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Pion and kaon form factors in the perturbative QCD approach
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We present the most accurate calculation for the pion and kaon electromagnetic form factors in the
framework of perturbative QCD, where the power corrections up to twist 4 of the meson distribution
amplitudes and the next-to-leading-order QCD corrections up to subleading power are included. In order to
guarantee the gauge invariance of the meson to vacuum matrix element, we take into account both
assignments with the lowest Fock state and the high Fock state with an additional valence gluon. Our results
confirm the power behavior of the twist expansion and show the chiral enhancement effect at subleading
power in the PQCD approach. We also estimate the SU(3) asymmetry for the kaon and pion form factors

and find that it is smaller than 30%.
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I. INTRODUCTION

The quantum chromodynamics (QCD) has two funda-
mental properties: the quark confinement in the low energy
region and the asymptotic freedom in the high energy region.
The confinement leads to the formation of the hadrons, while
the asymptotic freedom of the strong interaction results
in the perturbative QCD calculations. When an energetic
photon hit a constituent parton (quark, antiquark, gluon,
etc.) inside a hadron, one uses a function form factor to
describe the redistribution of the momenta of the parton
inside the hadron. The form factor therefore carries both the
information of hadron structure and the hard scattering
amplitude. In order to calculate the form factor for a given
transition process, the factorization theory is developed to
help one to separate the pertubative and nonperturbative
contributions [1-3]. The electromagnetic (e.m.) form factor
of pion, being the simplest but simultaneously the most
fundamental QCD observed quantity, attracts much atten-
tion both in theory [4-8] and in experiments [9—11].

The statements for the form factors are rather different in
different theoretical approaches. In the QCD factorization
[12—-14], for example, the form factor is the nonpertuabtive
input. In the light-cone sum rules (LCSRs), one believes that
the soft dynamics will provide the dominate contribution [6].
In the perturbative QCD (PQCD) approach, however, it
is described by a hard scattering amplitude [7,15] and can
be calculated perturbatively. For the pion form factor, for
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instance, the lattice QCD (LQCD) evaluation is still available
at a few points of the momentum transfer squared Q2 so far
[8], while the direct experiment measurements are credible
below 3 GeV? [10,11] too. The LCSRs approach is reliable
in the intermediate region 1 < Q% < 15 GeV? [16], and the
prediction power of the PQCD approach holds well in
the large region Q% > 10 GeV? with the inclusion of the
resummation effects. In this paper we calculate the higher
power corrections to pion and kaon form factors up to twist
4 of the meson distribution amplitudes (DAs), with the aim
to check the power expansion behavior from one side, and
from the other side to improve the theoretical accuracy in
the framework of PQCD approach.

The rest of the paper is organized as follows. In Sec. II, the
PQCD calculation of the spacelike pion form factor is
performed by considering both the quark-antiquark and the
quark-antiquark-gluon assignments. In Sec. III, we present the
procedure of the PQCD approach to calculate the pion form
factor; several important issues are highlighted. Section IV
contains the numerical results and we conclude in Sec. V.

II. POWER CORRECTIONS

The pion form factor is defined by the nonlocal matrix
element

(@ (p)li™m™ (p1)) = eq(pr+ p2) F(Q%): (1)

we are interested in the case in which the smallness of
relative distance is ensured by the external reason, say large
momentum transfer between the hadrons,1 in this case

'Rather than the internal reason by the W-boson mass and the
heavy b-quark mass in which the operator product is used at the
small distance region 7; < 1/y,.
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Z;D; ~ 1 and the expansion parameter for a given operator is the twist (dimension minus spinor). To separate the amplitude
of matrix element contributed from the short- and long-distance interactions, we replace the lines with large virtuality by the
free propagators, while retaining the lines with small virtuality in the Heisenberg operator. In this way the matrix element

can be written in the factorizable form
_ ' 0
{dy(O) exp (zgs/ doyA, (a)) u/,(zz)} 0>
22 kj He

) (oo i, [ davAxo))d&(zl)}” ”_(’”>>ﬂj @)

oo™ () = § dzle2<n—<p2>

21

where y, 5, @, 6 are the spinor indices, and i, j, k, [ are the color indicators. In Eq. (2), the hard kernel associated with the
lowest Fock state is

