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In this paper we derive the next-to-leading-order (NLO) fragmentation function for a heavy quark, either
charm or bottom, into a heavy quarkonium J=Ψ or ϒ. The ultraviolet divergences in the real corrections are
removed through operator renormalization, which is performed in the modified minimal subtraction
scheme. We then obtain the NLO fragmentation function at an initial factorization scale, e.g., μF ¼ 3mc for
c → J=Ψ and μF ¼ 3mb for b → ϒ, which can be evolved to any scale via the use of the Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi equation. As an initial application of these fragmentation functions, we
study J=Ψ (ϒ) production at a high-luminosity eþe− collider running at an energy around the Z pole, which
could be a suitable platform for testing the fragmentation function.
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I. INTRODUCTION

Since the observation of the J=Ψ meson, heavy quarko-
nia have attracted great interest from theorists and exper-
imentalists. Due to the fact that the constituent quark (Q)
and antiquark (Q̄) of a heavy quarkonium are heavy, i.e,
mQ ≫ ΛQCD, its production rate and decay width involve
both perturbative and nonperturbative aspects of QCD. It
then provides a good platform for testing various QCD
factorization theories. Within the framework of the non-
relativistic QCD (NRQCD) factorization theory [1], the
production cross section of a heavy quarkonium via the
collision of two incident particles A and B can be written as

dσðAþ B → H þ XÞ
¼

X
n

dσ̃ðAþ B → ðQQ̄Þ½n� þ XÞhQH
n i; ð1Þ

where H denotes the produced heavy quarkonium, and dσ̃
is the production cross section for the perturbative state
ðQQ̄Þ½n� with quantum numbers n, which is calculable
and can be expanded in powers of the strong coupling

constant αs. hQH
n i denotes the nonperturbative but universal

NRQCD matrix element, which is proportional to the
transition probability of the perturbative state ðQQ̄Þ½n� into
the hadron state H.
The NRQCD factorization formulism has been used to

deal with quarkonium production at eþe− and hadron
colliders, and most of the calculations have been performed
up to next-to-leading-order (NLO) accuracy [2,3]. In
some cases, there are large logarithms in the short-distance
part dσ̃. For instance, there are large logarithms in powers
of lnð ffiffiffi

s
p

=mQÞ for heavy quarkonium production at
eþe− colliders, with

ffiffiffi
s

p
being the center-of-mass collision

energy, or there are large logarithms in powers of
lnðpT=mQÞ in the high-pT region (with pT being the
transverse momentum of the quarkonium) at hadron
colliders. Those large logarithms may spoil the conver-
gence of the perturbative expansion, leading to the unre-
liable perturbative QCD (pQCD) predictions. As a solution,
it has been pointed out that these logarithms mainly come
from the emission of collinear gluons, which can be
systematically resummed through the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) evolution equation [4].
We shall take heavy quarkonium production at an eþe−

collider as an explicit example to explain this idea; in
particular, we shall give the results for the heavy quark to
heavy quarkonium fragmentation function up to NLO
accuracy. The fragmentation function gives the probability
that a parton will split into the desired hadron plus other
partons. The fragmentation function of a hadron composed
of only heavy quarks can be calculated using pQCD theory.
The Z boson decays Z → J=Ψþ X and Z → ϒþ X have
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been studied up to the NLO level using the complete
pQCD approach [5], and in the present paper we will study
these processes but using the fragmentation approach.
Compared with the complete pQCD approach, even
though the fragmentation approach neglects some power-
suppressed terms, it resums the large collinear logarithms
more conveniently via the use of the DGLAP evolution
equation and achieves more reliable predictions in specific
kinematic regions.
In the pQCD factorization theory, the production cross

section of heavy quarkonium at an eþe− collider can be
factorized as

dσðeþe− →HðpÞ þXÞ ¼
X
i

dσ̂ðeþe− → iðp=zÞ þX;μFÞ

⊗Di→Hðz;μFÞ þOðm2
Q=sÞ;

ð2Þ

where the sum extends over all of the parton types, dσ̂
denotes the partonic cross section (coefficient function),
andDi→Hðz; μFÞ denotes the fragmentation function (decay
function) for the parton i into heavy quarkonium H with
longitudinal momentum fraction z. μF is the factorization
scale which separates the energy scales of the two parts. In
order to prevent large logarithms from appearing in dσ̂, μF
is usually set as μF ¼ Oð ffiffiffi

s
p Þ.

The pQCD factorization formula (2) was first suggested
by Collins and Soper for the inclusive production of a
light hadron [6], and the proof of the pQCD factorization
formula for the case of quarkonium production was given
by Nayak, Qiu, and Sterman [7]. One recent achievement in
using pQCD factorization for quarkonium production is the
derivation of the next-to-leading-power contribution, which
comes from double-parton fragmentation [8–11]. The
fragmentation function Di→Hðz; μFÞ contains nonperturba-
tive information, which is calculable through NRQCD
factorization (or the Mandelstam formulation [12] under
the instantaneous approximation) [13,14], e.g.,Di→Hðz; μFÞ
can be factorized as

Di→Hðz; μFÞ ¼
X
n

di→ðQQ̄Þ½n�ðz; μFÞhQH
n i; ð3Þ

where di→ðQQ̄Þ½n�ðz; μFÞ is the short-distance coefficient,
which contains logarithms of μF=mQ. To avoid such kind
of large logarithms, one can first calculate the fragmentation
function at some initial factorization scale that is of order
OðmQÞ, and then evolve it to a higher factorization scale by
using the DGLAP evolution equation [15–17],

d
d ln μ2F

Di→Hðz; μFÞ

¼ αsðμFÞ
2π

X
j

Z
1

z

dy
y
Pjiðy; αsðμFÞÞDj→Hðz=y; μFÞ; ð4Þ

where Pji are splitting functions, which can be expanded in
perturbative series as,

Pjiðy;αsðμFÞÞ ¼
αsðμFÞ
2π

Pð0Þ
ji ðyÞþ

α2sðμFÞ
ð2πÞ2 Pð1Þ

ji ðyÞþOðα3sÞ:

