
ζ2 −

1528667

108000

�

þ CAnf

�
44

5
ζ3 −

127

25
ζ2 þ

68111303

1620000

�
þ C2

A

�
76ζ4 −

1054

5
ζ3 −

2159

75
ζ2 þ

133639871

810000

�
: ð26Þ

We have also checked this result by a direct calculation
of the n2f terms. Finally, in Ref. [22], the idea of the sum
rule presented in this section was extended to derive sum
rules for

R
1
0 dzzdσ=dz, and

R
1
0 dzð1 − zÞdσ=dz. The addi-

tional weighting eliminates either the δðzÞ or δð1 − zÞ term
in the cross section, allowing the Oðα2sÞ δðzÞ term to be
obtained independently of the Oðα2sÞ δð1 − zÞ term. We
have verified that these extended sum rules are satisfied
to Oðα2sÞ for all color channels, providing a stringent
check of our jet function constants in Eq. (26) and
emphasizing the interesting constraints on the EEC
imposed by sum rules.

V. NNLL RESUMMATION IN QCD

With the two loop jet constants in hand, we are able to
compute the all orders singular behavior of the EEC in the
collinear limit to NNLL. The analytic solution of the
renormalization group equations in QCD is complicated
by the presence of the matrix structure and the running
coupling. We therefore solve the equation iteratively.
Results to nine-loop order are provided in an ancillary file
for both eþe− annihilation and gluonic decays of the Higgs
boson. This order suffices for convergence down to
z ¼ 0.004, and higher orders would be straightforward
to obtain as well. In the Appendix, we provide the timelike
moments of the splitting functions that are necessary to

perform the evolution, as well as the hard function
coefficients for the two processes.
In Fig. 2 we plot the resummed results in the z → 0 limit

for both eþe− annihilation and Higgs decays to gluons at
various logarithmic accuracies, for μ ¼ Q. We match the
NLL and NNLL resummations to the analytic NLO results
[3,8] by adding the resummed and NLO formulas and
subtracting the overlapping αs and α2s terms in the pertur-
bative expansion of the resummed formula. We take
αsðQÞ ¼ 0.118 and nf ¼ 5, as appropriate for measure-
ments at Q ¼ MZ. To facilitate the comparison of quark
and gluon sources, we have set the Higgs mass MH ¼ MZ,
and we do not include renormalization of the short-distance
operator HGμνGμν. The higher order logarithmic correc-
tions are large. The right side of the plot shows that the
large corrections extend out to moderately small angles, as
was also observed in a fixed-angle NNLO computation for
eþe− [12].
Note that we plot the EEC with a prefactor of zð1 − zÞ. In

principle, our logarithmic resummation is insensitive to the
factor of (1 − z), since it represents a subleading power
correction. However, comparing the expansion of the
resummed formula with analytic fixed order results, we
find that the LO and NLO power corrections are much
smaller for eþe− if we interpret the resummation as being
for zð1 − zÞ=σ0 × dσ=dz, rather than for z=σ0 × dσ=dz, so
this is what we have done. The small size of the power
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corrections resulting from this choice is visible on the
right side of Fig. 2(a) (where the resummed terms are
small) in the good agreement between the LL and LO
(exact) curves, and between the NLL and NLO (exact)
curves. The power corrections are larger in the Higgs
case. It would be interesting to extend this comparison to
NNLO [12].
In Fig. 2 we observe quite different numerical behavior

in the z → 0 limit for the case of eþe− annihilation and
gluonic Higgs decays. This difference is due to the different
collinear structure of the initiating hard partons, namely
quarks in the case of eþe− annihilation and gluons in the
case of Higgs decays. To better understand this behavior,
we recall that in a CFT the anomalous dimensions of twist-
two operators are non-negative [51,52]. This guarantees
that in a CFT, the differential cross section plotted as
zdσ=dz decreases as z → 0. [See Eq. (36) for the form of
the cumulant for a CFT.] In the case of QCD, there is a
competition between β function contributions and twist-
two anomalous dimensions. The β functions contributions
drive zdσ=dz larger as z → 0, because the coupling is larger
at smaller scales. The twist-two anomalous dimensions, as
in a CFT, drive zdσ=dz smaller as z → 0. The competition
plays out differently for quarks versus gluons. For gluons
the splitting anomalous dimensions win, leading to a
suppression at small values of z, and comparatively “wider”
jets than for quarks, where the β function contribution wins.
In other words, for the Higgs boson, the EEC behaves quite
similarly to the case of a CFT, while for eþe−, the growth
of the cross section as z → 0 indicates a qualitatively
different behavior than in a CFT. The balance between

beta function contributions and anomalous dimensions is
quite delicate, and as wewill see in Sec. VI, inN ¼ 1 SYM
we can exactly balance the two contributions at LL
accuracy, so that there are in fact no leading logarithms
as z → 0.
This dependence on the source (or hard initiating parton)

in the z → 0 limit should be contrasted with the behavior in
z → 1 limit, where to LL accuracy we have [10,53]

1

σ0

dσðzÞ
dz

¼ 1

8ð1 − zÞ
Z

∞

0

dbbJ0ðbÞe−
1
2
CiΓcusp ln2ðe2γE b2

4ð1−zÞ Þ; ð27Þ

where Γcusp is the cusp anomalous dimension [54], J0ðbÞ
is a Bessel function, and Ci is the color Casimir, namely
Ci ¼ CF for eþe− annihilation, and Ci ¼ CA for Higgs
decays to gluons. To this order, the only process
dependence enters through the color Casimir, a property
referred to as Casimir scaling, which is also observed
for most jet substructure observables. We believe that the
fact that the EEC is directly sensitive to the collinear
structure of the initiating hard parton, beyond simply
its color Casimir, makes it interesting as a jet sub-
structure observable, and complementary to other such
observables.
To understand the large corrections from LL to NLL to

NNLL, we give the results through NNLO in the collinear
limit, with CF ¼ 4=3, CA ¼ 3, nf ¼ 5, and μ ¼ Q sub-
stituted in to simplify the expression. For the case of eþe−
annihilation we have

(a) (b)

FIG. 2. Exact and resummed results for the EEC in the collinear limit for eþe− annihilation in (a) and for Higgs decays to gluons in (b).
Large perturbative corrections, driven in the eþe− case partly by the β function, are observed at each order.
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z
σ0

dσe
þe−ðzÞ
dz

¼ 2as þ a2s

�
−
173

15
ln zþ 16

9
ζ3 −

424

27
ζ2 þ

638941

6075

�

þ a3s

�
20317

450
ln2zþ ln z

�
3704

81
ζ3 −

343252

1215
ζ2 −

686702711

1093500

�

þ 352

27
ζ5 þ

160

9
ζ2ζ3 −

8930

81
ζ4 −

633376

405
ζ3 −

18994669

36450
ζ2 þ

745211486777

131220000

�
þOðα4sÞ ð28Þ

¼ 2as þ a2sð−11.5333 ln zþ 81.4809Þ þ a3sð45.1489ln2z − 1037.73 ln zþ 2871.36Þ; ð29Þ

and for the case of gluonic decays of the Higgs boson, we have

z
σ0

dσHðzÞ
dz

¼ 47

10
as þ a2s

�
2167

150
ln z − 36ζ3 þ

512

5
ζ2 þ

2159543

9000

�

þ a3s

�
−
14117

1125
ln2zþ ln z

�
−
28748

135
ζ3 −

321242

2025
ζ2 þ

27672101

18225

�

þ 1296ζ5 −
86639

27
ζ4 −

4667179

2025
ζ3 þ

217606907

40500
ζ2 þ

5406051434989

437400000

�
þOðα4sÞ; ð30Þ

¼ 4.7as þ a2sð14.4467 ln zþ 365.116Þ þ a3sð−12.5484ln2zþ 1001.43 ln zþ 16298.1Þ; ð31Þ

where as ¼ αsðQÞ=ð4πÞ. The complete CF, CA, nf depend-
ence can be found in the ancillary file. The Oðα2sÞ terms
agree with the NLO fixed-angle result [8], also when the
same analysis is applied to the Higgs case [3]. Here we can
clearly see the different signs for the logarithmic terms
between the eþe− and Higgs cases, explaining the behavior
seen in Fig. 2.
The rapid growth of the perturbative coefficients is

driven partly by the β function, particularly for the case
of eþe−, where the β function drives the growth of the cross
section as z → 0. To see this, we can go to the Banks-Zaks
fixed point [55], letting CA ¼ 3, CF ¼ 4=3 and adjusting
nf ¼ 33=2þOðαsÞ in order to set β0 ¼ β1 ¼ β2 ¼ 0. We
then find

z
σ0

dσe
þe−ðzÞ
dz

¼2asþa2sð2.01111lnz−2.22206Þ

þa3sð−70.7058ln2zþ87.8276lnz−490.324Þ:
ð32Þ

We see that at the Banks-Zaks fixed-point there is a large
reduction in the growth of the higher order perturbative
corrections, although more than just the β function is
involved in the reduction of the a2s ln0 z term. Also, for
the Higgs case, where the logarithmic corrections are
negative, we do not find that the Banks-Zaks values are
smaller. The poor convergence for QCD with five flavors
motivates extending our results to N3LL to obtain a more
stable prediction. One would also like to better understand
qualitatively the dominant corrections at higher perturbative

orders. One example could be to study the large β0 limit
which has previously been considered for nonsinglet
anomalous dimensions in QCD [56,57].

