
 

Probing the Sivers asymmetries through J=ψ photoproduction
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In this paper we probe the Sivers asymmetries through J=ψ photoproduction in p↑p collision within
the nonrelativistic QCD framework, based on the color-octet model and the transverse-momentum-
dependent parton distributions (TMDs). Both the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution
and TMD evolution are included. The intensity and sign of the Sivers asymmetry are strongly
dependent upon the evolution model used to investigate the gluon Sivers function (GSF). Sizable
asymmetries are obtained as a function of the rapidity, logðxγÞ, or logðxgÞ using a recent para-
metrization of the GSF at the RHIC and AFTER@LHC experiments with the planned LHC forward-
detector acceptances.
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I. INTRODUCTION

Transverse spin physics can be studied in high-energy
processes that involve polarized hadrons. This allows us to
investigate the polarized quark and gluon structure of
hadrons and provide information on the three-dimensional
structure of nucleons. The study of transverse spin physics
can give more details about QCD dynamics at high energy
scales, therefore and is of strong interest and highly
motivating.
Transverse single-spin asymmetries (SSAs) is a topic

in spin physics that has drawn a lot of attention for quite
some time [1,2]. SSAs appear in scattering processes
when one of the colliding protons is transversely polarized
and scatters off of an unpolarized proton or hadron target
with respect to the scattering plane. A possible explanation
for the presence of SSAs is known as the Sivers effect,
was proposed many years ago [3]. It considers the non-
perturbative quantum correlation between the transverse
momentum of partons and the polarization vector of the
nucleon, which can be described within the framework
of the generalized parton model (GPM) [4,5]. In the GPM,
the inclusive cross section can be written as a convolu-
tion of the QCD partonic cross sections, the transverse-
momentum-dependent parton distribution functions
(TMD-PDFs), and the transverse-momentum-dependent

fragmentation functions (TMD-FFs), wherein the
PDFs and FFs depend on the intrinsic momentum k⊥
as well as the momentum fraction variable x. For more
details, see references in Refs. [4–12] regarding the
theoretical aspects of understanding the origin of
SSAs. There has been significant experimental progress
in the measurement of the Sivers effects by the
HERMES [13–15], COMPASS [16–20], JLAB [21,22],
and RHIC [23] collaborations. The experimental data
released by these collaborations has allowed the extrac-
tion of the Sivers functions for u and d quarks [24–27].
The gluon Sivers function (GSF) has been extracted
from semi-inclusive deep-inelastic scattering (SIDIS)
processes, but it still remains poorly measured. An
indirect estimation of the GSF exists, which was
obtained in Ref. [28] within the GPM framework by
fitting the midrapidity data on SSAs in π0 production
at RHIC.
The quarkonium production process is a useful tool that

is used to probe gluons inside hadrons [29] through single
photoproductions of J=ψ . More recently and more impor-
tantly, the study of J=ψ formation has been theoretically
carried out in electron-proton [25,30–33] and proton-
proton (pp) [34,35] collisions. The GSF and linearly
polarized gluon distribution [36,37] have been studied at
length. The mechanism of quarkonium creation out of two
heavy quarks is a nonperturbative process and is treated in
terms of different models, including nonrelativistic QCD
(NRQCD) factorization [38] which was chosen because
it has effectively explained J=ψ photoproduction at the
Tevatron [39,40], along with data from J=ψ photoproduc-
tion at HERA [41–44]. In NRQCD, the production and
decay of heavy quarkonium are split into two steps. To start

*haosun@mail.ustc.edu.cn; haosun@dlut.edu.cn

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 100, 014007 (2019)

2470-0010=2019=100(1)=014007(15) 014007-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.100.014007&domain=pdf&date_stamp=2019-07-08
https://doi.org/10.1103/PhysRevD.100.014007
https://doi.org/10.1103/PhysRevD.100.014007
https://doi.org/10.1103/PhysRevD.100.014007
https://doi.org/10.1103/PhysRevD.100.014007
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


with, a heavy quark-antiquark pair is perturbatively built at
short distances, which is obtained out by an expansion in
the strong coupling constant αs. Then, the pair nonpertur-
batively evolves into quarkonium at a long distance. The
short-distance coefficients are calculated perturbatively by
the projection technique and the long-distance matrix
elements (LDMEs) are extracted from the experimental
data. The LDMEs scale is expanded in powers of the
typical heavy-quark (or antiquark) velocity v in the
quarkonium rest frame [45]. Therefore, the NRQCD
factorization can be thought of as a doubly expanded
expression in terms of v as well as αs. As a matter of fact,
the asymmetry is very receptive to the production mecha-
nism. On the one hand, in pp collisions through a γg
subcollision, the final-state interactions with the heavy
quark and antiquark are neutralized among themselves
when the pair is produced in a color-singlet configuration,
giving a zero asymmetry. On the other hand, one gets a
nonzero asymmetry when the pair is produced in a color-
octet configuration [46].
To follow up on the understanding of the origin of the

Sivers effect, numerous theoretical studies of different key
processes have been performed in the context of ep↑

collisions (such as heavy-quark pair and dijet production
[33], inelastic J=ψ photoproduction [47], and eþ p↑ →
eþ J=ψ þ X [30,48,49]), as well as pp↑ scattering (for
instance, pp↑ → hþ X [50]), D-meson production [34,51],
back-to-back jet correlations [52], etc. Even so, a great
deal of insufficiencies have been pointed out regarding the
failure of certain interactions to quantify the gluon Sivers
function, which can be attributed to the problem of TMD-
factorization-breaking contributions [53], some features of
which have been partially probed. A plan to study standard
model physics using the forward detector to allow for the
search of new physics signals was suggested by the
FP420 R&D Collaboration in 2009 [54]. To reach this
new realm of interest, detectors in the LHC tunnel need to be
readjusted so as to precisely measure very forward protons.
The forward-detector equipment is relevant for the study of
photoproduction processes which can exclude many serious
backgrounds, and forward proton tagging could give a clean
signal of new physics domains. Moreover, the proton-proton
collision data would offer knowledge about unexplored
phase-space areas. Three different forward-detector accep-
tances are given as 0.1 < ξ < 0.5, 0.0015 < ξ < 0.5, and
0.015 < ξ < 0.15, and the entire range of the forward-
detector acceptance without any cut is 0 < ξ < 1. Among
the hadronic collisions, the processes with one single J=ψ
and one intact unpolarized hadron emitting a photon in the
final state would, in any case, be a safe way [28] to measure
the GSF with forward-detector acceptances. Henceforth,
single heavy quarkonium productions are considered to
be clean probes of the GSF.
In this paper, we delve into the possibility of utilizing

single charmonium production to obtain evidence on the

Sivers function with the forward-detector acceptance
together with the presentation of predictions for SSAs
through the process hp↑ → hγp↑ → hQþ X where h is an
unpolarized hadron (in our case, a proton). The asymmetry
has been assessed by employing the NRQCD framework
within the color-octet model owing to the vanishing color-
octet contribution in the aforementioned pp collision.
The unpolarized cross section of single J=ψ production
has been calculated to estimate the denominator of SSAs.
The rapidity distribution of SSAs has been estimated in
Ref. [55] in Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) evolution using the color evaporation model
(CEM), and we extend this work to TMD evolution using
the NRQCD approach. The yJ=ψ , logðxγÞ, logðxgÞ, and pJ=ψ

T
distributions are evaluated at the forward detector in the
present work and considerable asymmetries are observed in
NRQCD compared to those in the CEM.
We give estimates of the asymmetry for forthcoming

suggested experiments at AFTER@LHC (which is a fixed-
target experiment with

ffiffiffi
s

p ¼ 115 GeV) and for
ffiffiffi
s

p ¼ 200,
500 GeV which will be surveyed at the RHIC with
planned LHC forward-detector acceptances. Two up-to-
date extractions [26,28] are used to determine the gluon
Sivers function from the SSA data in pp collisions at the
RHIC. The paper is structured as follows. Single J=ψ
photoproduction with forward proton tagging by using
NRQCD and the SSAs in DGLAP evolution along with
TMD evolution are presented in Sec. II. In Sec. III, we give
both the input parameters and the numerical results.
Section IV is devoted to a summary and discussions.