Hijs(z1,22) = (=1)[ig57 ) s T [(i€47,)S0(0 = 20) (igs7)], s TH [=iD% (21 — 22)], (3)

where the factor (—1) comes from the anticommunicativity of the quark operator, and the free propagators are written in the
coordinate space as

i 7 L Gun
So(z) = 2t D}, (z) = an 2 4)

The nonlocal matrix elements in Eq. (2) imply the amplitudes of mesons breaking up into a pair of soft quarks; they receive
contributions from different spin structures,

<O‘ {ﬁa(ZZ) exp (igs /: da,,Ay(G)> da(zl)}”
= % {%(rsy”)aa<0

(irs)e Otz exo i [ do,A,(@) ) ir5)d(z)

7~ (p1) >m
oz ex i, | do,A,(@) ) ()2

”_(P1)>M
n-<p1>>m
”_(””>ﬂ, it (5)

In the above expression, the ellipsis indicates the rest terms in the Fierz transformation, and the truncated scale of the
integral y,z is usually known as the factorizable scale. We quote the definition of light-cone distribution amplitudes
(LCDAS) of the light pseudoscalar meson in the Appendix A.

Substituting Egs. (3) and (5) into Eq. (2) and taking into account the definition in Eq. (1), we obtain the pion e.m. form
factor at each power with the two-parton-to-two-parton scattering,

+

O | — B o—

+

o v fates)exp i, [ o, (o)) Goers)aten)

<1

8 d?k,; d*k’ 1 1 y
F2(0?) :§asﬂf72rQ2/ (27[;2T (2”)15/0 dxA dygoﬂ(x)(p”(y)ﬁ, (6)
p 16 2Kk d*K’ 1 1 1
r?aZP(QZ) :gasﬂ: ,z,m%/ (271-;; (ZE)IJA dxA dy@
1 2 (2 =\2 2 502
okt ) - gotonn) (S + SR 1+ B0 )| )
1

*We drop this indicator hereafter to be concise.
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16 d*k,r d*K’
F§[2®t4.2]7(Q2) :?asﬂf%/ (2”)1; (271')12T

N T
d dy< —5—
X /0 x/() y{ A%Aé gZﬂ(x)(pﬂ(y)

_ 1 y(2 —x)0? 1
2 2
+40 [A%A‘z‘ TTA Talm

— 0. ()g5,(7)]

2} ®

X [90;1( )glﬂ.’(y)

2
N [yzQ4
AZA

The symbols of triangle in the above expressions repre-
sent the momentum carried by internal propagator:
A1 =3py—p1=(-0/V2.50/V2.K'), by = Xp, —ypy =
(XQ/V2, —yQ/\/i, k-k)G=1-yandX=1-2x),in
which p; and p, are the momentum of initial and final
pions, respectively, and x and y denote the momentum
fraction carried by the quark in hadrons. The twist-2 times
twist-4 contribution to the form factor is studied at the first
time in the PQCD approach 3 To obtain Eq. (8), we have
defined an aux111ary DA gi(x) = [fdx'g,(x') with the

bound condition g} (x =0,1) = O, and used the following
Fourier transformations,

1 . 1 p X, p
— & —idn*—, S8, s 215
2 »? 2 (p 2)2 (x2)?
X X5 —i8n? < papﬁ>
—5 55 | Jup—4 ,
2 )\ T
xax/} _12” < pap/}>
& —5— 2 9
@ T ®

The Sudakov exponential from k; resummation, which
would be discussed in the next section, suppresses the
distribution of meson with wide transversal distance. We
can omit the transversal momenta terms on the numerator in
the large momentum transferred processes; then the second
term on the right-hand side of Eq. (8) vanishes, and the
contributions associated with twist-3 DAs and twist-2 times
twist-4 DAs reduce to

FZ(Q%)

16, o z/dzklrdzkl / /
- —a;
g W% (2n)? (27)? A2A2

L] o

: {—yfp,’? (*)@r (v)

The twist-4 contribution to the pion form factor has been
studied in the LCSRs approach, and the result indicates a visible
enhancement in the large Q? regions, which is understood by the
same asymptotic behavior ~1/Q* as the twist-2 contribution at
0% - o [17].