VI. N = 1 SYM AND LANDAU POLES

To further illustrate the role of the β function in the
collinear limit, we consider pure N ¼ 1 SYM theory with
an adjoint gluino. Results for this theory can be obtained
from QCD by setting CF ¼ CA, and nf ¼ CA. (Such results
are in the nonsupersymmetric MS scheme. They could be
converted to the supersymmetric DR scheme by a suitable
redefinition of αs, but we will not do that here.) In
this case, one finds a fascinating cancellation due to the

fact that
P

jγ
ð0Þ
jq ð3Þ ¼

P
jγ

ð0Þ
jg ð3Þ ¼ β0 ¼ 3CA. The anoma-

lous dimensions and β function therefore exactly cancel
each other, and there is no leading logarithm.
Due to the simpler structure of this theory, we can write a

closed form solution for the resummed cross section, which
to NNLL reads, for μ ¼ Q,

ΣN¼1
NNLLðzÞ ¼ cS1ðαsÞ þ cS2ðαsÞ ln zþ cS3ðαsÞ

ln z
1þ β0as ln z

þ cS4ðαsÞ ln½1þ β0as ln z�

þ cS5ðαsÞ ln
�
1 − 2CAas

ln½1þ β0as ln z�
1þ β0as ln z

�
:

ð33Þ

Here the constants cSi are functions of the coupling, and
depend on the nature of the source, S. They can be found in
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the Appendix for a vector source coupled to quarks (eþe−)
and a scalar source coupled to gluons (Higgs bosons). It
would be interesting to explore the implications of N ¼ 1
supersymmetry for the constants, as has been done for
conformal operators [58]. The last term in Eq. (33) comes
from the form of the (logarithm of) the two-loop running
coupling, with β1 ¼ 6C2

A ¼ 2CAβ0. In QCD, the three-loop
running coupling contributes at NNLL, but inN ¼ 1 SYM
only two loops is required due to the leading-log cancella-
tion mentioned above.
In Fig. 3 we plot the closed-form solution (33) (NNLL),

as well as an analogous solution at NLL, for the case of an
eþe− source. (The Higgs source is qualitatively similar.)
The plot extends down to much smaller angles than the
QCD plots in Fig. 3. From the log-log plot it is clear that
the result is far from a power law at these angles, where the
coupling is varying rapidly. It is still close to a power law
for z > 0.004, the range covered in the QCD plots. (Indeed
the pure resummed QCD results are close to power law
there too, because the QCD coupling is still not that large.)
We also provide the NNLL results in the same iterative
nine-loop approximation we used for QCD, so that one can
see how the approximation breaks down at smaller angles.
The closed form expression (33) explicitly exhibits

the Landau pole at z ≈ exp½−1=ð3CAasÞ� ≈ 7 × 10−6 for
αs ¼ 0.118. As shown in Fig. 3, the Landau pole has a
positive residue. That is, in N ¼ 1 SYM theory the β
function dominates over the splitting anomalous dimension
(for eþe− or Higgs sources), starting at NLL, as was the
case for eþe− annihilation in QCD discussed earlier (see
Fig. 2), starting at LL, although in that case, we did not
obtain a closed form solution exhibiting the Landau pole.

This feature highlights the important fact that if one is
sufficiently far from the conformal limit that the β function
dominates over the splitting anomalous dimensions, then
one can only compute the EEC perturbatively for values of
z greater than some minimal value, and the observable is
not small in the z → 0 limit. In fact, it is so large that the
sum rule (3), evaluated at finite coupling instead of order
by order, does not converge at z ¼ 0. It seems that in this
case, some nonperturbative input is required, and it would
be nice to know if the sum rule could provide constraints.
The single-logarithmic nature of the small-angle EEC
is quite different than a Sudakov limit in which the
double logarithms in Eq. (27) provide a strong exponential
suppression as one approaches the infrared.

VII. N = 4 SYM AND RECIPROCITY

In this section, we apply our framework to N ¼ 4 SYM
theory, which is a CFT, leading to a simple behavior in the
collinear limit based on a spacelike OPE [4,17,18,22]. In
addition to highlighting the different behavior in a CFT,
N ¼ 4 SYM theory is particularly interesting because the
anomalous dimension that governs the singular behavior
can be determined to high orders in the weak coupling
expansion, or even at finite coupling from integrability.
Therefore the collinear limit can be studied at a level that is
unachievable in QCD. Furthermore, the study of the
singular limits provides data to potentially enable a boot-
strap of the complete result for the EEC.
In N ¼ 4 SYM, supersymmetry implies thatP
jPjϕðyÞ ¼

P
jPjλðyÞ ¼

P
jPjgðyÞ ¼ PT;uni:ðyÞ, where

j is summed over the scalar ϕ, fermion λ, and gluon in
the N ¼ 4 supermultiplet, and PT;uni: is a universal time-
like splitting kernel [59]. Therefore, the splitting matrix
reduces to a scalar, significantly simplifying the analysis of
the evolution equations. Furthermore, the result is inde-
pendent of the source for any operator in the stress-tensor
multiplet [60,61].
More interestingly, since the coupling does not run in a

CFT, the only scale in the problem is zQ2. One can then
make a power law ansatz for the jet function,

JðzQ2; μÞ ¼ CJðαsÞ
�
zQ2

μ2

�
γN¼4
J ðαsÞ

; ð34Þ

where the anomalous dimension γN¼4ðαsÞ can be deter-
mined by substituting into the jet function evolution
equation (10). Explicitly, using the definition (13), we find1

FIG. 3. Resummed results for the EEC in N ¼ 1 SYM for an
eþe− source, using Eq. (33) at NNLL, and a simpler formula
that resums the logarithms at NLL only. We also plot the NNLL
result using the same iterative approach used for QCD through
nine loops.

1We thank Simon Caron-Huot and Gregory Korchemsky for
describing a version of this argument to us, motivated by our
preliminary timelike results and the spacelike results of [17,18],
and pointing out the important connection to reciprocity. An
argument using conformal mappings for the relevance of the
spacelike anomalous dimension for describing the EEC was also
given in [62].
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2γN¼4
J ðαsÞ ¼ −2

Z
1

0

dyy2þ2γN¼4
J ðαsÞPT;uni:ðy; αsÞ

¼ 2γN¼4
T ð1þ 2γN¼4

J ;αsÞ; ð35Þ

where γN¼4
T ðN; αsÞ is the Mellin N þ 2 moment of the

universal splitting kernel PT;uni:ðx; αsÞ. Note that in the
N ¼ 4 case we use a shifted argument, since performing
the sum

P
jγjϕðNÞ¼PjγjλðNÞ¼PjγjgðNÞ¼γT;uni:ðN−2Þ

shifts the argument by two units in Mellin space. Therefore,
for the scalar N ¼ 4 universal anomalous dimension,
although it is evaluated at N ¼ 1, we will still refer to it
as the twist two spin three anomalous dimension.
When the power-law behavior of the jet function (34) in

N ¼ 4 SYM is inserted into the factorization formula (6),
the z dependence can be factored out of the integral. We
therefore find that in N ¼ 4 SYM, the z → 0 asymptotics
can be written as a simple power law,

ΣðzÞ ¼ 1

2
CðαsÞzγN¼4

J ðαsÞ; ð36Þ

as is expected for the scaling behavior of a CFT. This
simple power law should be contrasted with the more
complicated behavior in a non-CFT, for example Eq. (33).
The N ¼ 4 result can also be written as a power series in
ln z, which is given at NNLL in the Appendix.
To further simplify the quantity γN¼4