II. CALCULATION FRAMEWORK

A. J=ψ photoproduction in p↑p collisions
with forward proton tagging

Strong electromagnetic fields are created when a
charged proton (p) or charged nucleus (A) moves close
to the speed of light (c). On the one hand, the photon
arising from the field of one of the two ultrarelativistic
and charged hadrons (p or A) can collide with one photon
of the other hadron (photon-photon process). On the other
hand, this photon can also directly interact with the other
hadron (photon-hadron process) [55]. The total cross
section of this process can be split into terms for the
equivalent flux of photons into the hadron projectile and
the photon-photon or photon-target cross section. At this
point, the photons presumably come from the unpolarized
hadron (p or A), which interacts with the transversely
polarized protons at high energies, generating a J=ψ and
dissociating the proton target.
In the case of pp↑ collisions, the process of interest can

be separated by tagging the unpolarized proton in the final
state, which is present when it emits the photon. We will
consider heavy quarkonium production in the NRQCD
factorization formalism. We refer to the heavy quarkonium
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J=ψ asQ. As a consequence, the hadronic cross section for
the hp↑ → hγp↑ → hQþ X process can be expressed as

σðhp↑ → hγp↑ → hQþ XÞ

¼
Z

dxγd2k⊥γfγ=hðxγ;k⊥γÞdxgd2k⊥gfg=p↑ðxg;k⊥g; μfÞ

×
X
n

σ̂ðγg → QQ̄½n� þ XÞh0jOJ=ψ
1;8 ½n�j0i; ð1Þ

where h0jOJ=ψ
1;8 ½n�j0i are the long-distance matrix elements,

which describe the hadronization of the heavy pair into
the physical observable quarkonium state J=ψ . σ̂ðγg →
QQ̄½n�Þ denotes the short-distance cross section for the
partonic process γg → QQ̄½n�, which is found by using the
covariant projection method. The Fock states n are given

as follows: 1S½8�0 , 3P½8�
0 , 3P½8�

2 for the γg → QQ̄½n� partonic
process. The final state (h) will be characterized by the
presence of one rapidity gap and an intact hadron, which
we assume to be the unpolarized one. Both aspects can be
used in principle to experimentally separate the vector
mesons produced by photon-induced interactions.
In our exploratory study here we will suppose that the

transverse-momentum dependence of the photon distribu-
tion can be described by a simple Gaussian form:

fγ=hðxγ;k⊥γÞ ¼ fγ=hðxγÞ
1

πhk2⊥γi
e−k

2⊥γ=hk2⊥γi; ð2Þ

where xγ is the energy fraction of the hadron carried by the
photon with transverse momentum k⊥γ and can be sym-

bolized by xγ ¼ Eγ

E, the ratio between the scattered low-Q2

photons Eγ and incoming energy E. fγ=hðξÞ represents
the effective photon density function which is defined
by the equivalent photon approximation [56,57] in our
computation:

fγ=hðξÞ ¼
Z

Q2
max

Q2
min

dNγðξÞ
dξdQ2

dQ2; ð3Þ

where dNγðξÞ
dξdQ2 is the spectrum of the quasireal photon

dNγðξÞ
dξdQ2

¼ α

π

1

ξQ2

�
ð1 − ξÞ

�
1 −

Q2
min

Q2

�
FE þ ξ2

2
FM

�
ð4Þ

with

Q2
min ¼

m2
pξ

2

1 − ξ
; FE ¼ 4m2

pG2
E þQ2G2

M

4m2
p þQ2

;

G2
E ¼ G2

M

μ2p
¼

�
1þQ2

Q2
0

�
−4
; FM ¼ G2

M; ð5Þ

where α is the fine-structure constant, μ2p ¼ 7.78 is the
magnetic moment of the proton,Q2

0 ¼ 0.71 GeV2,mp is its
mass, the value ofQ2

max is around 2 GeV2, and ξ represents
xγ . fg=p↑ð↓Þ ðxg;k⊥g; μfÞ stands for the number density of
gluons with light-cone momentum fraction xg and trans-
verse momentum k⊥g ¼ k⊥gðcosϕa; sinϕaÞ inside the
transversely polarized proton. The polarization of the
proton is up or down with respect to the production
plane, moving along the ẑ axis. Considering the partonic
process γðp1Þ þ gðp2Þ → QQ̄½n�ðp3Þ, the final total cross
section for the hp↑ → hγp↑ → hQþ X process can be
expressed as

σðhp↑ → hγp↑ → hQþ XÞ

¼
Z

π

s2xgx2γ

1

NcolNpol

X
jAS;Lj2fγ=hðxγ;k⊥γÞ

× fg=p↑ðxg;k⊥g; μÞÞh0jOJ=ψ
1;8 ½n�j0id2p3dxγd2k⊥γ;

ð6Þ

with xg fixed by xg ¼ m2
3T=ðsxγ) and k⊥γ fixed by

p3T − k⊥g. Here xγ is integrated in the region xγmin < xγ <
xγmax and xγmin (xγmax) is the lower (upper) limit of
forward-detector acceptance. mT is the transverse mass
of the particle, defined as mT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

T

p
. s and m are,

respectively, the square of the center-of-mass energy of
the collider and the mass of the particle. Similarly as in
photoproduction induced by electron-proton collisions,
we can define the z parameter z ¼ Ph · P3=Ph · qγ where
P and qγ are the momenta of the proton and virtual photon,
respectively. The data is taken in the elastic regime for the
γg → QQ̄½n� partonic process. Conversely, the inelastic
regime is commonly considered to be the area where z is
below 0.8 or 0.9. The elastic regime is considered to be the
area near z ¼ 1, which is exactly where we concentrate for
our study of J=ψ production.
The summation in Eq. (6) is taken over the spins and

colors of initial and final states, and the bar over the
summation denotes averaging over the spins and colors of
the initial parton.Ncol andNpol refer to the number of colors
and polarizations of states n, respectively. In the notation of
Ref. [58], we have

AQQ̄½1Sð1=8Þ0 � ¼ Tr½Cð1=8ÞΠ0A�q¼0;

AQQ̄½3Sð1=8Þ1 � ¼ ϵαTr½Cð1=8ÞΠα
1A�q¼0;

AQQ̄½1Pð1=8Þ
1 � ¼ ϵβ

d
dqβ

Tr½Cð1=8ÞΠ0A�q¼0;

AQQ̄½1Pð1=8Þ
J � ¼ ϵðJÞαβ

d
dqβ

Tr½Cð1=8ÞΠα
1A�q¼0; ð7Þ
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where A denotes the QCD amplitude with amputated
heavy-quark spinors, and the lower index q represents
the momentum of the heavy quark in the QQ̄ rest frame.
Π0=1 are spin projectors onto spin-singlet and spin-triplet
states,

Π0 ¼
1ffiffiffiffiffiffiffiffiffi
8m3

p
�
=P
2
− =q −m

�
γ5

�
=P
2
þ =qþm

�
;

Πα
1 ¼

1ffiffiffiffiffiffiffiffiffi
8m3

p
�
=P
2
− =q −m

�
γα
�
=P
2
þ =qþm

�
; ð8Þ

where P is the total momentum of the heavy quarkonium, q
is the relative momentum between the QQ̄ pair, and mQ is
the mass of the heavy quark. C1=8 are color-factor projectors
onto the color-singlet and color-octet states and can be
expressed as follows:

C1 ¼
δijffiffiffiffiffiffi
Nc

p ;

C8 ¼
ffiffiffi
2

p
Tc
ij; ð9Þ

where Nc is the number of colors, and Tc
ij is the generator

of SUðNcÞ. The summation over the polarization is given as

X
Jz

εαε
�
α0 ¼ Παα0 ;

X
Jz

ε0αβε
0�
α0β0 ¼

1

3
ΠαβΠα0β0 ;

X
Jz

ε1αβε
1�
α0β0 ¼

1

2
ðΠαα0Πββ0 − Παβ0Πα0βÞ;