Ft2®t4,2p (Qz)

— d
) asﬂfﬂ/ (2r)? (2x)? / / yA2A2

Jooa) + (54 )ostiatv]. )

The gauge dependence proportional to transversal
momenta in two-parton-to-two-parton scattering is canceled
by the gauge dependence emerged in the three-parton-to-
three-parton scatttering [ 18]; then all the hard kernels in these
powers hold the gauge invariance, which in turn guarantees
the k; factorization formula for the form factor up to this
power correction. We here give a short review for the gauge
invariance. Generally speaking, the Feynman diagrams of
three-parton-to-three-parton scattering can be divided into
four categories by the number of the valence gluon N,
attached to the internal hard gluon line. The diagrams in
category A with N, = 0 do not bring the gauge dependence
since they can be regarded as being from an effective lowest
Fock state. The diagrams in category B contain one valence
gluon attached to a hard gluon, which is the main source of
gauge dependence. Category C collects the diagrams with
N, = 2 in which the configuration with the four-gluon vertex
is gauge invariant, and the amplitudes of the other configu-
rations with double three-gluon vertexes are also gauge
dependent. Besides these, the diagrams with the two valence
gluons scatter via a three-gluon vertex are also gauge invariant
and their amplitudes diminish by applying the Ward identity;
we put them in category D. The gauge dependence in
categories B and C then cancel with the gauge dependence
in two-parton-to-two-parton scattering by using the equation
of motion for the quark field. Itis also stated that the dominant
contribution in the three-parton-to-three-parton scattering
comes from the Feynman diagram with a four-gluon vertex
[18]. One of the reasons is that the nonvanishing hard kernels
in other diagrams are power suppressed at least by O(1/Q),
which can be read directly by writing down the hard kernel for
each diagrams, as done in Appendix B in Ref. [18] under the
Feynman gauge. Otherwise, in the PQCD approach the
momentum fractions of light quarks are usually shrunk into
the order x;, y; ~ O(107") (maybe a litter larger) by the
threshold resummation [19,20], a valence soft gluon attached
to the internal quark propagators introduces a power sup-
pression such as O(1/(y;Q?)), while the gluon attaches to
the internal hard gluon introduces, i.e., O(1/(x;y,0?)), and
then the naive order analysis of the momentum fractions give
another support.

We now consider only the gauge invariant diagram with
the four-gluon vertex in three-parton-to-three-parton scat-
tering,' whose contribution to the pion e.m. form factor
associated with the twist-3 DAs @3,(x;) is

4Two—parton—to—three—parton and three-parton-to-two-parton
scatterings are forbidden by the color transparency mechanism.
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16 Dzki Dzk/i l
F?SP(Qz) :?asﬂfg,,Qz/ (2”)2T (27[)2TA P

1 -y
X [ Dyigs(x)93:(Yi) 555 -
/0 e (5)030%) g3

(12)
We denote the momenta in three-parton scattering by
the oblique triangles to differentiate with the momenta
in two-parton scattering: A; = py — pr + ko, Ay = py —
k, —(p; —k;) and A; =k, — k,. The momenta carried
by the quark lines are k; = (x;p],0,k;;) and k, =
(0,y1p5. k) ) for the initial and final mesons, respectively,
and the antiquark lines carry momenta k; = (x,p;, 0, ks, )
|

~ {wwxi)w(yi) [A— (—2(1 -+ 2)+ 322 28

514,317(Q2 a,rm f2 Dzsz DzkllT /1
Q2
4
+ 5o =y + 201 -y)] -
ATA
204

A3
2

+ o) (vi)eL(x) [4 + iz

+ o005

To obtain Fi(Q?), the similar auxiliary DAs goH( x;) and
(pH( y;) are introduced,

X1
ol = [ dri ()
i — [ /
(ﬂ|()7i)=A dyy9)(y1.55.y3): (15)

with the bound conditions ¢)(x; = 0/1,x,,x3) =0 and
@ (y1,y2 = 0/1,y3) = 0, respectively.