J appearing in
Eq. (36), we can combine Eq. (35) with the reciprocity
relation between timelike and spacelike anomalous dimen-
sions [34,36–39],2

2γN¼4
S ðN; αsÞ ¼ 2γN¼4

T ðN þ 2γN¼4
S ; αsÞ; ð37Þ

to find that

γN¼4
J ðαsÞ ¼ γN¼4

S ð1; αsÞ: ð38Þ

In other words, the scaling evolution of the jet function is
governed by the universal anomalous dimension of the
spacelike twist two spin three operator. Furthermore, as
mentioned above, in a CFT the anomalous dimensions of
spacelike twist-two operators are positive, guaranteeing
that the resummed result for the differential cross section is
integrable in the z → 0 limit. The spacelike twist-two
anomalous dimensions are particularly convenient since
they are anomalous dimensions of local operators. In
N ¼ 4 SYM, they can be computed up to a remarkable
seven loops [59,65–75], and numerically at finite coupling
using the quantum spectral curve [76–79].
It is quite remarkable that the timelike dynamics of a jet

can be described by the anomalous dimension of local
operators, at least in a CFT. This was first observed in
Ref. [4] and has been studied in Refs. [17,18] using the
light-ray operator formalism [19,20], and also in Ref. [22]
using a Mellin-based approach. Here we have shown how
the reciprocity relation provides a connection between this
framework and the more standard timelike splitting picture
used to study the dynamics of jets in QCD. Alternatively,
the equivalence of the results of [17,18,22], which are
naturally expressed in terms of spacelike data, and our
results, which are naturally expressed in terms of timelike
data, allow for a proof of the reciprocity relation, Eq. (37),
for one value of the Mellin moment. We believe that further
studies of the relationship between the spacelike and
timelike approaches could provide a better understanding
of reciprocity relations.
The constant CðαsÞ in Eq. (36) is given by

CðαsÞ¼ 1−
CAαs
π

þ
�
11

4
ζ4−3ζ2þ7

��
CAαs
π

�
2

þOðα3sÞ;

ð39Þ
and the spacelike anomalous dimension is given by

γN¼4
S ð1; αsÞ ¼

CAαs
π

þ
�
−
ζ3
2
þ ζ2 − 2

��
CAαs
π

�
2

þ
�
3

2
ζ5 þ

3

8
ζ4 −

3

2
ζ3 − 4ζ2 þ 8

��
CAαs
π

�
3

þ
�
−
69

16
ζ7 þ

1

2
ζ2ζ5 −

5

16
ζ3ζ4 þ

9

4
ζ23 −

107

32
ζ6 þ 8ζ5 −

13

2
ζ2ζ3 −

23

8
ζ4 þ 7ζ3 þ 24ζ2 − 40

��
CAαs
π

�
4

þOðα5sÞ: ð40Þ

The expression for the spacelike anomalous dimension is nonstandard, since it has been continued to oddN [80]. The result
(40) agrees with an independent computation [18,22].
TheOðα2sÞ term in CðαsÞwas extracted from the sum rule (3), using an analysis of the back-to-back limit [22,50], and the

bulk integral computed from the NLO result [7],

2Note that the term reciprocity is sometimes used to refer to the fact that the anomalous dimensions of a CFT are functions of the
conformal spin [36,38] which was proven to all orders in perturbation theory [63]. Here we use reciprocity in a stronger sense, namely
that when expressed in terms of the conformal spin, both the spacelike and timelike anomalous dimensions can be written in terms of the
same universal function [36,64], leading to the functional relation between the spacelike and timelike anomalous dimensions in Eq. (37)
[34,36–39]. To our knowledge, there does not exist an all orders proof of this relation, although, as mentioned in the text, the equivalence
of the results of [17,18,22] with those presented here allows it to be proven for one moment, N ¼ 1 in N ¼ 4 parlance.

COLLINEAR LIMIT OF THE ENERGY-ENERGY CORRELATOR PHYS. REV. D 100, 014009 (2019)

014009-9



1

σ0

Z
1

0

dz
dσN¼4;bulk

dz
¼ CAαs

2π
ðζ2 þ 1Þ

þ
�
CAαs
2π

�
2
�
−
31

2
ζ4 þ 6ζ2 − 14

�
þOðα3sÞ: ð41Þ

Note that in N ¼ 4 SYM, corrections to the total cross
section vanish to all orders for the standard source because
it is a protected operator. Also, unlike in QCD, it is not
necessary to distinguish the jet and hard contributions to the
δðzÞ term, because the coupling does not run and so it is the
same at the natural scales for both functions,

ffiffiffi
z

p
Q and Q.

Differentiating Eq. (36) with respect to z and expanding in
αs, we find complete agreement with all the α3s terms
appearing in the χ → 0 limit of the recent NNLO fixed-
angle result [9].
Recently it has become possible to use an OPE compu-

tation [81] to determine CðαsÞ toOðα3sÞ, i.e., N3LL, and the
back-to-back limit is also understood at this order [22]. The
sum rule (3) then predicts the next term in Eq. (41), which
can be computed [22] using the results of Ref. [9]. It would
be interesting to see whether the normalization coefficient,
CðαsÞ could be extracted to even higher orders, or even
exactly, using integrability.
Through at least three loops, anomalous dimensions of

twist two operators obey a principle of maximal tran-
scendentality [59,66,69,82]: The N ¼ 4 results are har-
monic sums with a uniform transcendental weight, 2L − 1
in Mellin space at L loops, and they can be extracted from
the QCD results by setting CF → CA and keeping only the
leading transcendental terms. This principle does not work
for the EEC at fixed angles, i.e., generic z; the leading
transcendental functions of z have different rational pre-
factors. In the back-to-back limit, z → 1, large spin
operators dominate, the N ¼ 4 SYM EEC has a uniform
weight, and the principle of maximal transcendentality
holds. In the collinear limit, z → 0, an operator of fixed spin
dominates, and the harmonic sums evaluate to rational
numbers that do not convey the weight information any-
more. Nevertheless, by comparing the N ¼ 4, N ¼ 1 and
QCD results for the EEC as z → 0, and counting ln z as
weight 1, we see that the terms of maximal transcendental
weight 2L − 1 are equal. This property is ultimately
inherited from the fixed-spin spacelike (or timelike) anoma-
lous dimensions.
We can also assess the other individual contributions to

the sum rule (3) that are of leading transcendentality, in this
case weight 2L. We first observe that the leading transcen-
dental terms in theN ¼ 4 bulk integral (41) agreewith those
in the QCD bulk expressions (23) and (24), after setting
CF → CA. The δðzÞ coefficients, which were used to fix jq2
and jg2, also have this property. The corrections to the total
cross section vanish in N ¼ 4 SYM, but not in QCD;
however, the QCD corrections have subleading transcen-
dentality. In other words, each of the four individual

contributions to the sum rule (3) appears to separately obey
a leading transcendentality principle, although only the
δð1 − zÞ term is of homogeneous weight in N ¼ 4 SYM.
We conclude this section by discussing to what extent

reciprocity can be used to organize the timelike evolution in
a nonconformal field theory. While the relation [38]

2γSðNÞ ¼ 2γTðN þ 2γSðNÞÞ; ð42Þ

is expected to hold in a nonconformal theory, the property
that only the N ¼ 3 moment contributes to the small-angle
EEC will not persist away from the conformal limit.
Consider for simplicity the case of pure Yang-Mills

theory, e.g., set nf ¼ 0 for the gluonic source of Higgs
decay. We make an ansatz for the evolved gluon jet function
that incorporates the running coupling,

Jg

�
μ2

zQ2
; αsðμÞ

�

¼ CJðαsð
ffiffiffi
z

p
QÞÞ exp

�
−
Z

αsðμÞ

αsð
ffiffi
z

p
QÞ

dᾱs
γYMJ ðᾱs; zÞ
βðᾱsÞ

�
; ð43Þ

with βðαsÞ≡ dαsðμÞ=d ln μ2, in terms of an effective
anomalous dimension γYMJ ðαs; zÞ. Repeating the derivation
given in this section forN ¼ 4 SYM, one finds that to NLL
in ln z we have the relation,