X
Jz

ε2αβε
2�
α0β0 ¼

1

2
ðΠαα0Πββ0 þ Παβ0Πα0βÞ −

1

3
ΠαβΠα0β0 ; ð10Þ

where εα (εαβ) represents the polarization vector (tensor)

of the QQ̄ states, Παβ ¼ −gαβ þ PαPβ

M2 , and M is the heavy
quarkonium mass. The squared amplitudes for 2 → 1
partonic processes are presented as follows [59]:

X
jM½2Sþ1L½1;8�

J �j2 ¼ 1

NcolNpol

X
jAS;Lj2; ð11Þ

where

X
jM½1S½8�0 �j2 ¼ ð4πÞ2ααse2c

2M
;

X
jM½3P½8�

0 �j2 ¼ 6ð4πÞ2ααse2c
M3

;

X
jM½3P½8�

2 �j2 ¼ 8ð4πÞ2ααse2c
5M3

: ð12Þ

At low pJ=ψ
T , the heavy quarkonia is dominantly produced

at high-energy colliders via the color-octet channel. Finally,
we have

jMj2 ¼ ð4πÞ2e2cααs
�

1

2M
h0jOJ=ψ

8 ð1S0Þj0i

þ 6

M3
h0jOJ=ψ

8 ð3P0Þj0i þ
8

5M3
h0jOJ=ψ

8 ð3P2Þj0i
�
:

ð13Þ

B. Sivers asymmetry and parametrization
in DGLAP evolution

The transverse SSA for the process hþ p↑ → J=ψ þ X
is defined by

AN ¼ dσ↑ − dσ↓

dσ↑ þ dσ↓
¼ dΔσ

2dσ
; ð14Þ

where dσ↑ð↓Þ denotes the single-polarized cross section, in
which one of the protons in the initial state is polarized
along the transverse direction ↑ð↓Þ with respect to the
production plane. One has that the cross section for J=ψ
photoproduction is proportional to the number density of
gluons inside a proton with transverse polarization S⊥ and
momentum P. We choose the frame where the polarized
proton is moving along the z axis with momentum P and is
transversely polarized with S⊥ ¼ S⊥ðcosϕs; sinϕs; 0Þ. For
a general value of the transverse spin S⊥, it is parametrized
in terms of the GSF ΔNfg=p↑ as follows:

fg=p↑ðxg;k⊥g;S⊥;μÞ

¼ fg=pðxg;k⊥g;μÞþ
1

2
ΔNfg=p↑ðxg;k⊥g;μÞŜ⊥ · ðP̂× k̂⊥gÞ;

ð15Þ
where fg=pðxg; k⊥g; μÞ is the unpolarized TMD gluon
distribution. It is generally assumed that the unpolarized
gluon TMDs obey the Gaussian distribution at low-PT. The
spectra appear to have a Gaussian shape. The Gaussian
parametrization of an unpolarized TMD [24] that is
commonly and phenomenologically used is given by

fg=pðxg;k⊥g; μÞ ¼ fg=pðxg; μÞ
1

πhk2⊥i
e−k

2⊥=hk2⊥i: ð16Þ

Here fg=pðxg; μÞ is the normal collinear PDF, which is
measured at the scale μ. The collinear PDF obeys the
DGLAP scale evolution. There is no evolution for a nor-
malized Gaussian in the transverse momenta k⊥. The
transverse momentum of the initial gluon is k⊥g ¼
k⊥gðcosϕg; sinϕg; 0Þ, so that Ŝ⊥ ·ðP̂× k̂⊥gÞ¼ sinðϕg−ϕsÞ.
For numerical estimation we can take ϕs ¼ π=2. By
considering Eq. (6), we can write the numerator and
denominator of Eq. (14) as
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dσ↑

d2p3

−
dσ↓

d2p3

¼
Z

dxγd2k⊥γfγ=hðxγ;k⊥γÞ½fg=p↑ðxg;k⊥g; μÞ − fg=p↓ðxg;k⊥g; μÞ�
π

s2xgx2γ
jMj2 sinðϕ3 − ϕsÞ;

dσ↑

d2p3

þ dσ↓

d2p3

¼ 2

Z
dxγd2k⊥γfγ=hðxγ;k⊥γÞfg=pðxg;k⊥gÞ

π

s2xgx2γ
jMj2; ð17Þ

where sinðϕ3 − ϕsÞ is a weighted factor and ϕ3 and ϕs are the azimuthal angles of the J=ψ and proton spin, respectively.
We also have

ΔNfg=p↑ðxg;k⊥g; μÞ ¼ ½fg=p↑ðxg;k⊥g; μÞ − fg=p↓ðxg;k⊥g; μÞ� ¼ ΔNfg=p↑ðxg; k⊥g; μÞŜ⊥ · ðP̂ × k̂⊥gÞ: ð18Þ

The parametrization of the gluon Sivers function can be
described in the well-known Gaussian-like format as
follows:

ΔNfg=p↑ðxg;k⊥g;μÞ¼2NgðxgÞfg=pðxg;μÞhðk⊥gÞ
e−k

2⊥g=hk2⊥gi

πhk2⊥gi
;

ð19Þ

where

N gðxgÞ ¼ Ngxαgð1 − xgÞβ
ðαþ βÞαþβ

ααββ
ð20Þ

with jNgj ≤ 1 and

hðk⊥gÞ ¼
ffiffiffiffiffi
2e

p k⊥g

M1

e−k
2⊥g=M

2
1 : ð21Þ

Therefore, the k⊥g-dependent part of the Sivers function
can be expressed as follows:

hðk⊥gÞ
e−k

2⊥g=hk2⊥gi

πhk2⊥gi
¼

ffiffiffiffiffi
2e

p

π

ffiffiffiffiffiffiffiffiffiffiffi
1 − ρ

ρ

s
k⊥g

e−k
2⊥g=ρhk2⊥gi

hk2⊥gi3=2
; ð22Þ

where

ρ ¼ M2
1

hk2⊥gi þM2
1

: ð23Þ

Here Ng, α; β, and M1 are all parameters determined by
fits to data and e is Euler’s number. The two extractions of

the GSF, namely, SIDIS1 and SIDIS2, were obtained by
fitting to data. The numerical values of the free parameters
af, bf, and Nf have been estimated by a global fit of
single-spin asymmetry in SIDIS processes [26,28].
However, only the u and d quarks’ free parameters are
extracted [24] and the gluon parameters ag, bg, and Ng are
not known yet. To estimate SSAs we use two para-
metrizations to attain the best-fit parameters of the gluon
Sivers function [52],

ðaÞ N gðxÞ ¼
N uðxÞ þN dðxÞ

2
;

ðbÞ N gðxÞ ¼ N dðxÞ: ð24Þ

The best-fit parameters are tabulated in the following
section.
The above simplified expression, which we adopt for

both the unpolarized distribution and the Sivers function,
is known as the Gaussian factorization ansatz. It has been
favorably checked against the data in Drell-Yan [60] and
SIDIS processes [61]. However, it is still far less clear
whether it is a suitable method to the study DGLAP
evolution of TMDs. The factorization ansatz, which is
assumed to hold at an initial condition scale, is broken at
higher scales and the breaking increases with the evolution
range and with decreasing x [62]. In particular, it is
completely broken in the very low-x limit [63]. It was
also found that the DGLAP evolution approach may not
be able to describe the Z-boson high transverse momen-
tum distribution in Drell-Yan processes at CDF [64].
Nevertheless, to also explain high-PT data one has to
consider the TMD evolution approach, which we will study
in the following subsection.
The final expressions for the asymmetries can be written

in the DGLAP evolution formalism. By considering the
sinðϕ3 − ϕsÞ weighted factor, the numerator and denom-
inator terms of Eq. (14) are given by
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dσ↑

d2p3

−
dσ↓

d2p3

¼
Z

dxγd2k⊥γfγ=hðxγ;k⊥γÞfg=pðxg; μÞ

× 2NgðxÞ
ffiffiffiffiffi
2e

p

π

ffiffiffiffiffiffiffiffiffiffiffi
1 − ρ

ρ

s
k⊥g

e−k
2⊥g=ρhk2⊥gi

hk2⊥gi3=2
π

s2xgx2γ
jMj2 sinðϕ⊥g − ϕsÞ sinðϕ3 − ϕsÞ;