ð5Þ
For the quark-to-quark case, the LO coefficient is

Pð0Þ
QQðyÞ ¼ CF

�
1þ y2

ð1 − yÞþ
þ 3

2
δð1 − yÞ

�
; ð6Þ

whereCF ¼ 4=3 for theSUð3Þc group. TheNLOcoefficient

Pð1Þ
QQðyÞ is too lengthy to be presented here, and can be found

in Refs. [18–20].
The LO fragmentation function for a heavy quark to J=Ψ

or ϒ was first calculated by Braaten and Cheung in 1993
[21], where the LO fragmentation function was derived
from an LO calculation of the process Z → J=Ψþ cþ c̄.
Subsequently, Ma calculated the LO fragmentation func-
tions [22] by using the gauge-invariant definition suggested
by Collins and Soper. In Ref. [23], the authors calcula-
ted the NLO corrections to the transverse-momentum-
dependent fragmentation functions for a heavy quark to
J=Ψ and ϒ, which is however not convenient for practical
applications. Recently, the NLO fragmentation function
for a gluon into heavy quarkonium was determined in
Refs. [24–27]. In the present paper, we shall give the
fragmentation functions for a heavy quark into J=Ψ and ϒ
up to the NLO level.
The remaining parts of the paper are organized as follows.

In Sec. II, we present the LO fragmentation function for a
heavy quark into the heavy quarkonium J=Ψ orϒ. In Sec. III,
we present the NLO fragmentation functions Dc→J=Ψ and
Db→ϒ, inwhich the renormalization is carried out by using the
conventional MS scheme. In Sec. IV, we apply these NLO
fragmentation functions to J=Ψ andϒ production at a superZ
factory. Section V is reserved for a summary.

II. THE LO FRAGMENTATION FUNCTION

Before carrying out the calculation for the fragmentation
function, we first give a brief introduction of the gauge-
invariant fragmentation function suggested by Collins and
Soper [6]. We adopt dimensional regularization to regu-
larize the infrared (IR) and ultraviolet (UV) divergences,
and work in d ¼ 4 − 2ϵ-dimensional space-time.
The light-cone coordinates are conventionally adopted

to define the fragmentation function, where a vector Vμ

in d dimensions is expressed as Vμ ¼ ðVþ; V−;V⊥Þ ¼
ððV0 þ Vd−1Þ= ffiffiffi

2
p

; ðV0 − Vd−1Þ= ffiffiffi
2

p
;V⊥Þ. The scalar pro-

duct of two vectors V and W then becomes V ·W ¼
VþW− þV−Wþ −V⊥ ·W⊥. The gauge-invariant fragmen-
tation function for the heavy quarkQ into a spin-triplet and
color-singlet quarkonium H in d ¼ 4 − 2ϵ dimensions is
defined as
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DQ→HðzÞ ¼
zd−3

2π

X
X

Z
dx−e−iP

þx−=z

×
1

Nc
Trcolor

1

4
TrDirac

�
γþh0jΨð0ÞP̄ exp

�
igs

Z
∞

0

dy−Aþ
a ð0þ; y−; 0⊥Þt⊥a

�
jHðPþ; 0⊥Þ þ Xi

× hHðPþ; 0⊥Þ þ XjP exp

�
−igs

Z
∞

x−
dy−Aþ

a ð0þ; y−; 0⊥Þt⊥a
�
Ψ̄ðxÞj0i

�
; ð7Þ

where Ψ and Aμ
a are the quark field and gluon field,

respectively. ta is thecolormatrix,P implies thepathordering,
and z≡ Pþ=Kþ is the longitudinal momentum fraction
carried from the incident heavy quark Q. This definition is
carried out in a reference frame where the quarkonium H
carries no transverse momentum, i.e., Pμ ¼ ðPþ; P− ¼
m2

H=2P
þ; 0⊥Þ. It is convenient to introduce a light-like vector

nμ, which has the value nμ ¼ ð0; 1; 0⊥Þ in the reference frame
where the fragmentation function is defined. In this frame, the
plus component of the momentum p can be expressed as
pþ ¼ p · n, and z ¼ P · n=K · n. The Feynman rules for the
fragmentation function can be directly derived from the above
definition [28].
The fragmentation function (7) is gauge independent.

For our practical treatment, we work in the usual Feynman
gauge. To derive the fragmentation functionDQ→H, we first
calculate the fragmentation function for the production of a

free on-shell QQ̄ state with the quantum numbers 3S½1�1 (i.e,
D

Q→QQ̄½3S½1�
1
�), where the superscript “[1]” denotes the QQ̄

state is a color singlet. Then, DQ→H is obtained by
replacing the NRQCD matrix element of a free QQ̄ state

[hOQQ̄½3S½1�
1
�ð3S½1�1 Þi] with the matrix element of the quarko-

nium (hOHð3S½1�1 Þi).

At the LO level, we need to deal with the process

QðKÞ → QQ̄½3S½1�1 �ðp1Þ þQðp2Þ. As shown in Fig. 1, there
are four LO cut diagrams which contribute to D

Q→QQ̄½3S½1�
1
�.