2γYMJ ¼ 2γYMT

�
3þ 2γYMJ

1þ αsðQÞ
4π β0 ln z

�
: ð44Þ

Expanding in terms of β0 ≪ 1, using the reciprocity
relation of Eq. (42), and keeping only the terms to NLL,
one finds

γYMJ ¼ γYMS ð3Þ − γYMS ðNÞ∂Nγ
YM
S ðNÞjN¼3

×
αsðQÞ
4π

2β0 ln zþ � � � : ð45Þ

Therefore, in a non-CFT, one no longer needs just
γYMS ð3Þ, but also Mellin space derivatives around this
point with coefficients proportional to the β function.
We emphasize that γYMJ is the effective anomalous dimen-
sion defined by the ansatz (43), which is why it has explicit
z dependence.
It would be helpful to understand Eq. (45) from the

perspective of a weakly broken conformal field theory, as
well as to extend such a relation to the multiflavor case.
However, since in QCD the β function and the twist-two
anomalous dimensions are of the same order, this organi-
zation becomes increasingly complicated at higher orders
(This was clearly illustrated in Sec. VI where for the case of
N ¼ 1 SYM the β function exactly canceled the running
from the twist-two anomalous dimension at LL.). Another
complication is that the couplings in the jet function and the
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hard function are naturally evaluated at different scales,
namely αsð

ffiffiffi
z

p
QÞ and αsðQÞ, and it would be nice to

explore how this arises from the spacelike perspective. We
leave these directions to future work.

VIII. CONCLUSIONS

In this paper we have presented a factorization
formula which describes the collinear limit χ → 0 of the
EEC observable. This formula applies in a conformal or
asymptotically free QFT, and is formulated in terms of the
timelike data of the theory. For QCD andN ¼ 1 SYM, we
computed the EEC to NNLL, extending the previously
known jet calculus resummation at LL. In the particular
case of a CFT, which here we took as N ¼ 4 SYM, we
have shown how spacelike-timelike reciprocity allows the
result to be written as a single power law with the spacelike
N ¼ 3 moment, providing a connection with the approach
of Ref. [4]. We have also emphasized the importance of the
sum rule in Eq. (3), which allows the singular behavior in
the χ → 0 and χ → 1 limits to be related to information in
the bulk region of the EEC distribution.
There are a number of directions that would be interest-

ing to pursue. First, for phenomenological applications, due
to the large corrections observed at NNLL in QCD, it
would be helpful to perform the resummation at N3LL.
This would allow the EEC to be described by N3LL
resummation of large logarithms at both z→0 and z→1
end points, combined with NNLO fixed order results in the
bulk of the distribution. One of the ingredients for resum-
ming the z → 0 limit at N3LL is the set of N ¼ 3 values of
the N3LO twist-two timelike anomalous dimensions, which
should be obtainable from the spacelike ones using
reciprocity. At present, the nonsinglet N3LO spacelike
anomalous dimensions are available for arbitrary Mellin
moment in the large Nc limit, and approximately for the
subleading-in-Nc terms [83]. A few moments of the singlet
anomalous dimensions are available [84], which might
already allow for an approximate determination. It will also
be necessary to compute the hard functions at this order.
The three-loop jet functions may then be extractable using
the sum rule for

R
1
0 dzð1 − zÞdσ=dz [22], if the Higgs EEC

can be computed numerically at NNLO for generic angles.
Finally, in order to use such N3LL results in a precision
extraction of the strong coupling, αs, a good understanding
of the nonperturbative corrections in the collinear limit will
be required.
On the more formal side, it would be beneficial to

explore to what extent reciprocity can shed light on the
EEC in QCD, including both the effect of the running
coupling, and multiple flavors. Reciprocity has also been
observed at higher twist [85,86], and it would be interesting
to extend our timelike factorization formula to higher
powers in the z expansion and to understand the role
that reciprocity plays at subleading powers. A better

understanding might enable timelike dynamics to be related
to local operators, which could then potentially allow them
to be computed nonperturbatively on the lattice. It would
also be interesting to better understand the relation between
the timelike factorization approach presented in this paper,
and the recent approaches of Refs. [17,18,22,87].
Finally, our factorization formula, with the same jet

functions but modified hard functions, also applies to
small-angle energy correlations that can be measured at
a hadron collider such as the LHC. Observables similar to
the EEC are commonly used in jet substructure [88–92] (for
a review see Ref. [93]). Note that the EEC, unlike typical
event classifiers, produces a distribution of values even
for a single event. In this context, the EEC provides an
interesting example of a single logarithmic jet substructure
observable that is directly sensitive to the collinear structure
of jets, and is naturally insensitive to soft radiation. Figure 2
exhibits the different behavior of the EEC for quark
and gluon jets. We therefore believe that the theoretical
simplicity of the EEC in the collinear limit, and its relation
to well known field-theoretic quantities, will enable further
advances in our understanding of the substructure of jets.
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APPENDIX: ADDITIONAL
PERTURBATIVE DATA

In this appendix, we collect several additional results
related to the perturbative behavior of the EEC in the
collinear limit for N ¼ 4, N ¼ 1 SYM and QCD.

1. N = 4 SYM

While the power law form of (36) is natural from
the perspective of a CFT, for comparison with our
results in QCD and N ¼ 1 SYM, it is interesting to also
write the N ¼ 4 SYM result as a power series in ln z.
We find
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z
σ0

dσ
dz

¼
X∞
L¼1

�
CAαs
π

�
L lnL−1z
2ðL − 1Þ! −

X∞
L¼2

�
CAαs
π

�
L lnL−2z
22ðL − 2Þ! ½ðL − 1Þðζ3 − 2ζ2Þ þ 2ð2L − 1Þ�

−
X∞
L¼3

�
CAαs
π

�
L lnL−3z
24ðL − 3Þ! ½ðL − 2ÞðL − 3Þðζ23 − 4ζ2ζ3Þ þ 12ðL − 2Þζ5 þ ð10L2 − 47Lþ 76Þζ4

þ 8ðL − 2ÞðL − 4Þζ3 − 8ð2L2 − 5Lþ 5Þζ2 þ 8ð2L2 − 1Þ� þOðαLs lnL−4zÞ: ðA1Þ

Unlike the result for the nonconformalN ¼ 1 SYM theory in (33), theN ¼ 4 SYM result is a pure power series in ln z and
does not involve 1=ð1þ β0as ln zÞ terms which give rise to the Landau pole. In N ¼ 4 SYM, this series seems convergent
for all values of z.

2. N = 1 SYM

In the text we presented the form of the N ¼ 1 SYM result to NNLL as

ΣN¼1
NNLLðzÞ ¼ cS1 þ cS2 ln zþ cS3

ln z
1þ β0as ln z

þ cS4 ln½1þ β0as ln z� þ cS5 ln

�
1 − 2CAas

ln½1þ β0as ln z�
1þ β0as ln z

�
; ðA2Þ

where β0 ¼ 3CA and the coefficients cSi depend on the source. Here we collect the coefficients cγi ðαsÞ for an eþe− source
and cHi for a Higgs source, in the MS scheme. We find

cH1 ¼ 1

2
þ 69

8
aþ a2

�
22ζ4 − 66ζ3 −

95

3
ζ2 þ

81949

432

�
;

cγ1 ¼
1

2
þ 13

24
aþ a2

�
22ζ4 − 44ζ3 þ

22

9
ζ2 þ

2911

162

�
;

cH2 ¼ 3

2
aþ a2

�
−4ζ3 þ

3163

72

�
þ a3

�
16

3
ζ23 þ 24ζ5 þ 16ζ2ζ3 − 72ζ4 −

5656

27
ζ3 −

797

6
ζ2 þ

1071895

972

�
;

cγ2 ¼
3

2
aþ a2

�
−4ζ3 þ

1417

72

�
þ a3

�
16

3
ζ23 þ 24ζ5 þ 16ζ2ζ3 − 72ζ4 −

2128

27
ζ3 −

61

2
ζ2 þ

1136527

3888

�
;

cγ3 ¼ cH3 ¼ a3
�
−
16

3
ζ23 þ 24ζ5 þ 16ζ2ζ3 − 342ζ4 þ

6097

27
ζ3 þ

1243

6
ζ2 −

406067

1944

�
;

cH4 ¼ a

�
4ζ2 −

11

3

�
þ a2

�
4ζ2 −

11

3

��
−
8

3
ζ3 þ

3163

108

�
;

cγ4 ¼ a

�
4ζ2 −

11

3

�
þ a2

�
4ζ2 −

11

3

��
−
8

3
ζ3 þ

1417

108

�
;

cH5 ¼ −a
�
4ζ2 −

11

3

�
2

− a2
�
4ζ2 −

11

3

��
−
8

3
ζ3 þ

3163

108

�
;

cγ5 ¼ −a
�
4ζ2 −

11

3

�
2

− a2
�
4ζ2 −

11

3

��
−
8

3
ζ3 þ

1417

108

�
; ðA3Þ

where a≡ CAas ¼ CAαs=ð4πÞ. From these results, we can
clearly see that the leading transcendental pieces are
equal for the two sources, and they are also equal to the
leading transcendental pieces in N ¼ 4 SYM. [Note that
one cannot drop all the β function terms in Eq. (A2) in

checking this statement.] In N ¼ 4 SYM, the result is
independent of the source, as long as it is in the stress
energy supermultiplet [60,61]; however, in N ¼ 1 SYM,
this is no longer the case. It would be interesting to better
understand the differences.
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3. QCD