dσ↑

d2p3

þ dσ↓

d2p3

¼ 2

Z
dxγd2k⊥γfγ=hðxγ;k⊥γÞfg=pðxg; μÞ

1

πhk2⊥gi
e−k

2⊥g=hk2⊥gi π

s2xgx2γ
jMj2: ð25Þ

C. Sivers asymmetry and parametrization
in TMD evolution

Here, we study the TMD evolution approach. Since
TMDs depend on various energy scales, the TMD-PDF
fðx; k⊥; QÞ is best described through its Fourier transform
into coordinate space (an impact parameter b⊥ space),
which is given by

fðx; b⊥; QÞ ¼
Z

d2k⊥e−ik⊥·b⊥fðx; k⊥; QÞ; ð26Þ

with the inverse Fourier transformation

fðx; k⊥; QÞ ¼ 1

ð2πÞ2
Z

d2b⊥eik⊥·b⊥fðx; b⊥; QÞ: ð27Þ

The evolution of b⊥-space TMD-PDFs can then be
written as

fðx; b⊥; QfÞ ¼ fðx; b⊥; QiÞ × RPðQf;Qi; b�Þ
× RNPðQf;Qi; b⊥Þ; ð28Þ

where RP is the perturbatively calculable part of the
evolution kernel in the small-b⊥ region, and RNP is a
nonperturbative Sudakov factor in the large-b⊥ region
(probably obtained from the experimental data [65,66]).
To combine these regions, a matching procedure is
introduced with a parameter b⊥max serving as the
boundary between the two regions. Several different
prescriptions have appeared in the literature [67,68].
Here we adopt the original Collins-Soper-Sterman (CSS)
prescription [69–71],

b� ¼b⊥=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðb⊥=b⊥maxÞ2

q
; b⊥max<1=ΛQCD; ð29Þ

which allows a smooth transition from perturbative to
nonperturbative regions and avoids the Landau pole sin-
gularity in αsðμb⊥Þ. The typical value of b⊥max is chosen
around 1 GeV−1 to guarantee that b� is always in the
perturbative region.
In the small-b⊥ region, the TMD distributions at fixed

energy can be expressed as the convolution of the pertur-
batively calculable coefficients and the corresponding
collinear PDFs or the multiparton correlation functions.

Following Refs. [72,73], we choose an initial scale Qi ¼
c=b� to start the TMD evolution, where c ¼ 2e−γE and γE ≈
0.577 is the Euler-Mascheroni constant. Setting Qi ¼ c=b�
and Qf ¼ Q, the perturbative evolution kernel is given
by [72,74–79]

RPðQf;Qi; b�Þ

¼ exp

�
−
Z

Qf

c=b�

dμ0

μ0

�
Aðαsðμ0ÞÞ ln

�
Q2

f

μ02

�
þBðαsðμ0ÞÞ

��

×

�
Q2

f

Q2
i

�−Dðb;QiÞ
; ð30Þ

where A ¼ Γcusp and B ¼ γV , with dD
d log μ ¼ Γcusp. Γcusp and

γV are anomalous dimensions and can be expanded in
perturbative series of αs=π,

A ¼
X∞
n¼1

�
αs
π

�
n
An;

B ¼
X∞
n¼1

�
αs
π

�
n
Bn;

D ¼
X∞
n¼1

�
αs
π

�
n
Dn: ð31Þ

The expansion coefficients with the appropriate gluon
anomalous dimensions up to next-to-leading-logarithmic
(NLL) accuracy are [72,75,80–82]

A1 ¼ CA;

A2 ¼
1

2
CA

�
CA

�
67

18
−
π2

6

�
−
10

9
TRNf

�
;

B1 ¼ −
1

2

�
11

3
CA −

4

3
TRNf þ CAδc;8

�
;

D1 ¼
CA

2
log

Q2
i b

2�
c2

: ð32Þ

The Kronecker delta δc;8 derives from the interference of
the initial- and final-state soft gluon radiation in the color-
octet channel (c ¼ 8) and is absent in the color-singlet
channel (c ¼ 1) [83]. TheD term vanishes at NLL order by
choosing the initial scale Qi ¼ c=b�.
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The CSS resummation formalism suggests that the
nonperturbative functional is universal. Its role is similar
to that of the parton distribution function in any fixed-order
perturbative calculation, its origin is due to the long-
distance effects that are incalculable at present, and its
value must be determined from data. The general formula
for the nonperturbative function is given by

RNP
ij ðb⊥; Q; xA; xBÞ ¼ exp½− lnðQ2=Q2

0Þg1ðb⊥Þ
− gi=AðxA; b⊥Þ − gj=BðxB; b⊥Þ�;

ð33Þ

where the functions g1ðb⊥Þ, gi=AðxA; b⊥Þ, and gj=BðxB; b⊥Þ
must be extracted from data with the constraint that
RNP
ij ð0;Q;xA;xBÞ¼1. They should go to zero as b⊥ → 0.

xA and xB represent the longitudinal momentum fractions
of the incoming hadrons carried by the initial-state partons
(photon and gluon). The lnðQ2=Q2

0Þg1ðb⊥Þ dependence
comes from the infrared renormalon contributions which
is a certain pattern of perturbative expansions related to
the small- and large-momentum behavior [84]. Moreover,
g1ðb⊥Þ only depends on Q, whereas gi=AðxA; b⊥Þ and
gj=BðxB; b⊥Þ in general depend on xA or xB, and their
values can depend on the flavor of the initial-state partons.
The nonperturbative element of the evolution kernel cannot
be evaluated and a parametrized form has to be selected.
There are many extractions for the nonperturbative part
mentioned in literature inspired by Refs. [65,70] which are
widely used to parametrize RNP

ij ðb⊥; Q; xA; xBÞ for TMD
distributions. Four often-used types of functional forms are
defined as follows.
(1) The nonperturbative distribution introduced by

Davies, Webber, and Stirling (DWS) [85] is given by

RDWS
NP ðb⊥; Q; xA; xBÞ
¼ exp½−b2⊥ðg1 þ g2 lnðQ2=2Q2

0ÞÞ�; ð34Þ

where g1 and g2 are flavor-independent fitting
parameters. The DWS distribution has a pure
Gaussian form. The CSS b-space resummation
formalism with the DWS distribution offers a
reasonable description of the Drell-Yan data from
Fermilab experiment E288 at

ffiffiffi
s

p ¼ 27.4 GeV [86]
and CERN ISR experiment R209 at

ffiffiffi
s

p ¼ 67 GeV
[87,88].

(2) To incorporate a possible lnðxAxBÞ dependence that
is linear in b⊥, Landinsky and Yuan (LY) [89,90]
suggested a revised functional form for RNP

ij with an
extra parameter g3. The LY distribution is able to fit
the R209 Drell-Yan data and CDF data on W and Z
production from Fermilab and is given by

RLY
NPðb⊥;Q;xA;xBÞ ¼ exp½−b2⊥ðg1þ g2 lnðQ2=2Q2

0ÞÞ
þb⊥g1g3 lnð100xAxBÞ�: ð35Þ

The LY distribution does not have a pure Gaussian
form.

(3) Brock-Landry-Nadolsky-Yuan (BLNY) [64,90] per-
formed a much more extensive global fit to the
low-energy Drell-Yan data along with high-energy
W and Z data by using both the DWS and LY
parametrizations. The BLNY distribution is given by

RBLNY
NP ðb⊥; Q; xA; xBÞ
¼ exp½−b2⊥ðg1 þ g2 lnðQ2=2Q2

0Þ
þ g1g3 lnð100xAxBÞÞ�: ð36Þ

The LBLY distribution also has a pure Gaussian
form.