The four squared amplitudes from the four cut diagrams are

A1 ¼ tr½ð=p2 þmQÞðigsγμtaÞΠΛ1ðigsγμtaÞ
·

i
=p1 þ =p2 −mQ þ iϵ

=n
−i

=p1 þ =p2 −mQ − iϵ

· ð−igsγνtbÞΠ̄Λ1ð−igsγνtbÞ�
·

−i
ðp1=2þ p2Þ2 þ iϵ

i
ðp1=2þ p2Þ2 − iϵ

; ð8Þ

A2 ¼ tr½ð=p2 þmQÞðigsγμtaÞΠΛ1

·
i

ð−p1=2 − p2Þ · nþ iϵ
ðigsnμtaÞ=n

·
−i

=p1þ =p2 −mQ − iϵ
ð−igsγνtbÞΠ̄Λ1ð−igsγνtbÞ�

·
−i

ðp1=2þ p2Þ2 þ iϵ
i

ðp1=2þ p2Þ2 − iϵ
; ð9Þ

A3 ¼ tr

�
ð=p2 þmQÞðigsγμtaÞΠΛ1ðigsγμtaÞ

·
i

=p1þ =p2 −mQ þ iϵ
=nð−igsnνtbÞ

·
−i

ð−p1=2 − p2Þ · n − iϵ
Π̄Λ1ð−igsγνtbÞ

�

·
−i

ðp1=2þ p2Þ2 þ iϵ
i

ðp1=2þ p2Þ2 − iϵ
; ð10Þ

A4 ¼ tr

�
ð=p2 þmQÞðigsγμtaÞΠΛ1

·
i

ð−p1=2 − p2Þ · nþ iϵ
ðigsnμtaÞ=nð−igsnνtbÞ

·
−i

ð−p1=2 − p2Þ · n − iϵ
Π̄Λ1ð−igsγνtbÞ

�

·
−i

ðp1=2þ p2Þ2 þ iϵ
i

ðp1=2þ p2Þ2 − iϵ
: ð11Þ

Here Π denotes the spin projector, and for the 3S1 state

FIG. 1. The LO cut diagrams for the fragmentation function
D

Q→QQ̄½3S½1�
1
�. The double line stands for the Wilson line which

ensures the gauge invariance of the squared amplitude.
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Π ¼ −
1

2
ffiffiffiffiffiffiffiffiffi
2mQ

p =ϵðp1Þð=p1 þ 2mQÞ; ð12Þ

and Π̄≡ γ0Π†γ0. Λ1 is color-singlet projector,

Λ1 ¼
1ffiffiffi
3

p ; ð13Þ

where 1 is the SUcð3Þ unit matrix.
Then we obtain the total squared amplitude at the LO

level,

ABorn ¼
X4
j¼1

Aj ¼
2C2

Fg
4
sK · n

ð2 − zÞ2mQ

X4
j¼2

ajm
2ðj−2Þ
Q

ðs1 −m2
QÞj

; ð14Þ

where s1 ¼ ðp1 þ p2Þ2 is the invariant mass of the final

QQ̄½3S½1�1 � þQ, and the coefficients aj¼2;3;4 are

a2 ¼ ð1 − zÞ½ðd3 − 17d2 þ 100d − 156Þz2 − 4ðd3 − 13d2

þ 56d − 84Þzþ 4ðd3 − 9d2 þ 28d − 28Þ�;
a3 ¼ 8ðz − 2Þ½ðd2 − 9dþ 16Þz2 − 2ðd2 − 5dþ 16Þzþ 16�;
a4 ¼ −64ðd − 1Þðz − 2Þ2:

The differential phase space for the LO fragmentation
function is

dϕBorn ¼
dpþ

2

2pþ
2

dd−2p2⊥
ð2πÞd−2 2πδðK

þ − pþ
1 − pþ

2 Þ; ð15Þ

where the δ function comes from the final cut of the eikonal
line. The integration over pþ

2 can be carried out with the δ
function. The integration over the angles of p2⊥ is trivial
and can be carried out easily. Then we have

dϕBorn ¼
z−1þϵð1 − zÞ−ϵ

2ð4πÞ1−ϵΓð1 − ϵÞK · n

×

�
s1 −

4m2
Q

z
−

m2
Q

1 − z

�−ϵ
ds1: ð16Þ

The range of s1 is from ½4m2
Q=zþm2

Q=ð1 − zÞ� to þ∞.
The LO fragmentation function for Q → QQ̄½3S½1�1 � can

be obtained as

DLO
Q→QQ̄½3S½1�

1
�ðzÞ ¼ NCS

Z
dϕBornABorn; ð17Þ

where NCS ¼ z1−2ϵ=8πNc is an overall factor. Performing
the integration over s1, we obtain

DLO
Q→QQ̄½3S½1�

1
�ðzÞ ¼

C2
Fα

2
szð1 − zÞð4πÞϵΓð1þ ϵÞ
2Ncð2 − zÞ4þ2ϵm3þ2ϵ

Q

×

�
a2 þ a3

ð1þ ϵÞzð1 − zÞ
2ð2 − zÞ2

þ a4
ð2þ ϵÞð1þ ϵÞz2ð1 − zÞ2

6ð2 − zÞ4
�
: ð18Þ

Setting d ¼ 4, we obtain

DLO
Q→QQ̄½3S½1�

1
�ðzÞ ¼

32α2szð1 − zÞ2
27ð2 − zÞ6m3

Q

× ð5z4 − 32z3 þ 72z2 − 32zþ 16Þ

×
hOQQ̄½3S½1�

1
�ð3S½1�1 Þi

6Nc
: ð19Þ

Here, the LO fragmentation function for the free QQ̄½3S½1�1 �
state has been written in the factorization form by using the
fact that

hOQQ̄½3S½1�
1
�ð3S½1�1 Þi ¼ 2ðd − 1ÞNc ð20Þ

at the order α0s with the normalization of the NRQCD
matrix element from Ref. [1]. Then the LO fragmentation
function for the quarkonium can be obtained by replacing

hOQQ̄½3S½1�
1
�ð3S½1�1 Þi with hOHð3S½1�1 Þi. Under the leading non-

relativistic approximation, the matrix element hOHð3S½1�1 Þi
can be expressed by the radial wave function at the origin
for the quarkonium H, i.e.,

hOHð3S½1�1 Þi ≈ ðd − 1ÞNcjRSð0Þj2=ð2πÞ: ð21Þ

Finally, the LO fragmentation function for the 3S1 quarko-
nium state takes the form

DLO
Q→HðzÞ ¼

8α2szð1 − zÞ2jRSð0Þj2
27πð2 − zÞ6m3

Q

× ð5z4 − 32z3 þ 72z2 − 32zþ 16Þ; ð22Þ

which is exactly the same as that of Ref. [21].