To iteratively solve the evolution equation for the jet
function in Eq. (10), we require the N ¼ 3 moments of the
timelike splitting functions, as well as certain logarithmic
moments of the splitting functions, which occur when the
equation is iterated to higher order. For convenience, in this
appendix we collect all moments required to achieve NNLL
accuracy, aswell as the constants in the relevant hard functions.
We expand the timelike splitting functions perturba-

tively as

PijðxÞ ¼
X∞
L¼0

�
αs
4π

�
Lþ1

PðLÞ
ij ðxÞ; ðA4Þ

and we denote the N ¼ 3moment, which is relevant for the
evolution of the EEC, by

γðLÞT;ij ¼ −
Z

1

0

dxx2PðLÞ
ij ðxÞ: ðA5Þ

To NNLL, we need the N ¼ 3 moment at LO, NLO and
NNLO, which can be obtained from Refs. [28–31]. (Note
that we include the pure singlet term in the qq element.) At
LO, we have

γð0ÞT;qq ¼
25

6
CF; γð0ÞT;gq ¼ −

7

6
CF;

γð0ÞT;qg ¼ −
7

15
nf; γð0ÞT;gg ¼

14

5
CA þ 2

3
nf: ðA6Þ

At NLO, we have

γð1ÞT;qq ¼
�
−16ζ3 þ 24ζ2 −

1693

48

�
C2
F þ

�
8ζ3 −

86

3
ζ2 þ

459

8

�
CACF −

5453

1800
CFnf;

γð1ÞT;gq ¼
�
28

3
ζ2 −

2977

432

�
C2
F þ

�
−
14

3
ζ2 −

39451

5400

�
CACF;

γð1ÞT;qg ¼
�
28

15
ζ2 þ

619

2700

�
CAnf −

833

216
CFnf −

4

25
n2f;

γð1ÞT;gg ¼
�
−8ζ3 þ

52

15
ζ2 þ

2158

675

�
C2
A þ

�
−
16

3
ζ2 þ

3803

1350

�
CAnf þ

12839

5400
CFnf: ðA7Þ

At NNLO, we have

γð2ÞT;qq ¼
�
112ζ5 þ 48ζ2ζ3 −

2083

3
ζ4 þ

16153

18
ζ3 −

13105

72
ζ2 −

3049531

31104

�
CFC2

A

þ
�
−432ζ5 − 208ζ2ζ3 þ

8252

3
ζ4 −

19424

9
ζ3 −

16709

27
ζ2 þ

20329835

15552

�
C2
FCA

þ
�
416ζ5 þ 224ζ2ζ3 −

6172

3
ζ4 þ

10942

9
ζ3 þ

11797

18
ζ2 −

17471825

15552

�
C3
F

þ
�
68

3
ζ4 −

5803

45
ζ3 þ

146971

2700
ζ2 −

25234031

1944000

�
CACFnf þ

�
−
136

3
ζ4 þ

8176

45
ζ3 −

9767

225
ζ2 −

4100189

64800

�
C2
Fnf

−
105799

162000
CFn2f;

γð2ÞT;gq ¼
�
196

3
ζ4 −

2791

90
ζ3 −

50593

600
ζ2 −

17093053

777600

�
CFC2

A þ
�
511

3
ζ4 −

3029

9
ζ3 þ

123773

900
ζ2 þ

63294389

388800

�
C2
FCA

þ
�
−308ζ4 þ

2533

9
ζ3 þ

3193

54
ζ2 −

647639

3888

�
C3
F þ

�
182

9
ζ3 −

73

27
ζ2 þ

246767

60750

�
CACFnf

þ
�
−
28

9
ζ3 þ

4

9
ζ2 −

419593

81000

�
C2
Fnf;
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γð2ÞT;qg ¼
�
−
252

5
ζ4 þ

343

45
ζ3 þ

239959

13500
ζ2 −

1795237

1944000

�
C2
Anf þ

�
−
42

5
ζ4 þ

6208

75
ζ3 þ

34127

1350
ζ2 −

3607891

38880

�
CACFnf

þ
�
448

15
ζ4 −

26102

225
ζ3 −

2042

225
ζ2 þ

9397651

97200

�
C2
Fnf þ

�
−
28

9
ζ3 −

554

135
ζ2 þ

1215691

121500

�
CAn2f

þ
�
2738

675
ζ2 −

10657

4050

�
CFn2f −

172

1125
n3f;

γð2ÞT;gg ¼
�
96ζ5 þ 64ζ2ζ3 −

2566

15
ζ4 −

23702

225
ζ3 þ

66358

1125
ζ2 −

5819653

486000

�
C3
A

þ
�
104ζ4 þ

239

9
ζ3 −

51269

540
ζ2 −

12230737

1944000

�
C2
Anf

þ
�
282

5
ζ3 −

16291

675
ζ2 −

1700563

108000

�
CACFnf þ

�
−
28

9
ζ3 þ

2411

675
ζ2 þ

219077

194400

�
C2
Fnf

þ
�
−
64

9
ζ3 þ

160

27
ζ2 −

18269

10125

�
CAn2f þ

�
−
196

135
ζ2 −

2611

162000

�
CFn2f: ðA8Þ

Beyond LL, due to the appearance of ln y in the jet function on the right-hand side of the RG equation (10), one encounters
the same moments of the splitting functions, but weighted by additional logarithms,

∂n
Nγ

ðLÞ
T;ij ¼ −

Z
1

0

dxx2 lnn xPðLÞ
ij ðxÞ: ðA9Þ

We have used this notation since these logarithmic moments correspond to Mellin space derivatives, evaluated at N ¼ 3,
namely Z

1

0

dxxN−1 lnn xPðLÞ
ij ðxÞ ¼ ∂n

∂Nn

Z
1

0

dxxN−1PðLÞ
ij ðxÞ: ðA10Þ

We also use the shorthand _γ ≡ ∂Nγ and ̈γ ≡ ∂2
Nγ. To NNLL, we require the first and second logarithmic moments of the LO

splitting functions, and the first logarithmic moments of the NLO splitting functions. The logarithmic moments of the LO
splitting functions are

_γð0ÞT;qq ¼
�
4ζ2 −

385

72

�
CF; _γð0ÞT;gq ¼

49

72
CF; _γð0ÞT;qg ¼

119

900
nf; _γð0ÞT;gg ¼

�
4ζ2 −

4319

900

�
CA;

γ̈ð0ÞT;qq ¼
�
−8ζ3 þ

3979

432

�
CF; γ̈ð0ÞT;gq ¼ −

331

432
CF; γ̈ð0ÞT;qg ¼ −

2353

27000
nf; γ̈ð0ÞT;gg ¼

�
−8ζ3 þ

230353

27000

�
CA: ðA11Þ

The first logarithmic moments of the NLO splitting functions are

_γð1ÞT;qq ¼
�
−56ζ4 −

158

3
ζ3 þ

385

18
ζ2 þ

152863

1728

�
C2
F þ

�
−12ζ4 þ

41

3
ζ3 þ

307

6
ζ2 −

35785

432

�
CFCA

þ
�
16

3
ζ3 −

40

9
ζ2 −

101923

108000

�
CFnf;

_γð1ÞT;gq ¼
�
−
49

3
ζ3 þ

59

6
ζ2 þ

956963

108000

�
CFCA þ

�
14ζ3 −

275

18
ζ2 þ

8053

1728

�
C2
F;

_γð1ÞT;qg ¼
�
42

5
ζ3 −

92

75
ζ2 −

1460321

162000

�
CAnf þ

�
−
28

3
ζ3 þ

178

225
ζ2 þ

46663

4320

�
CFnf þ

�
−
28

45
ζ2 þ

18451

20250

�
n2f;

_γð1ÞT;gg ¼
�
−68ζ4 −

686

15
ζ3 þ

15338

225
ζ2 þ

3642257

162000

�
C2
A þ

�
32

3
ζ3 −

40

9
ζ2 −

137323

20250

�
CAnf −

58247

108000
CFnf: ðA12Þ
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We also record the hard function constants at
μ ¼ Q that are required for the eþe− annihilation and
Higgs decay processes, extracted from Refs. [29–31].
Again the N ¼ 3 moment is required at the first order
the hard coefficient appears, and integrals weighted
with additional powers of ln x, again denoted by dots,
appear at subsequent logarithmic orders. The Born level
hard function does not require dots because it is a delta
function at x ¼ 1, and

R
1
0 dxx

2 lnn xδð1 − xÞ ¼ 0 for n > 0.