(4) Recently, the nonperturbative form factor RNP
ij of

BLNY associated with the unpolarized TMD-PDF
of the proton was simplified. The updated BLNYs
(UBLNYs) [64,83,91–93] are constructed and fitted
so as to describe the low-energy SIDIS and high-
energy Drell-Yan and Z production data. They can
establish the universality property of the TMD
distributions between DIS and Drell-Yan processes
[93]. The UBLNY in Ref. [64] was chosen and used
in Ref. [93] to study the unpolarized pp Drell-Yan
process,

RUBLNY
NP ðb⊥; Q; xA; xBÞ

¼ exp

�
−
�
g1b2⊥ þ g2 ln

b⊥
b�

ln
Q
Q0

þ g3b2⊥
��

x0
xA

�
λ

þ
�
x0
xB

�
λ
���

: ð37Þ

With the parametrization in Table I, Eq. (37) is
reduced to

RUBLNY
NP ðb⊥; Q; xA; xBÞ

¼ exp

�
−
�
g1
2
b2⊥ þ g2

2
ln
b⊥
b�

ln
Q
Q0

��
; ð38Þ

which has been used for all quark TMD-PDFs. In the
case of gluon TMD-PDFs, g2 should be multiplied
by a factor of CA=CF. In comparison to the quark
parametrization, the coefficient of the term propor-
tional to lnðQÞ is enhanced by a color factor, while
the intrinsic part is kept unchanged [94].

Combining the previous discussions and following
Ref. [72], one can expand the TMD fðx; b⊥QÞ at the
initial scale in terms of its corresponding collinear function
and keep only the leading-order term, which is just the
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collinear PDF. The TMD evolution equation of the unpo-
larized gluon TMD-PDF in terms of the collinear PDF in
b⊥ space is finally given by

fg=pðxg; b⊥; QÞ

¼ fg=pðxg; c=b�Þ × exp

�
−
Z

Q

c=b�

dμ0

μ0

�
A ln

�
Q2

μ02

�
þ B

��

× exp

�
−
�
g1
2
b2⊥ þ g2

2
ln
b⊥
b�

ln
Q
Q0

��
: ð39Þ

For the gluon Sivers function, its azimuth-dependent part
(in b⊥ space) in the so-called Trento convention [76] is

f⊥gðαÞ
1T ðxg; b⊥; QÞ ¼ 1

mp

Z
d2k⊥e−ik⊥·bkα⊥f

⊥g
1T ðxg; k2⊥; QÞ:

ð40Þ

Expanding this in b⊥ and keeping the leading term, we get

f⊥gðαÞ
1T ðxg; b⊥; QÞ ≃ −

ibα⊥
2mp

Z
d2k⊥jk⊥j2f⊥g

1T ðx; k2⊥; QÞ

¼ ibα⊥
2

Tg;Fðxg; xg; QÞ: ð41Þ

Here Tg;Fðxg; xg;QÞ [74,95,96] is the twist-3 Qiu-Sterman
quark-gluon correlation function, treated at the leading
order as a Sivers function. It is the first kT moment term of
the Sivers function and plays a significant role in the
theoretical description of transverse SSAs in the framework
of collinear factorization. Qiu-Sterman functions can also
determine the large transverse momentum tail of gluon
Sivers function. Considering Eq. (41) and the derivative of
the Sivers function in b⊥ space, we thus get

f0⊥g
1T ðxg; b⊥; QÞ ¼ ∂f⊥g

1T ðxg; b⊥Þ
∂b⊥

¼ −i
mpb⊥
bα⊥

f⊥gðαÞ
1T ðxg; b⊥; QÞ

≃
mpb⊥
2

Tg;Fðxg; xg; QÞ; ð42Þ

which satisfies the same evolution equation for the pertur-
bative part as the unpolarized TMD-PDF. For the non-
perturbative part, we follow Ref. [72] where the authors

proposed a Sudakov form factor in the evolution formalism,
which can lead to a good description of the transverse
momentum distribution for different processes such as
SIDIS, DY dilepton processes, and W=Z boson production
in pp collisions. The nonperturbative Sudakov form factor
SNP for the Sivers function has the form

RNP ¼ exp

�
−b2⊥

�
gSivers1 þ g2

2
ln

Q
Q0

��
ð43Þ

where the parameter gSivers1 related to the averaged intrinsic
transverse momenta squared gSivers1 ¼ hk2⊥siQ0

=4 ¼
0.071 GeV2, g2 is universal for all different types of
TMDs, is spin-independent [72], and equal to 1

2
g2 ¼

0.08 GeV2, and here Q0 ¼
ffiffiffiffiffiffiffi
2.4

p
GeV and bmax ¼

1.5 GeV−1. Thus, in the case of the Sivers function the
evolution of its derivative can be written in the form

f0⊥g
1T ðxg; b⊥; QfÞ

¼ f0⊥g
1T ðxg; b⊥; QiÞ exp

�
−
Z

Qf

Qi

dμ0

μ0

�
A ln

�
Q2

f

μ02

�
þ B

��

× exp

�
−b2⊥

�
gSivers1 þ g2

2
ln
Qf

Q0

��
: ð44Þ

Setting the initial scale Qi ¼ c=b� and Qf ¼ Q, we finally
have

f0⊥g
1T ðxg; b⊥; QÞ ¼ mpb⊥

2
Tg;Fðxg; xg; c=b�Þ

× exp

�
−
Z

Q

c=b�

dμ0

μ0

�
A ln

�
Q2

μ02

�
þ B

��

× exp

�
−b2⊥

�
gSivers1 þ g2

2
ln

Q
Q0

��
:

ð45Þ

Here the Qiu-Sterman function Tg;Fðxg; xg; QÞ can be
parametrized proportionally to the collinear PDF as

Tg;Fðxg; xg; QÞ ¼ NgðxgÞfg=pðxg; QÞ; ð46Þ

with NgðxgÞ defined in Eq. (20).
Therefore, the expressions for theTMDs ink⊥ space can be

obtained by Fourier transforming the b⊥-space expressions

TABLE I. Best-fit parameters of the nonperturbative Sudakov factor RNP.

RNP g1=GeV2 g2=GeV2 g3=GeV2 Q0=GeV bmax=GeV−1 x0 λ

DWS 0.15 0.4 2 0.5
LY 0.11 0.58 −1.5 1.6 0.5
BLNY 0.21 0.68 −0.12 1.6 0.5
UBLNY 0.212 0.84 0.0 1.5 1.5 0.01 0.2
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fg=pðxg; k⊥g; QÞ ¼ 1

2π

Z
∞

0

db⊥b⊥J0ðk⊥gb⊥Þfg=pðxg; b⊥; QÞ;

f⊥g
1T ðxg; k⊥g; QÞ ¼ −1

2πk⊥g

Z
∞

0

db⊥b⊥J1ðk⊥gb⊥Þf0⊥g
1T ðxg; b⊥; QÞ; ð47Þ

whereJ0=1 are the zeroth-/first-orderBessel functions of the first kind.Using the above expressions, the asymmetry including the
weighted factors sinðϕ3 − ϕsÞ can be written in the TMD evolution framework as follows:

dσ↑

d2p3

−
dσ↓

d2p3

¼
Z

dxγd2k⊥γfγ=hðxγ;k⊥γÞ

×
−1

2πk⊥g

Z
∞

0

db⊥b⊥J1ðk⊥gb⊥Þf0⊥g
1T ðx; b⊥; μÞ

−2k⊥g

mP

π

s2xgx2γ
jMj2 sinðϕ⊥g − ϕsÞ sinðϕ3 − ϕsÞ;

dσ↑

d2p3

þ dσ↓

d2p3

¼ 2

Z
dxγd2k⊥γfγ=hðxγ;k⊥γÞ

1

2π

Z
∞

0

db⊥b⊥J0ðk⊥gb⊥Þfg=pðxg; b⊥; μÞ
π

s2xgx2γ
jMj2: ð48Þ

III. NUMERICAL RESULTS

In this section we discuss the numerical results of
the photoproduction of J=ψ by using the physical para-
meters mp ¼ 0.94 GeV for the mass of the proton and
Q2

max ¼ 2 GeV. The mass of the heavy quark is chosen as
mc ¼ 1.548 GeV. The mass of J=ψ is set toM ¼ 2mc. The
colliding energies used in this paper are

ffiffiffi
s

p ¼ 115 GeV
(AFTER@LHC),

ffiffiffi
s

p ¼ 200 GeV (RHIC1), and
ffiffiffi
s

p ¼
500 GeV (RHIC2). CTEQ6L1 [97] is used for the PDF
which is probed at the factorization scale chosen as