III. THE NLO CORRECTION TO THE
FRAGMENTATION FUNCTION

At the NLO level, we need to deal with the virtual and
real corrections to the LO terms. It is hard to give the
analytic expressions for those NLO terms. In the following
subsections, we shall give some explanations of how to deal
with the virtual and real corrections.
In our calculations we use the FEYNCALC package

[29,30] to carry out the color and Dirac traces, and the
$APART package [31] and the FIRE package [32] are used to
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do partial fraction and integration-by-parts reduction. The
master integrals are calculated using the LOOPTOOLS
package [33]. As a subtle point, there are some master
integrals that contain an eikonal propagator and cannot be
calculated using LOOPTOOLS, and we adopt the method
introduced in Ref. [24] to deal with these master integrals.

A. The virtual corrections

At the NLO level, the virtual corrections come from the
cut diagrams containing a loop on either side of the cut.
Four typical virtual corrections are shown in Fig. 2. The
differential phase space of the virtual corrections is the
same as that of the LO one, e.g., Eq. (15). The virtual
corrections can be obtained as

Dvirtual
Q→QQ̄½3S½1�

1
�ðzÞ ¼ NCS

Z
dϕBornAvirtual; ð23Þ

where Avirtual is the squared amplitude for the virtual
corrections.
We adopt the method of regions [34] to calculate the

fragmentation function. With this method we only need to
calculate the contributions from the hard region, as the
Coulomb divergences which come from the potential
region do not appear in the calculations. The hard-region
contributions are then obtained by expanding the relative
velocity between the produced Q and Q̄ before the loop
integration. Thus, in the calculation we only need to set the
relative momentum to zero before the loop integration [34].

B. The real corrections

At the NLO level, the real corrections come from the
fragmentation process emitting an extra gluon, i.e., we need

to deal with the process QðKÞ → QQ̄½3S½1�1 �ðp1Þ þQðp2Þþ
gðp3Þ. The cut diagrams for the real corrections can be

obtained from the LO cut diagrams by adding a gluon line
crossing the cut. Four typical real correction cut diagrams
are shown in Fig. 3.
The differential phase space for the real correction is

dϕreal ¼ 2πδ

�
Kþ −

X3
i¼1

pþ
i

�Y
i¼2;3

dpþ
i

2pþ
i

dd−2pi⊥
ð2πÞd−2 : ð24Þ

The real corrections can be obtained as

Dreal
Q→QQ̄½3S½1�

1
�ðzÞ ¼ NCS

Z
dϕrealAreal; ð25Þ

where Areal denotes the squared amplitude for the real
corrections. As for the real corrections, the IR divergences
come from the limits p3 → 0 and p3 · n → 0, and the UV
divergences come from the limit jp3⊥j → ∞. We adopt the
method of Ref. [24] to extract these divergences. Following
this method, the real corrections can be represented as

Dreal
Q→QQ̄½n�ðzÞ ¼ NCS

Z
dϕrealðAreal −ASÞ

þ NCS

Z
dϕrealAS; ð26Þ

whereAS denotes the subtraction term, which has the same
singularities as the squared amplitude of the real correc-
tions. The first term on the right-hand side of Eq. (26) is
finite and can be directly calculated in four dimensions. The
integral of the subtraction term is divergent and should be
calculated in d dimensions.
The subtraction term can be constructed according to the

singularity behavior of the squared amplitude of the real
corrections. More explicitly, the squared amplitude for the
real corrections can be written as

FIG. 2. Four typical virtual corrections to the fragmentation
function D

Q→QQ̄½3S½1�
1
�. The double line stands for the Wilson line

which ensures the gauge invariance of the squared amplitude.

FIG. 3. Four typical real corrections to the fragmentation
function D

Q→QQ̄½3S½1�
1
�. The double line stands for the Wilson line

which ensures the gauge invariance of the squared amplitude.
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Areal ¼
b1ðs1; zÞ

ð1 − yÞðs −m2
QÞ

þ b2ðs1; zÞ
ð1 − yÞðs2 −m2

QÞ
þ b3ðs1; zÞ
ð1 − yÞs3

þ c1ðs1; z; yÞ
s −m2

Q
þ c2ðs1; z; yÞp1 · p3

ðs −m2
QÞ2

þ c3ðs1; z; yÞ
s2 −m2

Q

þ c4ðs1; z; yÞp2 · p3

ðs2 −m2
QÞ2

þ c5ðs1; z; yÞ
s3

þ c6ðs1; z; yÞp1 · p3

s23
þ d1ðs1; zÞð1 − uÞðs1 −m2

QÞ
ut1ðs −m2

QÞ

þ d2ðs1; zÞð1 − uÞðs1 −m2
QÞ

2ut1s3
þ d3ðs1; zÞð1 − uÞðs1 −m2

QÞ2
2ut1s3ðs −m2

QÞ
þ d4ðs1; zÞðs1 −m2

QÞ2
2ut2ðs −m2

QÞs3

þ d5ðs1; zÞðs1 −m2
QÞ

ut2ðs −m2
QÞ

þ d6ðs1; zÞðs1 −m2
QÞ

2ut2s3
þ gðs1; zÞðs1 −m2

QÞ2
2uðs −m2

QÞs3
þ hðs1; zÞ

t22
þAfinite

real ; ð27Þ

where the Lorentz invariants are defined as follows:

y ¼ ðp1 þ p2Þ · n
ðp1 þ p2 þ p3Þ · n

; u ¼ p3 · n
ðp2 þ p3Þ · n

;

s ¼ ðp1 þ p2 þ p3Þ2; s2 ¼ ðp1=2þ p3Þ2;
s3 ¼ ðp1=2þ p2 þ p3Þ2; t1 ¼ 2p1 · p3;

t2 ¼ 2p2 · p3: ð28Þ

Afinite
real stands for the terms that are finite after the phase-space integration. There is neither a 1=t21 term nor a 1=t1t2 term in