III. THE PQCD FORMULAS

We start this section by discussing the end-point behav-
iors of the form factors. The form factor at leading power
F2(Q?) in Eq. (6) does not have the end-point problem due
to the exchanging symmetry when two valence quarks form
a pion in the perturbative limit. The leading contribution
with the quark-antiquark-gluon assignment F%” (Q?) in
Eq. (12) is also end-point safe due to the similar reason. The
end-point problems start to emerge at the subleading power
O(1/Q?), and appear in terms of the logarithm singularity

(1 Y1

=01+ S| + s o (alon] + o = a1}

and k, = (0,y,p5,k,,). The integral variables Dx; and
D?k;r in Eq. (12) can be written in the form

Dx; = dxdx,dx36(1 — x; — xp — x3),
D2kiT — dzled2k2T. (13)

It is easy to see that the contribution Fy~7(Q?) is at
subleading power (O(1/Q?)) when compared with the
leading twist contribution as given in Eq. (6). The con-
tribution in the three-parton-to-three-parton scattering asso-
ciated with twist-4 DAs is also first calculated and can be
written in the following form:

1 1
Dx; / Dy,———
o ATAAS

2 A% (A%) _yl))’sz

4

@(1 —y1)*[1+2(1 = x)]

(1= 3)[5(1 = y1)xa + 5(1 = 1)y = (1= y1)(1 —Xz)]]

2 2
(1 J(L=2xp) +

_% -1 i—%(l—)H)xz]

(14)

|
[i.e., the second term in Eq. (10) and the first term in
Eq. (11)] and the linear singularity5 [i.e., the first term in
Eq. (10) and the O(1/Q*) correction in Eq. (14)]. To
overcome the end-point problems, we recall the transversal
momentum for each external quark field to regularize the
singularity by the off-shellness k?, and make the resum-
mation for the large logarithm In(Q?/k%) (appearing in the
high order correction to hard kernel) to get the k; Sudakov
factor,

S(xpyib b )= [s <x,~%,b) —i—sq(b,u)]

i=12

+Z[<yl—b’>+s (b, )], (16)

i=1,2

where the terms s(Q,b) collect the double and single
logarithms in the vertex correction associated with an
energetic light quark [21-23], and the terms s, (b, ) come

We thank the referee for pointing out that the twist-2 times
twist-4 contribution in Eq. (11) should contain only the logarithm
singularity to ensure the collinear factorization at leading twist.
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from the resummation of the single logarithms in the quark
self-energy correction [15,24],

1 [n(u/A®)
sq(b,ﬂ)——Eln[ In(bA®) )]
fa [In2In(e/A)]+1 In[-2In(bAD)]+1
2ﬁ3{ In(u/A)) ~In(bA®) |’
(17)

Equation (17) is obtained by considering the strong
coupling at the two-loop accuracy, ff; = (33 —2n;)/12
and f, = (153 —-19n;)/24. We set the factorization
scale at the maximal virtuality in the hard amplitude
u =Max(1/b,1/b,,/yQ). The number of active quarks
is chosen as

ne(u)=Which[0<pu<m,3,m.<p<my,4,m,<p<m,5l;
(18)

the quark pole masses are m, = 1.34 GeV, m;, = 4.2 GeV,
and m, = 173 GeV. For the hadronic scale we take it from
PDG in the MS scheme [25] by considering the four-loop
expression of @, and the three-loop matching at the quark
pole masses,

A=Which[n, <3,0.332,3<n,<4,0.292,4<n,<5,0.210].

(19)

The longitudinal momentum fractions in the initial and
final state mesons also generate large logarithm (i.e., the
double logarithm a, In? x) in the end-point regions, which
is resummed in the convariant gauge 0 - A = 0 to all order
to produce a universal jet function [26-28],

o dt Crt
J(x) = —exp (ﬂa CF> / — (1 = x)*P() sin (aSF)
o T 2
a
- Cpt? ). 20
xenp(~ o) (20)

The jet function is factorized out from the meson wave
functions and is regarded as a part of the hard kernel. For
the sake of simplicity, we usually adopt the Sudakov factor
S,(x) to parametrize the jet function [29,30],

2I+ZCF( —|—C)
Val(1+c)

This parametrization satisfies the two fundamental proper-
ties of the jet function in Eq. (20) obtained by resolving
the running function: (a) it approaches O at the end points,
and (b) it satisfies the normalization condition in the
perturbative limit oy - 0 (¢ — 0). We remark here that

Si(x) = Pe(1 = x)]°. (21)

the threshold resummation happens only for the high twist
contributions, and the jet function modifies the shapes of
the high twist LCDAsS, especially in the end-point region, to
be proportional to x(1 — x) [as parametrized in Eq. (21)],
which then eliminates effectively the end-point singularity.