The coefficients required for eþe− annihilation are
defined asZ

1

0

dxx2Hq;gðx; μ ¼ QÞ ¼
X∞
L¼0

�
αs
4π

�
L
hq;gL ;

Z
1

0

dxx2 ln xHq;gðx; μ ¼ QÞ ¼
X∞
L¼1

�
αs
4π

�
L
_hq;gL ; ðA13Þ

and so on. The ones needed to NNLL are given by

hq0 ¼
1

2
; hg0 ¼ 0; hq1 ¼

131

16
CF; hg1 ¼ −

71

48
CF;

hq2 ¼
�
16ζ4 −

293

3
ζ3 −

83

2
ζ2 þ

2386397

10368

�
CACF þ

�
−32ζ4 þ

254

3
ζ3 þ

1751

72
ζ2 −

1105289

20736

�
C2
F

þ
�
4ζ3 þ

59

60
ζ2 −

8530817

432000

�
CFnf;

hg2 ¼
�
−
19

3
ζ3 þ

47

45
ζ2 −

29802739

1296000

�
CACF þ

�
31

3
ζ3 þ

523

72
ζ2 −

674045

20736

�
C2
F;

_hq1 ¼
�
10ζ3 þ

61

12
ζ2 −

5303

288

�
CF; _hg1 ¼

�
−

7

12
ζ2 þ

31

16

�
CF: ðA14Þ

We denote the coefficients required for the Higgs EEC with a capital H instead of a small h; they are given by

Hq
0 ¼ 0; Hg

0 ¼
1

2
; Hq

1 ¼ −
163

200
nf; Hg

1 ¼
5107

300
CA −

79

60
nf;

Hq
2 ¼

�
2743

450
ζ2 −

845983

25920

�
CAnf þ

�
14

15
ζ3 −

73

36
ζ2 −

575293

51840

�
CFnf þ

�
−
28

45
ζ2 þ

44396

10125

�
n2f;

Hg
2 ¼

�
−16ζ4 −

469

15
ζ3 −

12314

225
ζ2 þ

19217009

36000

�
C2
A þ

�
−
26

3
ζ3 þ

137

15
ζ2 −

33580213

324000

�
CAnf

þ
�
12ζ3 −

49

180
ζ2 −

20736797

1296000

�
CFnf þ

�
−
4

9
ζ2 þ

30719

8100

�
n2f;

_Hq
1 ¼

�
−

7

30
ζ2 þ

4999

9000

�
nf; _Hg

1 ¼
�
10ζ3 þ

76

15
ζ2 −

1905163

108000

�
CA þ

�
−
1

3
ζ2 þ

5269

10800

�
nf: ðA15Þ

ComparedwithRefs. [29–31], we require an overall factor of
1=2 in three cases (hq,Hq andHg), and 1=4 in the fourth case
(hg). The factor ofEiEj=Q2 in the definition of the EECgives
rise to a factor of 1=4 because partons with Born kinematics
have Ei ¼ Ej ¼ Q=2. However, in most cases there is an

additional factor of 2 because, for example, quarks and
antiquarks are summed in the EEC, and are usually consid-
ered separately in fragmentation. Also, for eþe−, becausewe
integrate over the incoming beamorientation, we use the sum
of the transverse (T) and longitudinal (L) hard functions.

[1] C. L. Basham, L. S. Brown, S. D. Ellis, and S. T. Love,
Phys. Rev. Lett. 41, 1585 (1978).

[2] C. L. Basham, L. S. Brown, S. D. Ellis, and S. T. Love,
Phys. Rev. D 19, 2018 (1979).

[3] M.-x. Luo, V. Shtabovenko, T.-Z. Yang, and H. X. Zhu,
J. High Energy Phys. 06 (2019) 037.

[4] D. M. Hofman and J. Maldacena, J. High Energy Phys. 05
(2008) 012.

COLLINEAR LIMIT OF THE ENERGY-ENERGY CORRELATOR PHYS. REV. D 100, 014009 (2019)

014009-15

https://doi.org/10.1103/PhysRevLett.41.1585
https://doi.org/10.1103/PhysRevD.19.2018
https://doi.org/10.1007/JHEP06(2019)037
https://doi.org/10.1088/1126-6708/2008/05/012
https://doi.org/10.1088/1126-6708/2008/05/012


[5] A. V. Belitsky, S. Hohenegger, G. P. Korchemsky, E.
Sokatchev, and A. Zhiboedov, Nucl. Phys. B884, 305
(2014).

[6] A. V. Belitsky, S. Hohenegger, G. P. Korchemsky, E.
Sokatchev, and A. Zhiboedov, Nucl. Phys. B884, 206
(2014).

[7] A. V. Belitsky, S. Hohenegger, G. P. Korchemsky, E.
Sokatchev, and A. Zhiboedov, Phys. Rev. Lett. 112,
071601 (2014).

[8] L. J. Dixon, M.-X. Luo, V. Shtabovenko, T.-Z. Yang, and
H. X. Zhu, Phys. Rev. Lett. 120, 102001 (2018).

[9] J. M. Henn, E. Sokatchev, K. Yan, and A. Zhiboedov,
arXiv:1903.05314.

[10] I. Moult and H. X. Zhu, J. High Energy Phys. 08 (2018)
160.

[11] A. Gao, H. T. Li, I. Moult, and H. X. Zhu, arXiv:
1901.04497.

[12] V. Del Duca, C. Duhr, A. Kardos, G. Somogyi, and Z.
Trócsányi, Phys. Rev. Lett. 117, 152004 (2016).

[13] V. Del Duca, C. Duhr, A. Kardos, G. Somogyi, Z. Szőr, Z.
Trócsányi, and Z. Tulipánt, Phys. Rev. D 94, 074019 (2016).

[14] Z. Tulipánt, A. Kardos, and G. Somogyi, Eur. Phys. J. C 77,
749 (2017).

[15] D. de Florian and M. Grazzini, Nucl. Phys. B704, 387
(2005).

[16] A. Kardos, S. Kluth, G. Somogyi, Z. Tulipánt, and A.
Verbytskyi, Eur. Phys. J. C 78, 498 (2018).

[17] D. Simmons-Duffin, P. Kravchuk, and A. Zhiboedov, Semi-
nars (2018 and 2019), http://online.kitp.ucsb.edu/online/
polchinski_c18/simmonsduffin/.

[18] M. Kologlu, P. Kravchuk, D. Simmons-Duffin, and A.
Zhiboedov, arXiv:1905.01311.

[19] P. Kravchuk and D. Simmons-Duffin, J. High Energy Phys.
11 (2018) 102.

[20] M. Kologlu, P. Kravchuk, D. Simmons-Duffin, and A.
Zhiboedov, arXiv:1904.05905.

[21] K. Konishi, A. Ukawa, and G. Veneziano, Nucl. Phys.
B157, 45 (1979).

[22] G. P. Korchemsky, arXiv:1905.01444.
[23] K. Konishi, A. Ukawa, and G. Veneziano, Phys. Lett. 78B,

243 (1978).
[24] K. Konishi, A. Ukawa, and G. Veneziano, Phys. Lett. 80B,

259 (1979).
[25] J. Kalinowski, K. Konishi, P. N. Scharbach, and T. R.

Taylor, Nucl. Phys. B181, 253 (1981).
[26] D. G. Richards, W. J. Stirling, and S. D. Ellis, Phys. Lett.