Areal because those terms are canceled after summing all of the terms of the real corrections. The subtraction term AS can
then be constructed as follows:

AS ¼ b1ðs1; zÞ
ð1 − yÞðs −m2

QÞ
þ b2ðs1; zÞ
ð1 − yÞðs2 −m2

QÞ
þ b3ðs1; zÞ
ð1 − yÞs3

þ c1ðs1; z; yÞ
s

þ c2ðs1; z; yÞ
s2

�
p1 · p3 −

z
2y

�
1 −

2

y

�
s1 −

1 − y
2y

ðs1 þ 3m2
QÞ
�
þ c3ðs1; z; yÞ

s2

þ c4ðs1; z; yÞ
s22

�
p2 · p3 þ

ðy − zÞm2
Q

z

�
1þ 4ð1 − yÞ

z

�
−
1 − y
2z

ðs1 − 5m2
QÞ
�
þ c5ðs1; z; yÞ

s3

þ c6ðs1; z; yÞ
s23

�
p1 · p3 þ

zð2 − zÞ=4 − ð1 − yÞðy − zÞ
2ðy − z=2Þ2 ðs1 −m2

QÞ
�
þ d1ðs̃; zÞð1 − uÞðs̃ −m2

QÞ
ut1ðs̃ −m2

Q þ t1=zÞ

þ d2ðs̃; zÞð1 − uÞðs̃ −m2
QÞ

ut1½s̃ −m2
Q þ ð2 − zÞt1=z�

þ d3ðs̃; zÞð1 − uÞðs̃ −m2
QÞ2

ut1ðs̃ −m2
Q þ t1=zÞ½s̃ −m2

Q þ ð2 − zÞt1=z�

þ d4ðs̃; zÞðs̃ −m2
QÞ2

ut2½s̃ −m2
Q þ t2=ð1 − zÞ�½s̃ −m2

Q þ ð2 − zÞt2=ð1 − zÞ� þ
d5ðs̃; zÞðs̃ −m2

QÞ
ut2ðs̃ −m2

Q þ t2=ð1 − zÞÞ

þ d6ðs̃; zÞðs̃ −m2
QÞ

ut2½s̃ −m2
Q þ ð2 − zÞt2=ð1 − zÞ� þ

gðs̃; zÞðs̃ −m2
QÞ2

u½s̃ −m2
Q þ t2=ð1 − zÞ�½s̃ −m2

Q þ ð2 − zÞt2=ð1 − zÞ� þ
hðs̃; zÞ
t22

; ð29Þ

where s̃ is defined as

s̃ ¼ ðp1 þ p̃Þ2 ð30Þ
with

p̃μ ¼ pμ
2 þ pμ

3 −
p2 · p3

ðp2 þ p3Þ · n
nμ: ð31Þ

Numerically, we have found that the integration of
ðAreal −ASÞ over the phase space is finite in four dimen-

sions, which confirms our present choice of the subtraction
term AS. Due to its much simpler structure, following the
method of Ref. [28] the phase-space integration over the
subtraction term AS can be done analytically. The inter-
ested reader can turn to Ref. [28] for details.

C. Renormalization

The UV divergences in the virtual and real correc-
tions should be canceled through renormalization. The
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counterterm approach is adopted to carry out the
renormalization, where the fragmentation function is
calculated with the renormalized quark mass mQ, the
renormalized field Ψr, the renormalized gluon field Aμ

r ,
and the renormalized coupling constant gs. The renor-
malized quantities are related to their corresponding
bare quantities as

m0
Q ¼ ZmmQ; Ψ0 ¼

ffiffiffiffiffi
Z2

p
Ψr;

Aμ
0 ¼

ffiffiffiffiffi
Z3

p
Aμ
r ; g0s ¼ Zggs; ð32Þ

where the renormalization constants Zi ¼ 1þ δZi, with
i ¼ m; 2; 3; g, respectively. The quantities δZi are
fixed by the renormalized conditions which define a
renormalization scheme. The quark field, quark mass,
and gluon field are renormalized in the on-mass-shell
scheme (OS), whereas the strong coupling constant gs is
renormalized in the MS scheme. The expressions for the
δZi are

δZOS
m ¼ −3CF

αs
4π

�
1

ϵUV
− γE þ ln

4πμ2R
m2

þ 4

3

�
;

δZOS
2 ¼ −CF

αs
4π

�
1

ϵUV
þ 2

ϵIR
− 3γE þ 3 ln

4πμ2R
m2

þ 4

�
;

δZOS
3 ¼ αs

4π

�
ðβ00 − 2CAÞ

�
1

ϵUV
−

1

ϵIR

�

−
4

3
TF

�
1

ϵUV
− γE þ ln

4πμ2R
m2

c

�

−
4

3
TF

�
1

ϵUV
− γE þ ln

4πμ2R
m2

b

��
;

δZMS
g ¼ −

β0
2

αs
4π

�
1

ϵUV
− γE þ lnð4πÞ

�
; ð33Þ

where μR is the renormalization scale, β0 ¼ 11CA=3 −
4TFnf=3 is the one-loop coefficient of the β function in
QCD, and nf is the number of active quark flavors.
β00 ¼ 11CA=3 − 4TFnlf=3, and nlf ¼ 3 is the number of
light-quark flavors. For the SUcð3Þ group, we have
CA ¼ 3, CF ¼ 4=3, and TF ¼ 1=2.
The operator products in the definition of the fragmen-

tation functions also require renormalization [6,35], whose
counterterms in the MS scheme can be written as [24]

DCT;operator

Q→QQ̄½3S½1�
1
�ðzÞ ¼ −

αs
2π

�
1

ϵUV
− γE þ lnð4πÞ þ ln

μ2R
μ2F

�

×
Z

1

z

dy
y
PQQðyÞDLO

Q→QQ̄½3S½1�
1
�ðz=yÞ; ð34Þ

where DLO
Q→QQ̄½3S½1�

1
�ðzÞ denotes the LO fragmentation func-

tion in d-dimensional space-time.