Considering the next-to-leading-order (NLO) QCD cor-
rection, the mixed logarithm In(¢?/k%.) In x appears in the
transversal-momentum-dependent (TMD) pion wave func-
tion,® and the variable (2 = 4(p - n)%/n* (p is the meson
momentum, and 7 is a vector deviated lightly from the light
cone n? # 0) brings the scheme dependence on a typical
choice of Wilson line. The joint resummation with oft-shell
Wilson line has been proposed to resolve this problem, and
the joint-resummed TMD pion wave function highlights
the moderate x and small b regions for the momentum
distribution [34], as a supplement to the conventional kp
and threshold resummations. Considering the complicated
expression of the joint-resummed wave function has a
minor impact on the pion form factor; in this work we
would still adopt the conventional pion wave function to
estimate the different power contributions by setting
& =0

The formulas in Eqgs. (16) and (20) are derived especially
for the two-parton-to-two-parton scattering, and they are
not available anymore for the three-parton-to-three-parton
scattering since the Sudakov factor associated with a
valence gluon must differ from that associated with a
valence quark. To evade the Sudakov factor for the valence
gluon that is still missing in the factorization theorem, we
consider only the effective Sudakov factor associated with
the most energetic quarks in the quark-antiquark-gluon
Fock state, and neglect the Sudakov factors associated with
the gluon and the soft quarks [18]. The approximation is
taken as’

S3(xi,y[,bi,/,¢):s((l—xl)%,bl +S<X2%,b2)

(0 50) (o ).
(22)

and the factorization scale is modified to

p=Max[1/by,1/by, 1/b), /(1 =y1)Q].  (23)

®Recently, a nondipolar gauge link for the TMD pion wave
function is suggested [31,32] to eliminate the pinched singularity
in the self-energy correction of the nonlightlike Wilson line. This
new definition is much simpler than the long-standing dipolar
Wilson lines with a complicated soft subtraction definition [33].
In this work we would not deal with the pinched singularity
problem because the NLO pion wave function with the nondipole
deflmtlon is still missing at subleading twist.

In fact, b, = b’, due to the Gaussion integral in Eq. (25).
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For the transversal component of the momentum integral, it is more convenient to do in the coordinate space, and the
Fourier transformation with two propagators reads

d*k - d*k’ 1 1
db2db’? —'k-b—'k’-b’/ 7= 217
/ dbexp(=iky by =Ky V) T G a KT (6 K,
—A bydb, b db|Ko(v/Bb,)[©(by — b)) Io(v/ab ) Ko(Vab,) — [by < b]]. (24)

Iy and Ky are the modified Bessel functions of the first and second kind, respectively; K|, is also called a Basset function.

For the contribution with three internal propagators, the transversal integral is revised to

/dedb/Zdedb/z eXp( lkl . bl - ikll . bll - lk2 . b2 - iklz . b/z)

1 1

(27)* (27)* (27)?
_ / " bydb, b, db,Ko(+/Bb,)[O(b

0

In the past twenty years, the PQCD factorization approach
has made much progress in the calculation for the NLO QCD
corrections.® Here we give a brief summary about the major
progresses for light meson form factors. The NLO calcu-
lation for the pion e.m form factor associated with two-parton
twist-2 and twist-3 DAs is carried out in Refs. [19,20],
respectively, following which, the NLO correction to time-
like pion form factor is obtained by the analytical continuum
technology [36,37]. Another important correction is for the
scalar pion form factor appearing in the factorizable anni-
hilation diagrams [38], which provides the dominate strong
phase in the PQCD approach to deal with two-body non-
leptonic charmless B decays. Recently the NLO calculation
has been done for the pz transition process to determine the
strong coupling g,., [39], and for the p form factors [40]. All
the calculations turn out that the convergency of perturbative
expansion is good in the considered energy regions, which
examines the prediction power of PQCD at the NLO level.
We include the QCD corrections in the following numerical
analysis for the two-parton-to-two-parton scattering, and
here we quote the NLO correction functions [19,20],