μf ¼ MT , where mT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpQ

T Þ2 þm2
Q

q
is the mQ trans-

verse mass. The numerical values of the best-fit parameters
of the nonperturbative Sudakov factor are given in Table I.
The numerical values of the best-fit parameters for the
DGLAP and TMD evolutions [26,28,31,72] at Q0 ¼ffiffiffiffiffiffiffi
2.4

p
GeV are listed in Table II. The numerical evaluation

of the Sudakov factor in the large impact parameter
region at low transverse momentum is handled by the
introduction of a nonperturbative function in the CSS
resummation formalism. Numerical calculations are car-
ried out using an in-house Monte Carlo generator. From
Eq. (24), we symbolize the parametrizations (a) and (b)
as TMD-a and TMD-b, respectively. The choices for the
LDMEs for J=ψ are taken from Refs. [37,98] and shown

in Table III. For h0jOJ=ψ
8 ð3PJÞj0i with J ¼ 1,2, and

following the heavy-quark spin symmetry, we get the
relations

h0jOJ=ψ
8 ð3PJÞj0i ¼ ð2J þ 1Þh0jOJ=ψ

8 ð3P0Þj0i: ð49Þ

In the following, we investigate the Sivers asymmetries
through J=ψ photoproduction in p↑p collisions with
forward proton tagging. At our convenience, the Sivers
asymmetry for the different kinematic variables in the
DGLAP (TMD) evolution is displayed in Fig. 1 (Fig. 3)
as a function of pJ=ψ

T , yJ=ψ , logðxγÞ and logðxgÞ, respec-
tively, while in Fig. 2 (Fig. 4) it is only shown in terms of
yJ=ψ . Furthermore, in Fig. 5 we analyze the single-spin
asymmetry with Set I and Set II at

ffiffiffi
s

p ¼ 115 GeV
(AFTER@LHC) in order to get the SSA uncertainty from
charmonium production. The predicted SSAs are sequen-
tially fixed for the three distinct center-of-mass energiesffiffiffi
s

p ¼115GeV (AFTER@LHC),
ffiffiffi
s

p ¼200GeV (RHIC1),
and

ffiffiffi
s

p ¼ 500 GeV (RHIC2) in Figs. 1 and 3, whereas the
obtained SSAs in Figs. 2 and 4 are given for the center-of-
mass energy

ffiffiffi
s

p ¼ 115 GeV (AFTER@LHC). The con-
figuration of the figures is in this fashion: “SIDIS1” and
“SIDIS2” are the representations of the SSAs obtained in
the DGLAP evolution approach by taking into consider-
ation the two sets of best-fit parameters SIDIS1 and SIDIS2
using the GSF fit parameters from Ref. [28]; the “BV-a”TABLE II. Best-fit parameters of the Sivers function.

Na α β M2
1 GeV2 ρ hk2⊥i GeV2 Notation

g 0.65 2.8 2.8 0.687 0.25 SIDIS1
g 0.05 0.8 1.4 0.576 0.25 SIDIS2
u 0.18 1.0 6.6 0.8 0.57 BV-a
d −0.52 1.9 10.0 0.8 0.57 BV-b
u 0.106 1.051 4.857 0.38 TMD-a
d −0.163 1.552 4.857 0.38 TMD-b

TABLE III. Numerical values of the LDMEs.

h0jOJ=ψ
1;8 ð2Sþ1LJÞj0i Set I Set II

h0jOJ=ψ
8 ð1S0Þj0i=GeV3 8.9 × 10−2 9.7 × 10−2

h0jOJ=ψ
8 ð3P0Þj0i=GeV5 1.26 × 10−2 −2.14 × 10−2
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and “BV-b” plots are obtained by employing the fit
parameters from Ref. [26] fit parameters.
From the hard process calculation of cc̄ pair production

through the 2 → 1 partonic process, it has been noticed that
the Fock states are only produced in the color octet, that is
to say, the asymmetry arising from J=ψ formation will be
nonzero in the color-octet contribution and zero in the
singlet contribution [46]. The dΔσ involving the polarized
cross sections and 2dσ including the unpolarized ones of
Eq. (14) are computed when the initial heavy-quark pair
is produced in the color-octet state. Despite the different
shapes of the curves, the distinct kinematic variables in the

DGLAP evolution, and being in the factorization validity in
the range of xg, the SSA decreases as the experimental
center-of-mass energy increases. In the entire range of
the forward-detector acceptance 0 < ξ < 1, as shown in
Figs. 1 and 2, the SSA versus pJ=ψ

T , yJ=ψ , logðxγÞ, and
logðxgÞ plots have two regions of opposite signs (positive
and negative) as estimated by the SIDIS and BV param-
eters. The asymmetries as a function of pJ=ψ

T , yJ=ψ , logðxγÞ,
and logðxgÞ obtained using “SIDIS1” and “SIDIS2”
parameters are positive, whereas those obtained using
“BV-a” and “BV-b” parameters are negative. The sign of

FIG. 1. Single spin asymmetry in the pp↑ → pγp↑ → pQþ X process as a function of pJ=ψ
T (first column), yJ=ψ (second column),

logðxγÞ (third column), and logðxgÞ (fourth column) at
ffiffiffi
s

p ¼ 115 GeV (AFTER@LHC),
ffiffiffi
s

p ¼ 200 GeV (RHIC1), and
ffiffiffi
s

p ¼ 500 GeV
(RHIC2) using DGLAP (SIDIS1, SIDIS2, BV-a, and BV-b).

FIG. 2. Single spin asymmetry in the pp↑ → pγp↑ → pQþ X process as a function of yJ=ψ for 0.1 < ξ < 0.5 (left panel), 0.0015 <
ξ < 0.5 (middle panel), and 0.015 < ξ < 0.15 (right panel) at

ffiffiffi
s

p ¼ 115 GeV (AFTER@LHC) using DGLAP evolution (SIDIS1,
SIDIS2, BV-a, and BV-b).
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the asymmetry depends on the relative magnitude of Nu
and Nd and these have opposite sign, which can be
observed in Table I. The magnitude of NdðxgÞ is dominant
compared to NuðxgÞ, and as a result the asymmetry is
negative. Nevertheless, the magnitude and sign of the
asymmetry strongly depends on the modeling of the GSF.
As shown in Fig. 1, the obtained asymmetry as a function

of pJ=ψ
T using “BV-a” parameters is close to zero although

the center-of-mass energy is unequal, while the obtained
asymmetry as a function of yJ=ψ , logðxγÞ, and logðxgÞ using
“SIDIS2” parameters is close to zero despite the fact that
the center-of-mass energy is also different. The obtained
asymmetry as a function of pJ=ψ

T using “BV-b” parameters
is maximal around 5% at

ffiffiffi
s

p ¼ 115 GeV (AFTER@LHC).
We also note that the asymmetry yJ=ψ, logðxγÞ, and logðxgÞ
obtained using “SIDIS1” parameters has a maximum value
of around 12.5% for the three different experiments at the
LHC forward-detector acceptance. We have purposefully
focused on the fact that the peak SSA value is displaced
positively and negatively at the right along the yJ=ψ and
logðxgÞ axes, respectively, as

ffiffiffi
s

p
increases when the SSA is

presented as a function of the rapidity and logðxgÞ. This is
because there is a dependence between the gluon momen-
tum fraction and the rapidity given by the formula
xg ¼ Meþyffiffi

s
p , whereM is the mass of J=ψ . The proportionality

coefficient xαgð1 − xgÞβ or Sivers effect gives the ratio of the

SSA and the rapidity. Even though the same behavior is
observed in the SSA versus logðxγÞ plot, the left displace-
ment of the peak SSAvalue is negative along the axis as

ffiffiffi
s

p
increases. The reason is that there is also a linear correlation
between the photon momentum fraction and the forward-
detector acceptance ξ, and indirectly the SSA. The SSA
peak displacement values of the logðxγÞ and logðxgÞ
distributions are on the left and right, respectively, but
they remain negative. In DGLAP evolution, the yJ=ψ ,
logðxγÞ, and logðxgÞ distributions are more sensitive to

measurements of SSAs than that of pJ=ψ
T , which tends to

zero. We comment here that the Gaussian ansatz being
k⊥-dependence and factorized from x-dependence is not
suitable to study SSAs [93] in the low-xg region, and it
needs to be modified to survive [99,100] as we have
mentioned above.
In TMD evolution at the LHC forward-detector accep-

tance 0 < ξ < 1, as seen in Fig. 3, the asymmetry with
respect to pJ=ψ

T obtained using “TMD-a” parameters is zero
and positive, while the asymmetry obtained using “TMD-
b” parameters is also zero and negative. At curved lines,
the asymmetry slightly and positively (negatively) escapes
from zero using “TMD-a” (“TMD-b” parameters). Their
effects are diametrically opposite. As for the yJ=ψ , logðxγÞ,
and logðxgÞ distributions, the asymmetries are negative and
slightly diverge from zero. The asymmetries with regard