IV. NUMERICAL RESULTS

In our numerical calculations the input parameters take
the following values:

mc ¼ 1.5 GeV; mb ¼ 4.9 GeV; mZ ¼ 91.1876 GeV;

jRJ=Ψð0Þj2¼ 0.810 GeV3; jRϒð0Þj2 ¼ 6.477 GeV3;

ð35Þ

where the values of jRJ=Ψð0Þj2 and jRϒð0Þj2 are taken from
the potential-model calculations [36]. For the strong
coupling constant, we adopt the two-loop formula,

αsðμÞ ¼
4π

β0 lnðμ2=Λ2
QCDÞ

�
1 −

β1 ln lnðμ2=Λ2
QCDÞ

β20 lnðμ2=Λ2
QCDÞ

�
; ð36Þ

where β1 ¼ 34
3
C2
A − 4CFTFnf − 20

3
CATFnf is the two-loop

coefficient of the β function. According to αsðmZÞ ¼
0.1185 [37], we obtain Λnf¼5

QCD ¼ 0.233 and Λnf¼4

QCD ¼
0.337 GeV. Then we have αsð2mcÞ ¼ 0.259, αsð3mcÞ ¼
0.223, αsð2mbÞ ¼ 0.180, and αsð3mbÞ ¼ 0.164.

A. The fragmentation functions

The fragmentation functions for c → J=Ψ and b → ϒ
are shown in Figs. 4 and 5, respectively. The initial
factorization scale has been set as the minimal invariant
mass of the initial c quark or b quark. Two typical values
for the renormalization scale μR are adopted: one is the
threshold energy to create a cc̄ or bb̄ pair, and the other is
the minimal invariant mass of the initial c quark or b quark.
Figures 4 and 5 indicate that the renormalization-scale
dependence for the LO fragmentation functions is large,
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FIG. 4. The fragmentation function Dc→J=Ψðz; μF; μRÞ as a
function of z at an initial factorization scale μF ¼ 3mc up to
LO and NLO accuracy, respectively. μR ¼ 2mc or μR ¼ 3mc.
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and the NLO corrections are very important for reducing
the renormalization scale dependence.
For future applications, we use polynomials to fit the

NLO fragmentation functions. We write the NLO frag-
mentation functions in the form

DNLO
Q→Hðz;μFÞ ¼DLO

Q→HðzÞ
�
1þ αsðμRÞ

2π
β0 ln

μ2R
4m2

Q

�

þ αsðμRÞ
2π

ln
μ2F
9m2

Q

Z
1

z

dy
y
PQQðyÞDLO

Q→Hðz=yÞ

þ αsðμRÞ3jRSð0Þj2
m3

Q
fðzÞ; ð37Þ

where DLO
Q→HðzÞ is the LO fragmentation function given in

Eq. (22). For c → J=Ψ, we have

fðzÞ ¼ −9.01726z10 þ 18.22777z9 þ 16.11858z8

− 82.54936z7 þ 106.57565z6 − 72.30107z5

þ 28.85798z4 − 6.70607z3 þ 0.84950z2

− 0.05376z − 0.00205: ð38Þ

For b → ϒ, we have

fðzÞ ¼ −14.00334z10 þ 46.94869z9 − 55.23509z8

þ 16.69070z7 þ 22.09895z6 − 26.85003z5

þ 13.41858z4 − 3.50293z3 þ 0.46758z2

− 0.03099z − 0.00226: ð39Þ

Using the fragmentation function, we can obtain two
useful quantities, i.e., the fragmentation probability (P) and
the averaged energy fraction (hzi), which are defined as

PQ→H ¼
Z

1

0

DQ→Hðz; μFÞdz; ð40Þ

hzi ¼
R
1
0 zDQ→Hðz; μFÞdzR
1
0 DQ→Hðz; μFÞdz

: ð41Þ

The fragmentation probabilities and the averaged energy
fractions for c → J=Ψ and b → ϒ are shown in Tables I
and II, respectively.
The fragmentation functions shown in Figs. 4 and 5 are

for μF ¼ 3mQ. The fragmentation functions at any other
factorization scales can be obtained through the DGLAP
equation. To apply the NLO fragmentation functions to the
production of heavy quarkonia at a Z factory, we present
the fragmentation functions for μF ¼ mZ in Figs. 6 and 7,
which are obtained by using the fragmentation functions at
the initial value μF ¼ 3mQ. For definiteness, we set the
renormalization scale μR ¼ 2mQ. In doing the numerical
calculation, the DGLAP equation is solved through the
Mellin transformation [38,39], and the NLO expression
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FIG. 5. The fragmentation function Db→ϒðz; μF; μRÞ as a
function of z at an initial factorization scale μF ¼ 3mb up to
LO and NLO accuracy. μR ¼ 2mb or μR ¼ 3mb.

TABLE I. The fragmentation probability and the average value
of the energy fraction for c → J=Ψ. μF ¼ 3mc.

PLO × 104 PNLO × 104 hziLO hziNLO
μR ¼ 2mc 1.88 1.86 0.62 0.63
μR ¼ 3mc 1.40 1.72 0.62 0.63

TABLE II. The fragmentation probability and the averaged
energy fraction for b → ϒ. μF ¼ 3mb.

PLO × 105 PNLO × 105 hziLO hziNLO
μR ¼ 2mb 2.09 2.05 0.62 0.63
μR ¼ 3mb 1.73 1.99 0.62 0.63
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FIG. 6. The NLO fragmentation function Dc→J=Ψ as a function
of z for μF ¼ 3mc and μF ¼ mZ, respectively. μR ¼ 2mc.
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for PQQ is used as the evolution kernel. Figures 6 and 7
show that the peaks of the fragmentation functions become
lower and shift to smaller z values for a larger factorization
scale, leading to a smaller value for the averaged energy
fraction hzi. For example, we obtain hziNLOþNLLjμF¼mZ

¼
0.47 for Dc→J=Ψ and hziNLOþNLLjμF¼mZ

¼ 0.54 for Db→ϒ
(where NLL stands for next-to-leading logarithm).