119B, 193 (1982).
[27] P. J. Rijken and W. L. van Neerven, Nucl. Phys. B487, 233

(1997).
[28] A. Mitov and S. Moch, Nucl. Phys. B751, 18 (2006).
[29] A. Mitov, S. Moch, and A. Vogt, Phys. Lett. B 638, 61

(2006).
[30] S. Moch and A. Vogt, Phys. Lett. B 659, 290 (2008).
[31] A. A. Almasy, S. Moch, and A. Vogt, Nucl. Phys. B854, 133

(2012).
[32] S. D. Drell, D. J. Levy, and T.-M. Yan, Phys. Rev. 187, 2159

(1969).
[33] V. N. Gribov and L. N. Lipatov, Yad. Fiz. 15, 781 (1972)

[Sov. J. Nucl. Phys. 15, 438 (1972)].
[34] A. H. Mueller, Nucl. Phys. B228, 351 (1983).

[35] J. Blumlein, V. Ravindran, and W. L. van Neerven, Nucl.
Phys. B586, 349 (2000).

[36] Yu. L. Dokshitzer, G. Marchesini, and G. P. Salam, Phys.
Lett. B 634, 504 (2006).

[37] G. Marchesini, in Proceedings, 41st Rencontres de Moriond,
2006 QCD and High Energy Hadronic Interactions: La
Thuile, Val d’Aoste, Italy, 2006 (2006), pp. 137–142.

[38] B. Basso and G. P. Korchemsky, Nucl. Phys. B775, 1
(2007).

[39] Yu. L. Dokshitzer and G. Marchesini, Phys. Lett. B 646, 189
(2007).

[40] V. N. Gribov and L. N. Lipatov, Yad. Fiz. 15, 1218 (1972)
Sov. J. Nucl. Phys. 15, 675 (1972).

[41] R. L. Jaffe and X.-D. Ji, Nucl. Phys. B375, 527 (1992).
[42] C. W. Bauer, S. Fleming, and M. E. Luke, Phys. Rev. D 63,

014006 (2000).
[43] C. W. Bauer, S. Fleming, D. Pirjol, and I. W. Stewart, Phys.

Rev. D 63, 114020 (2001).
[44] C. W. Bauer and I. W. Stewart, Phys. Lett. B 516, 134

(2001).
[45] C. W. Bauer, D. Pirjol, and I. W. Stewart, Phys. Rev. D 65,

054022 (2002).
[46] J. M. Campbell and E.W. N. Glover, Nucl. Phys. B527, 264

(1998).
[47] S. Catani and M. Grazzini, Nucl. Phys. B570, 287 (2000).
[48] P. A. Baikov, K. G. Chetyrkin, J. H. Kühn, and J. Rittinger,

Phys. Rev. Lett. 108, 222003 (2012).
[49] F. Herzog, B. Ruijl, T. Ueda, J. A. M. Vermaseren, and A.

Vogt, J. High Energy Phys. 08 (2017) 113.
[50] T.-Z. Yang (to be published).
[51] S. Ferrara, R. Gatto, and A. F. Grillo, Phys. Rev. D 9, 3564

(1974).
[52] G. Mack, Commun. Math. Phys. 55, 1 (1977).
[53] J. C. Collins and D. E. Soper, Nucl. Phys. B193, 381 (1981);

B213, 545(E) (1983).
[54] G. Korchemsky and A. Radyushkin, Nucl. Phys. B283, 342

(1987).
[55] T. Banks and A. Zaks, Nucl. Phys. B196, 189 (1982).
[56] J. A. Gracey, Phys. Lett. B 322, 141 (1994).
[57] E. Gardi, J. High Energy Phys. 02 (2005) 053.
[58] A. V. Belitsky, D. Müller, and A. Schäfer, Phys. Lett. B 450,

126 (1999).
[59] A. V. Kotikov, L. N. Lipatov, A. I. Onishchenko, and V. N.

Velizhanin, Phys. Lett. B 595, 521 (2004); 632, 754(E)
(2006).

[60] G. P. Korchemsky and E. Sokatchev, J. High Energy Phys.
12 (2015) 133.

[61] A. V. Belitsky, S. Hohenegger, G. P. Korchemsky, and E.
Sokatchev, Nucl. Phys. B904, 176 (2016).

[62] Y. Hatta, J. High Energy Phys. 11 (2008) 057.
[63] L. F. Alday, A. Bissi, and T. Lukowski, J. High Energy

Phys. 11 (2015) 101.
[64] Y. L. Dokshitzer, V. A. Khoze, and S. I. Troian, Phys. Rev. D

53, 89 (1996).
[65] A. V. Kotikov and L. N. Lipatov, Nucl. Phys. B769, 217

(2007).
[66] A. V. Kotikov and L. N. Lipatov, Nucl. Phys. B661, 19

(2003); 685, 405(E) (2004).
[67] A. V. Kotikov, L. N. Lipatov, and V. N. Velizhanin, Phys.

Lett. B 557, 114 (2003).

LANCE J. DIXON, IAN MOULT, and HUA XING ZHU PHYS. REV. D 100, 014009 (2019)

014009-16

https://doi.org/10.1016/j.nuclphysb.2014.04.020
https://doi.org/10.1016/j.nuclphysb.2014.04.020
https://doi.org/10.1016/j.nuclphysb.2014.04.019
https://doi.org/10.1016/j.nuclphysb.2014.04.019
https://doi.org/10.1103/PhysRevLett.112.071601
https://doi.org/10.1103/PhysRevLett.112.071601
https://doi.org/10.1103/PhysRevLett.120.102001
http://arXiv.org/abs/1903.05314
https://doi.org/10.1007/JHEP08(2018)160
https://doi.org/10.1007/JHEP08(2018)160
http://arXiv.org/abs/1901.04497
http://arXiv.org/abs/1901.04497
https://doi.org/10.1103/PhysRevLett.117.152004
https://doi.org/10.1103/PhysRevD.94.074019
https://doi.org/10.1140/epjc/s10052-017-5320-9
https://doi.org/10.1140/epjc/s10052-017-5320-9
https://doi.org/10.1016/j.nuclphysb.2004.10.051
https://doi.org/10.1016/j.nuclphysb.2004.10.051
https://doi.org/10.1140/epjc/s10052-018-5963-1
http://online.kitp.ucsb.edu/online/polchinski_c18/simmonsduffin/
http://online.kitp.ucsb.edu/online/polchinski_c18/simmonsduffin/
http://online.kitp.ucsb.edu/online/polchinski_c18/simmonsduffin/
http://online.kitp.ucsb.edu/online/polchinski_c18/simmonsduffin/
http://online.kitp.ucsb.edu/online/polchinski_c18/simmonsduffin/
http://arXiv.org/abs/1905.01311
https://doi.org/10.1007/JHEP11(2018)102
https://doi.org/10.1007/JHEP11(2018)102
http://arXiv.org/abs/1904.05905
https://doi.org/10.1016/0550-3213(79)90053-1
https://doi.org/10.1016/0550-3213(79)90053-1
http://arXiv.org/abs/1905.01444
https://doi.org/10.1016/0370-2693(78)90015-1
https://doi.org/10.1016/0370-2693(78)90015-1
https://doi.org/10.1016/0370-2693(79)90212-0
https://doi.org/10.1016/0370-2693(79)90212-0
https://doi.org/10.1016/0550-3213(81)90352-7
https://doi.org/10.1016/0370-2693(82)90275-1
https://doi.org/10.1016/0370-2693(82)90275-1
https://doi.org/10.1016/S0550-3213(96)00669-4
https://doi.org/10.1016/S0550-3213(96)00669-4
https://doi.org/10.1016/j.nuclphysb.2006.05.018
https://doi.org/10.1016/j.physletb.2006.05.005
https://doi.org/10.1016/j.physletb.2006.05.005
https://doi.org/10.1016/j.physletb.2007.10.069
https://doi.org/10.1016/j.nuclphysb.2011.08.028
https://doi.org/10.1016/j.nuclphysb.2011.08.028
https://doi.org/10.1103/PhysRev.187.2159
https://doi.org/10.1103/PhysRev.187.2159
https://doi.org/10.1016/0550-3213(83)90329-2
https://doi.org/10.1016/S0550-3213(00)00422-3
https://doi.org/10.1016/S0550-3213(00)00422-3
https://doi.org/10.1016/j.physletb.2006.02.023
https://doi.org/10.1016/j.physletb.2006.02.023
https://doi.org/10.1016/j.nuclphysb.2007.03.044
https://doi.org/10.1016/j.nuclphysb.2007.03.044
https://doi.org/10.1016/j.physletb.2007.01.016
https://doi.org/10.1016/j.physletb.2007.01.016
https://doi.org/10.1016/0550-3213(92)90110-W
https://doi.org/10.1103/PhysRevD.63.014006
https://doi.org/10.1103/PhysRevD.63.014006
https://doi.org/10.1103/PhysRevD.63.114020
https://doi.org/10.1103/PhysRevD.63.114020
https://doi.org/10.1016/S0370-2693(01)00902-9
https://doi.org/10.1016/S0370-2693(01)00902-9
https://doi.org/10.1103/PhysRevD.65.054022
https://doi.org/10.1103/PhysRevD.65.054022
https://doi.org/10.1016/S0550-3213(98)00295-8
https://doi.org/10.1016/S0550-3213(98)00295-8
https://doi.org/10.1016/S0550-3213(99)00778-6
https://doi.org/10.1103/PhysRevLett.108.222003
https://doi.org/10.1007/JHEP08(2017)113
https://doi.org/10.1103/PhysRevD.9.3564
https://doi.org/10.1103/PhysRevD.9.3564
https://doi.org/10.1007/BF01613145
https://doi.org/10.1016/0550-3213(81)90339-4
https://doi.org/10.1016/0550-3213(87)90277-X
https://doi.org/10.1016/0550-3213(87)90277-X
https://doi.org/10.1016/0550-3213(82)90035-9
https://doi.org/10.1016/0370-2693(94)90502-9
https://doi.org/10.1088/1126-6708/2005/02/053
https://doi.org/10.1016/S0370-2693(99)00146-X
https://doi.org/10.1016/S0370-2693(99)00146-X
https://doi.org/10.1016/j.physletb.2004.05.078
https://doi.org/10.1016/j.physletb.2005.11.002
https://doi.org/10.1016/j.physletb.2005.11.002
https://doi.org/10.1007/JHEP12(2015)133
https://doi.org/10.1007/JHEP12(2015)133
https://doi.org/10.1016/j.nuclphysb.2016.01.008
https://doi.org/10.1088/1126-6708/2008/11/057
https://doi.org/10.1007/JHEP11(2015)101
https://doi.org/10.1007/JHEP11(2015)101
https://doi.org/10.1103/PhysRevD.53.89
https://doi.org/10.1103/PhysRevD.53.89
https://doi.org/10.1016/j.nuclphysb.2007.01.020
https://doi.org/10.1016/j.nuclphysb.2007.01.020
https://doi.org/10.1016/S0550-3213(03)00264-5
https://doi.org/10.1016/S0550-3213(03)00264-5
https://doi.org/10.1016/j.nuclphysb.2004.02.032
https://doi.org/10.1016/S0370-2693(03)00184-9
https://doi.org/10.1016/S0370-2693(03)00184-9