FIG. 3. Single spin asymmetry in the pp↑ → pγp↑ → pQþ X process as a function of pJ=ψ
T (first column), yJ=ψ (second column),

logðxγÞ (third column), and logðxgÞ (fourth column) at
ffiffiffi
s

p ¼ 115 GeV (AFTER@LHC),
ffiffiffi
s

p ¼ 200 GeV (RHIC1), and
ffiffiffi
s

p ¼ 500 GeV
(RHIC2) using TMD evolution (TMD-a and TMD-b).
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to pJ=ψ
T obtained using “TMD-a” and “TMD-b” parameters

are larger for the AFTER@LHC experiment (
ffiffiffi
s

p ¼
115 GeV). The displacement of the peak SSA value in
TMD evolution is almost similar to that in DGLAP
evolution for the plots of the obtained asymmetries versus
yJ=ψ , logðxγÞ, and logðxgÞ, and the asymmetry signs are
also the same for the “TMD-a” and “TMD-b” parametri-
zations corresponding to the “BV-a” and “BV-b” para-
metrizations. The predicted peak SSA value in DGLAP
evolution is around 12.5%, compared to that of TMD
evolution which is around 7.8%.
In Fig. 2, we notice that the behaviors of the SSA versus

yJ=ψ plots in the left and right panels are utterly different
due to the forward-detector acceptance range and DGLAP
parametrizations. The obtained asymmetry as a function of
yJ=ψ using “BV-b” parameters is negative, and it is positive
when we use “SIDIS2” and “SIDIS1” parameters for all
three forward-detector acceptances. The strangeness that
arises when we employ “BV-a” parameters comes from the
sign change of the SSA: it is positive for the left panel, and
negative for the middle and right panels. For the left and
right panels, the obtained asymmetries using “SIDIS1”
parameters are zero. In the right panel the asymmetry
obtained using “BV-a” parameters is zero, and in the
middle panel the asymmetry obtained using “SIDIS2”

parameters is also zero. In the middle panel, the asymmetry
as a function yJ=ψ obtained using “SIDIS1” parameters is
maximal around 12.5%.
In Fig. 4, the forward-detector acceptance range and

TMD parametrizations also influence the evaluated asym-
metries. The curves in the right and left panels exhibit
almost the same behavior, whereas the curve in the middle
panel (for the asymmetry obtained using “TMD-b” param-
eters) has a maximal value of around 7.8%; the asymme-
tries are negative when we use TMD parameters. The
asymmetries in the right and left panels using “TMD-a”
parameters are positive and lightly run from zero while for
“TMD-b” are negative and lightly diverge from zero, too.
The peak SSA values in the left and right panels of Figs. 2
and 4 occur at small rapidities, and the maxima and minima
of their peak SSA values are smaller than those in the
middle panels, which occur at large rapidities. The shapes,
signs, and values of the SSAs in both evolutions are
dissimilar because of their parametrizations.
From our calculation in Fig. 5, we show estimates of

the SSAs from two different LDMEs (Set I and Set II)
in DGLAP evolution as well as TMD evolution at

ffiffiffi
s

p ¼
115 GeV (AFTER@LHC) for the entire detector-
acceptance range. We find that the differences between
the SSAs for Set I and Set II are small, which means that the

FIG. 5. Comparison of the DGLAP SSA (left panel) and TMD SSA (right panel) evaluated using Set I and Set II in the pp↑ →
pγp↑ → pQþ X process as a function of yJ=ψ for 0 < ξ < 1 at

ffiffiffi
s

p ¼ 115 GeV (AFTER@LHC).

FIG. 4. Single spin asymmetry in the pp↑ → pγp↑ → pQþ X process as a function of yJ=ψ for 0.1 < ξ < 0.5 (left panel), 0.0015 <
ξ < 0.5 (middle panel), and 0.015 < ξ < 0.15 (right panel) at

ffiffiffi
s

p ¼ 115 GeV (AFTER@LHC) using TMD evolution (TMD-a and
TMD-b).
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analyzed uncertainties are also pretty small between the
two sets. Based on our numerical estimation, we find that
the uncertainties are of order 10−3 and are thus negligible;
this is understood from the fact that the SSAs are calculated
through the ratio of the polarized cross sections of J=ψ
photoproduction, to the unpolarized ones, and therefore the
uncertainties arising from charmonium production are
independent of the LDMEs or even the PDFs. The order
of uncertainty also remains small at

ffiffiffi
s

p ¼ 200 GeV
(RHIC1) and

ffiffiffi
s

p ¼ 500 GeV (RHIC2) as they are almost
independent of colliding energies.

IV. SUMMARY AND DISCUSSIONS

In this paper we have evaluated the magnitude of single-
spin asymmetries in the photoproduction of J=ψ by resorting
to the NRQCD approach, considering both DGLAP evolu-
tion and TMD evolution. Sizable asymmetries are predicted
as a function of yJ=ψ , logðxγÞ, and logðxgÞ, respectively. The
maximal value of the single-spin asymmetries is about

12.5% for DGLAP evolution and 7.8% for TMD evolution.
The minimum and maximum of the SSAs are almost
independent of energy. The obtained asymmetry as a
function of yJ=ψ and logðxgÞ and the obtained asymmetry
as a function of logðxγÞ show opposite displacement of their
peaks. We chose three different forward-detector accep-
tances, and found that 0.0015 < ξ < 0.5 is the region where
most of the SSA effects arise and could possibly detected
for both DGLAP and TMD evolutions with our choice of
parametrization. In summary, our results point out that the
magnitude of the asymmetries can be estimated by the
photoproduction of J=ψ with forward-detector acceptances
at the RHIC and AFTER@LHC experiments.

ACKNOWLEDGMENTS

H. S. is supported by the National Natural Science
Foundation of China (Grant No. 11675033) and by the
Fundamental Research Funds for the Central Universities
(Grant No. DUT18LK27).

[1] D. L. Adams et al. (E581 and E704 Collaboration), Phys.
Lett. B 261, 201 (1991).

[2] D. L. Adams et al. (FNAL-E704 Collaboration), Phys.
Lett. B 264, 462 (1991).

[3] D.W. Sivers, Phys. Rev. D 41, 83 (1990).
[4] X.-d. Ji, J.-P. Ma, and F. Yuan, Phys. Lett. B 597, 299

(2004).
[5] X.-d. Ji, J.-p. Ma, and F. Yuan, Phys. Rev. D 71, 034005

(2005).
[6] M. G. Echevarria, A. Idilbi, and I. Scimemi, J. High Energy

Phys. 07 (2012) 002.
[7] A. Bacchetta, M. Diehl, K. Goeke, A. Metz, P. J. Mulders,

and M. Schlegel, J. High Energy Phys. 02 (2007) 093.
[8] M. Anselmino, U. D’Alesio, and F. Murgia, Phys. Rev. D

67, 074010 (2003).
[9] D. Boer, Phys. Rev. D 60, 014012 (1999).

[10] S. Arnold, A. Metz, and M. Schlegel, Phys. Rev. D 79,
034005 (2009).

[11] D. Boer, R. Jakob, and P. J. Mulders, Nucl. Phys. B504,
345 (1997).

[12] M. Anselmino, M. Boglione, U. D’Alesio, A. Kotzinian,
F. Murgia, A. Prokudin, and C. Turk, Phys. Rev. D 75,
054032 (2007).