B. J=Ψ and ϒ production at a Z factory

As an application, we apply the NLO fragmentation
functions of c → J=Ψ and b → ϒ to the production of J=Ψ
and ϒ at a super Z factory.
A Chinese group has raised the proposal of constructing

a high-luminosity eþe− collider in China—the so-called
super Z factory [40]—which is similar to the GigaZ
program suggested by the Internal Linear Collider
Collaboration [41,42] but with an even higher luminosity.
As for this purposed super Z factory, an eþe− collider
would run at energies around the mass of the Z0-boson
resonance and with a high luminosity up to L ¼ 1034–
1036 cm−2 s−1. Due to the Z0-boson resonance effect, large
numbers of J=Ψ and ϒ events can be produced, thus
providing a good platform for studying the properties of
J=Ψ and ϒ.
In this case, the factorization formula for the production

of J=Ψ or ϒ can be written as

dσeþe−→HþX

dz
¼

X
i

Z
1

z

dy
y
dσ̂eþe−→iþXðy; μFÞ

dy
·

Di→Hðz=y; μFÞ; ð42Þ

where the energy fraction z is defined as z≡ 2p · k=k2, p is
the momentum of the produced quarkonium, and k is
the sum of the momenta of the initial electron and positron.

Up to the NLO level, the parton imay be a heavy quark or a
heavy antiquark. For quarkonium production, the fragmen-
tation function DQ̄→H is the same as DQ→H.
Due to the fact that the coefficient functions dσ̂=dy are

independent of the species of the produced hadron, they can
be extracted by applying the pQCD factorization formula to
the production of an on-shell heavy quark (Q) or heavy
antiquark (Q̄) [43,44]. The expression for the coefficient
function dσ̂=dy in the MS scheme up to the NLO level has
been given in Refs. [45,46], e.g.,

dσ̂NLOeþe−→QþX

dy
ðy;μFÞ

¼ σLOeþe−→QQ̄

�
δð1− yÞ þ αsðμRÞ

2π

�
PQQðyÞ ln

s
μ2F

þCðyÞ
��

;

ð43Þ
where σLOeþe−→QQ̄ is the LO cross section forQQ̄ production.

And in the massless limit mQ → 0,1 we have

σLOeþe−→QQ̄ ¼ 4πNcα
2

3s
½e2ee2Q þ 2eeveeQvQρ1ðsÞ

þðv2e þ a2eÞðv2Q þ a2QÞρ2ðsÞ�; ð44Þ
where ef is the electric charge of the fermion f,

vf ¼ ðT3f − 2efsin2θwÞ=ð2 sin θw cos θwÞ; ð45Þ

af ¼ T3f=ð2 sin θw cos θwÞ ð46Þ
are the vector and axial-vector couplings of the fermion f to
the Z boson, T3f is the third component of the weak isospin
of the fermion f, θw is the weak mixing angle, and the
propagator functions are

ρ1ðsÞ ¼
sðs −m2

zÞ
ðs −m2

ZÞ2 þm2
ZΓ2

Z
;

ρ2ðsÞ ¼
s2

ðs −m2
ZÞ2 þm2

ZΓ2
Z
: ð47Þ

The function CðyÞ in the massless limit mQ → 0 takes the
form

CðyÞ ¼ CF

��
2π2

3
−
9

2

�
δð1 − yÞ − 3

2

�
1

1 − y

�
þ

þ 2

�
lnð1 − yÞ
1 − y

�
þ
− ð1þ yÞ½2 ln yþ lnð1 − yÞ�

þ4
ln y
1 − y

þ 5

2
−
3y
2

�
: ð48Þ
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FIG. 7. The NLO fragmentation functionDb→ϒ as a function of
z for μF ¼ 3mb and μF ¼ mZ, respectively. μR ¼ 2mb.

1Because the coefficient function dσ̂=dy is infrared safe, we
can take the limit mQ → 0 to do our calculation, which will
introduce a small error of Oðm2

Q=sÞ.
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For comparison, we adopt three strategies to calculate the
differential cross sections dσ=dz using the fragmentation
approach. We denote them as “Frag, LO”, “Frag, NLO”,
and “Frag, NLOþ NLL”, respectively. For the case of
“Frag, LO,” the differential cross sections are calculated as

dσLOeþe−→HþX

dz
¼ 2

Z
1

z

dy
y

dσ̂LOeþe−→QþQ̄

dy
ðy; μFÞ

·DLO
Q→Hðz=y; μFÞ

¼ 2σLOeþe−→QþQ̄ ·DLO
Q→Hðz; μFÞ; ð49Þ

where the factor of 2 comes from the contribution of the Q̄
fragmentation which is the same as that ofQ fragmentation.
DLO

Q→HðzÞ denotes the LO fragmentation function given in
Eq. (22). In the second equation, we have used the fact
that dσ̂LOeþe−→QþQ̄=dy ¼ σLOeþe−→QþQ̄δð1 − yÞ. For the case

of “Frag, NLO”, the differential cross sections are
calculated as

dσNLOeþe−→HþX

dz
¼ 2

Z
1

z

dy
y

dσ̂NLOeþe−→QþX

dy
ðy; μFÞ

×DNLO
Q→Hðz=y; μFÞ: ð50Þ

In the above calculation, the factorization and renormali-
zation scales are set as μF ¼ 3mQ and μR ¼ 2mQ. For the
case of “Frag, NLOþ NLL”, the differential cross sections
are calculated as

dσNLOþNLL
eþe−→HþX

dz
¼ 2

Z
1

z

dy
y

dσ̂NLOeþe−→QþX

dy
ðy; μFÞ

×DQ→Hðz=y; μFÞ; ð51Þ
where the factorization scale and renormalization scale
are set as μF ¼ μR ¼ mZ, the fragmentation functions

DQ→Hðz; μF ¼ mZÞ are obtained by solving the DGLAP
evolution equation [i.e., Eq. (4)], and the initial fragmen-
tation functions DNLO

Q→Hðz; μF ¼ 3mQÞ with μR ¼ 2mQ are
used as the boundary condition. In this way, the large log
termssuchas lnðm2

Q=m
2
ZÞ are resummedup toNLLaccuracy.