[68] Z. Bajnok, R. A. Janik, and T. Lukowski, Nucl. Phys. B816,
376 (2009).

[69] A. V. Kotikov, L. N. Lipatov, A. Rej, M. Staudacher, and
V. N. Velizhanin, J. Stat. Mech. (2007) P10003.

[70] V. N. Velizhanin, Nucl. Phys. B885, 772 (2014).
[71] V. N. Velizhanin, arXiv:1411.1331.
[72] T. Lukowski, A. Rej, and V. N. Velizhanin, Nucl. Phys.

B831, 105 (2010).
[73] V. N. Velizhanin, J. High Energy Phys. 06 (2014)

108.
[74] C. Marboe, V. Velizhanin, and D. Volin, J. High Energy

Phys. 07 (2015) 084.
[75] C. Marboe and V. Velizhanin, J. High Energy Phys. 11

(2016) 013.
[76] N. Gromov, V. Kazakov, S. Leurent, and D. Volin, Phys.

Rev. Lett. 112, 011602 (2014).
[77] N. Gromov, V. Kazakov, S. Leurent, and D. Volin, J. High

Energy Phys. 09 (2015) 187.
[78] N. Gromov, F. Levkovich-Maslyuk, G. Sizov, and S.

Valatka, J. High Energy Phys. 07 (2014) 156.
[79] N. Gromov, F. Levkovich-Maslyuk, and G. Sizov, J. High

Energy Phys. 06 (2016) 036.

[80] A. V. Kotikov and V. N. Velizhanin, arXiv:hep-ph/0501274.
[81] B. Eden, arXiv:1207.3112.
[82] A. V. Kotikov and L. N. Lipatov, arXiv:hep-ph/0112346.
[83] S. Moch, B. Ruijl, T. Ueda, J. A. M. Vermaseren, and A.

Vogt, J. High Energy Phys. 10 (2017) 041.
[84] A. Vogt, F. Herzog, S. Moch, B. Ruijl, T. Ueda, and J. A. M.

Vermaseren, Proc. Sci., LL2018 (2018) 050.
[85] M. Beccaria, Yu. L. Dokshitzer, and G. Marchesini, Phys.

Lett. B 652, 194 (2007).
[86] G. Macorini and M. Beccaria, arXiv:1009.5559.
[87] A. Belin, D.M. Hofman, and G. Mathys, arXiv:1904.05892.
[88] A. J. Larkoski, G. P. Salam, and J. Thaler, J. High Energy

Phys. 06 (2013) 108.
[89] A. J. Larkoski, I. Moult, and D. Neill, J. High Energy Phys.

12 (2014) 009.
[90] A. J. Larkoski, I. Moult, and D. Neill, J. High Energy Phys.

05 (2016) 117.
[91] I. Moult, L. Necib, and J. Thaler, J. High Energy Phys. 12

(2016) 153.
[92] P. T. Komiske, E. M. Metodiev, and J. Thaler, J. High

Energy Phys. 04 (2018) 013.
[93] A. J. Larkoski, I.Moult, andB.Nachman, arXiv:1709.04464.

COLLINEAR LIMIT OF THE ENERGY-ENERGY CORRELATOR PHYS. REV. D 100, 014009 (2019)

014009-17

https://doi.org/10.1016/j.nuclphysb.2009.02.005
https://doi.org/10.1016/j.nuclphysb.2009.02.005
https://doi.org/10.1088/1742-5468/2007/10/P10003
https://doi.org/10.1016/j.nuclphysb.2014.06.021
http://arXiv.org/abs/1411.1331
https://doi.org/10.1016/j.nuclphysb.2010.01.008
https://doi.org/10.1016/j.nuclphysb.2010.01.008
https://doi.org/10.1007/JHEP06(2014)108
https://doi.org/10.1007/JHEP06(2014)108
https://doi.org/10.1007/JHEP07(2015)084
https://doi.org/10.1007/JHEP07(2015)084
https://doi.org/10.1007/JHEP11(2016)013
https://doi.org/10.1007/JHEP11(2016)013
https://doi.org/10.1103/PhysRevLett.112.011602
https://doi.org/10.1103/PhysRevLett.112.011602
https://doi.org/10.1007/JHEP09(2015)187
https://doi.org/10.1007/JHEP09(2015)187
https://doi.org/10.1007/JHEP07(2014)156
https://doi.org/10.1007/JHEP06(2016)036
https://doi.org/10.1007/JHEP06(2016)036
http://arXiv.org/abs/hep-ph/0501274
http://arXiv.org/abs/1207.3112
http://arXiv.org/abs/hep-ph/0112346
https://doi.org/10.1007/JHEP10(2017)041
https://doi.org/10.1016/j.physletb.2007.07.016
https://doi.org/10.1016/j.physletb.2007.07.016
http://arXiv.org/abs/1009.5559
http://arXiv.org/abs/1904.05892
https://doi.org/10.1007/JHEP06(2013)108
https://doi.org/10.1007/JHEP06(2013)108
https://doi.org/10.1007/JHEP12(2014)009
https://doi.org/10.1007/JHEP12(2014)009
https://doi.org/10.1007/JHEP05(2016)117
https://doi.org/10.1007/JHEP05(2016)117
https://doi.org/10.1007/JHEP12(2016)153
https://doi.org/10.1007/JHEP12(2016)153
https://doi.org/10.1007/JHEP04(2018)013
https://doi.org/10.1007/JHEP04(2018)013
http://arXiv.org/abs/1709.04464