[13] A. Airapetian et al. (HERMES Collaboration), Phys. Rev.
Lett. 94, 012002 (2005).

[14] A. Airapetian et al. (HERMES Collaboration), Phys. Rev.
Lett. 103, 152002 (2009).

[15] A. Airapetian et al. (HERMES Collaboration), Phys. Lett.
B 728, 183 (2014).

[16] C. Adolph et al. (COMPASS Collaboration), Phys. Lett. B
717, 383 (2012).

[17] C. Adolph et al. (COMPASS Collaboration), Phys. Lett. B
736, 124 (2014).

[18] C. Adolph et al. (COMPASS Collaboration), Phys. Lett. B
770, 138 (2017).

[19] C. Adolph et al. (COMPASS Collaboration), Phys. Lett. B
772, 854 (2017).

[20] M. Aghasyan et al. (COMPASS Collaboration), Phys. Rev.
Lett. 119, 112002 (2017).

[21] X. Qian et al. (Jefferson Lab Hall A Collaboration), Phys.
Rev. Lett. 107, 072003 (2011).

[22] Y. X. Zhao et al. (Jefferson Lab Hall A Collaboration),
Phys. Rev. C 90, 055201 (2014).

[23] L. Adamczyk et al. (STAR Collaboration), Phys. Rev. Lett.
116, 132301 (2016).

[24] M. Anselmino, M. Boglione, U. D’Alesio, A. Kotzinian, F.
Murgia, and A. Prokudin, Phys. Rev. D 72, 094007 (2005);
72, 099903(E) (2005).

[25] M. Anselmino, V. Barone, and M. Boglione, Phys. Lett. B
770, 302 (2017).

[26] M. Anselmino, M. Boglione, U. D’Alesio, F. Murgia, and
A. Prokudin, J. High Energy Phys. 04 (2017) 046.

[27] A. Martin, F. Bradamante, and V. Barone, Phys. Rev. D 95,
094024 (2017).

[28] U. D’Alesio, F. Murgia, and C. Pisano, J. High Energy
Phys. 09 (2015) 119.

[29] N. Brambilla et al., Eur. Phys. J. C 71, 1534 (2011).
[30] R. M. Godbole, A. Misra, A. Mukherjee, and V. S. Rawoot,

Phys. Rev. D 85, 094013 (2012).
[31] A. Mukherjee and S. Rajesh, Eur. Phys. J. C 77, 854

(2017).
[32] D. Boer, Few Body Syst. 58, 32 (2017).

PROBING THE SIVERS ASYMMETRIES THROUGH J=ψ … PHYS. REV. D 100, 014007 (2019)

014007-13

https://doi.org/10.1016/0370-2693(91)91351-U
https://doi.org/10.1016/0370-2693(91)91351-U
https://doi.org/10.1016/0370-2693(91)90378-4
https://doi.org/10.1016/0370-2693(91)90378-4
https://doi.org/10.1103/PhysRevD.41.83
https://doi.org/10.1016/j.physletb.2004.07.026
https://doi.org/10.1016/j.physletb.2004.07.026
https://doi.org/10.1103/PhysRevD.71.034005
https://doi.org/10.1103/PhysRevD.71.034005
https://doi.org/10.1007/JHEP07(2012)002
https://doi.org/10.1007/JHEP07(2012)002
https://doi.org/10.1088/1126-6708/2007/02/093
https://doi.org/10.1103/PhysRevD.67.074010
https://doi.org/10.1103/PhysRevD.67.074010
https://doi.org/10.1103/PhysRevD.60.014012
https://doi.org/10.1103/PhysRevD.79.034005
https://doi.org/10.1103/PhysRevD.79.034005
https://doi.org/10.1016/S0550-3213(97)00456-2
https://doi.org/10.1016/S0550-3213(97)00456-2
https://doi.org/10.1103/PhysRevD.75.054032
https://doi.org/10.1103/PhysRevD.75.054032
https://doi.org/10.1103/PhysRevLett.94.012002
https://doi.org/10.1103/PhysRevLett.94.012002
https://doi.org/10.1103/PhysRevLett.103.152002
https://doi.org/10.1103/PhysRevLett.103.152002
https://doi.org/10.1016/j.physletb.2013.11.021
https://doi.org/10.1016/j.physletb.2013.11.021
https://doi.org/10.1016/j.physletb.2012.09.056
https://doi.org/10.1016/j.physletb.2012.09.056
https://doi.org/10.1016/j.physletb.2014.06.080
https://doi.org/10.1016/j.physletb.2014.06.080
https://doi.org/10.1016/j.physletb.2017.04.042
https://doi.org/10.1016/j.physletb.2017.04.042
https://doi.org/10.1016/j.physletb.2017.07.018
https://doi.org/10.1016/j.physletb.2017.07.018
https://doi.org/10.1103/PhysRevLett.119.112002
https://doi.org/10.1103/PhysRevLett.119.112002
https://doi.org/10.1103/PhysRevLett.107.072003
https://doi.org/10.1103/PhysRevLett.107.072003
https://doi.org/10.1103/PhysRevC.90.055201
https://doi.org/10.1103/PhysRevLett.116.132301
https://doi.org/10.1103/PhysRevLett.116.132301
https://doi.org/10.1103/PhysRevD.72.094007
https://doi.org/10.1103/PhysRevD.72.099903
https://doi.org/10.1016/j.physletb.2017.04.074
https://doi.org/10.1016/j.physletb.2017.04.074
https://doi.org/10.1007/JHEP04(2017)046
https://doi.org/10.1103/PhysRevD.95.094024
https://doi.org/10.1103/PhysRevD.95.094024
https://doi.org/10.1007/JHEP09(2015)119
https://doi.org/10.1007/JHEP09(2015)119
https://doi.org/10.1140/epjc/s10052-010-1534-9
https://doi.org/10.1103/PhysRevD.85.094013
https://doi.org/10.1140/epjc/s10052-017-5406-4
https://doi.org/10.1140/epjc/s10052-017-5406-4
https://doi.org/10.1007/s00601-016-1198-6


[33] D. Boer, P. J. Mulders, C. Pisano, and J. Zhou, J. High
Energy Phys. 08 (2016) 001.

[34] M. Anselmino, M. Boglione, U. D’Alesio, E. Leader, and
F. Murgia, Phys. Rev. D 70, 074025 (2004).

[35] U. D’Alesio, F. Murgia, C. Pisano, and P. Taels, Phys. Rev.
D 96, 036011 (2017).

[36] A. Mukherjee and S. Rajesh, Phys. Rev. D 93, 054018
(2016).

[37] A. Mukherjee and S. Rajesh, Phys. Rev. D 95, 034039
(2017).

[38] G. T. Bodwin, E. Braaten, and G. P. Lepage, Phys. Rev. D
51, 1125 (1995); 55, 5853(E) (1997).

[39] F. Abe et al. (CDF Collaboration), Phys. Rev. Lett. 79, 572
(1997).

[40] D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71,
032001 (2005).

[41] C. Adloff et al. (H1 Collaboration), Eur. Phys. J. C 25, 25
(2002).

[42] F. D. Aaron et al. (H1 Collaboration), Eur. Phys. J. C 68,
401 (2010).

[43] S. Chekanov et al. (ZEUS Collaboration), Eur. Phys. J. C
27, 173 (2003).

[44] H. Abramowicz et al. (ZEUS Collaboration), J. High
Energy Phys. 02 (2013) 071.

[45] G. P. Lepage, L. Magnea, C. Nakhleh, U. Magnea, and K.
Hornbostel, Phys. Rev. D 46, 4052 (1992).

[46] F. Yuan, Phys. Rev. D 78, 014024 (2008).
[47] S. Rajesh, R. Kishore, and A. Mukherjee, Phys. Rev. D 98,

014007 (2018).
[48] R. M. Godbole, A. Misra, A. Mukherjee, and V. S. Rawoot,

Phys. Rev. D 88, 014029 (2013).
[49] R. M. Godbole, A. Kaushik, A. Misra, and V. S. Rawoot,

Phys. Rev. D 91, 014005 (2015).
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