We present the differential cross sections dσ=dz for the
production of J=Ψ andϒ via the fragmentation approach in
Figs. 8 and 9. In drawing the figures, we have omitted
the γ − γ and γ − Z contributions, which are quite small
compared with the dominant Z − Z contribution around the
Z pole. Figures 8 and 9 show how the NLO terms and the
leading and next-to-leading logarithms affect the predic-
tions. For J=Ψ production the NLO contribution is sig-
nificant, and after including the NLO terms the distribution
becomes softer and the value of z corresponding to the peak
value of the distribution becomes smaller. Forϒ production
the NLO contribution is relatively small compared with the
J=Ψ case.
Integrating the differential cross sections dσ=dz over z,

we can obtain the total cross sections for J=Ψ and ϒ
production at the Z factory, which can be simplified as

σðHÞ ¼ 2PQ→H

Z
1

0

dσ̂eþe−→QþX

dy
ðy; μFÞ; ð52Þ

where PQ→H is the fragmentation probability for Q into the
quarkoniumH. The results are presented in Table III, which
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FIG. 8. The differential cross section dσ=dz of eþe− → J=Ψþ
X at the Z pole using the fragmentation approach.
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FIG. 9. The differential cross section dσ=dz of eþe− → ϒþ X
at the Z pole using the fragmentation approach.

TABLE III. Total cross sections (in pb) of the production
channels eþe− → J=Ψþ X and eþe− → ϒþ X at the Z pole.

Frag, LO Frag, NLO Frag, NLOþ NLL

J=Ψ 2.58 2.77 2.65
ϒ 0.368 0.382 0.377

ZHENG, CHANG, and WU PHYS. REV. D 100, 014005 (2019)

014005-10



shows that the NLO corrections enhance the total cross
section by ∼7% for J=Ψ and ∼4% for ϒ.

C. A comparison of J=Ψ and ϒ production
via the Z decays up to the NLO level

As a final remark, we compare the NLO results under
the fragmentation function approach and the complete
pQCD approach. The complete NLO pQCD calculations
of Z → J=Ψþ X and Z → ϒþ X have been done in
Ref. [5]. We present the differential decay widths dΓ=dz
for Z → J=Ψþ X and Z → ϒþ X in Figs. 10 and 11, in
which all of the input parameters are taken from Ref. [5]
and the results denoted by “Li and Wang” are results
under the complete NLO calculation. The results
denoted by “Combined, NLOþ NLL” are a combination
of the results from the complete pQCD approach (taken
from Ref. [5]) and the results from the fragmentation

approach, i.e., dΓ=dzjCombined;NLOþNLL¼dΓ=dzjLi andWangþ
ðdΓ=dzjFrag;NLOþNLL−dΓ=dzjFrag;NLOÞ. For the case of J=Ψ
production at the Z factory, Fig. 10 shows that the frag-
mentation contributions dominate the decay width, since
the “Frag, NLO” shape is very close to the complete NLO
one. Moreover, the total decay widths are ΓðZ→J=Ψþ
XÞjFrag;NLO¼136 keV, ΓðZ → J=Ψþ XÞjFrag;NLOþNLL ¼
130 keV, ΓðZ → J=Ψþ XÞjLi and Wang ¼ 136 keV, and
ΓðZ → J=Ψþ XÞjCombined;NLOþNLL ¼ 130 keV. Figure 11
shows that the “Frag, NLO” result is larger than the result
from the complete NLO calculation in the small-z region,
and thus the fragmentation approximation for ϒ production
is not as good as in the J=Ψ case. This is because the
b-quark mass is larger than the c-quark mass, and the power
correction in m2

b=s for the case of ϒ is larger than for the
case of J=Ψ. However, the combined result counts both the
large power correction and the large logarithms, which
gives a good prediction. Moreover, the total decay widths
are ΓðZ → ϒþ XÞjFrag;NLO ¼ 20.9 keV, ΓðZ → J=ϒþ
XÞjFrag;NLOþNLL ¼ 20.6 keV, ΓðZ→J=ϒþXÞjLi andWang¼
17.38 keV, and ΓðZ → J=ϒþ XÞjCombined;NLOþNLL ¼
17.08 keV.

V. SUMMARY

In the present paper, we have calculated the fragmenta-
tion function for a heavy quark into heavy quarkonium,
e.g., c → J=Ψ or b → ϒ, up to the NLO level. Our present
results are complementary to previous works on the
fragmentation function of a gluon into heavy quarkonia,
which is pQCD calculable due to the fact that the
gluon should be hard enough to form a heavy quark-
antiquark pair.
Our results show that the NLO correction is important for

suppressing the renormalization scale uncertainty and to
achieve a reliable fragmentation prediction. Our calcula-
tions are based on the gauge-invariant definition of the
fragmentation function suggested by Collins and Soper. To
avoid large logarithms appearing in the perturbative series
of the fragmentation function, we first derived the frag-
mentation function at an initial (reasonable) factorization
scale μF ¼ 3mQ, and then ran to any factorization scale
with the help of the DGLAP evolution equation. This
treatment, in effect, resums the large logarithms and
provides a reliable prediction. Thus, for the cases when
the fragmentation dominates the quarkonium productions
or decays, our present calculated fragmentation functions
will be of great help for a more precise pQCD prediction.
As an application, we have applied the obtained fragmen-
tation functions to the production of J=Ψ andϒ at a super Z
factory. The shape of the J=Ψ distribution changes sig-
nificantly by introducing the NLO corrections, and the total
cross section increases by ∼7%. The shape of the ϒ
distribution changes slightly by introducing the NLO
corrections, and the total cross section increases only ∼4%.
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