FP(Q?) =

(2r)? a+Kip+ (K1 —k)?y+ (K —Kky)?

| = B)Io(v/aby)Ko(vab,) - [b; <> b}]] / " BdbyKo(7by).  (25)

a,C 3
ngl)(xiyl, 0*) = 4—; [ 1 n@—lnle —Inx,
45 5 77
+§lnx1 IIIXQ—FZlnxl +EIHX2
In2 5 53
T e 26
Tttt 4} (26)
a,C 9 2 353 1
F;;)()Ci,[ Q2) :4—7: |:—Z n@—1—61n(x1x2) —gll’lz.)Cz
23 2 137, 2 337]
——Inx nx, — —
16 T T e T T Ty

(27)

IV. NUMERICAL RESULTS

The contributions to the pion form factor from the two-
parton-to-two-parton scattering and the three-parton-to-
three-parton scattering are rewritten compactly as the
following forms,

asﬂszz/ dx/ dy/ bydb, b} db} e=Sxiib-b')

{ym Jor )1+ FD e,y 1, 02)]H + 270yl ()gE )1 + FO(x.y. 1. D)

Q2

+ LRIy H, — (¥ =5 =25 +23)0%Hs — 1]5,(5)
T é 92 () 2n ()T5 Oy + 02(x) 920 ()7 O [Hy + M)
e 912 0) = 2n @) RFQX(H, + H +5(2 - x>Q2H3>nst<y>}, (28)

¥Besides the NLO QCD corrections, the power correction with high twist distribution amplitudes is also studied [35].
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700 = Sanfir [ Dx [y [ bidbibias sy i
: {% (1= y)@32(x) @3, (i) H + 5= 2Q2 [0 ()| () [(=4(1 = y1) + (1 = y1)y2) O*Hy + 5(1 = 1) 72 0*H5]
0] 0 )M+ (1= 3 @M, — (1= x0)(1 = 3) @My + (1 = ) (1 =y )5, 0]
0100050911 =30, 311 =350 + 1 (e ()30 + [ = (29)

The hard functions appearing in Eqs. (28) and (29) can be written in terms of the Bessel functions,

H(a, B, by by) = Ko(/Bb))[©(by — by)Io(Vab ) Ko(Vaby) — [by < b]]. (30)

Mo by, ) = Koly/0%) [%@(bl - ) Io(vab] Ky () - by < ]| G1)
Ha(a. B, by, b)) = Kl (VBB)[O(by — b)Io(vabi)Ko(vaby) — by < bi]], (32)
My B.b1, b)) = 2K, (/Bb) [ by = Bl s (V) - b1 < . (33)

HG B 7.1, B bs) = Ko(y7b2) Ko/ BB, OBy — B, (V@b Ko(Vby) = [by < B (34
M 751, B ba) = Koly/7b2)Ko(V/FB)) [2‘;07%1 ~ IV (V) = [y < 0f)]. 69
Hy(od, By, by, by, by) = 2? (Vb)) K1 (V/B'D)[O(b) — b))y (Va' b)) Ky(V'by) — [by < ], (36)
Hy (o, By, by, b, by) = —= f {(V7b2) Ko (VD) [O(by — b)) (Vb)) Ko(Valby) — [by <> b]). (37)

To obtain the above expressions, we have defined the following denotation for the internal virtuality,

yO:, =330
( )Qz’ ﬁ/E(l_xl)(l_yl)Qz’ yEXZyZQZ' (38)

TABLE I. Hadronic parameters for 7 and K meson DAs in our evaluation.

r u=1GeV K u=1GeV Remarks /Refs

[ 0.13 fx 0.16 In units of GeV, [25]
mg 1.9 mK 1.9 In units of GeV, [41,45]
af 0 ak 0.064 4 0.0041 [46]

ajs 0.13 +0.028 aX 0.12 +0.025 A, =0, [46]

far 0.0045 + 00015 fak 0.0045 + 0.0015 In units of GeV?2, [47,48]
W3, -1.54+0.7 w3k -1.240.7 [48]

Asg 0 A3k 1.64+04 [48]

52 0.18 +0.06 5% 0.20 £ 0.06 In units of GeV?Z, [48-50]
W4y 0.20 +0.10 Wag 0.20 +0.10 [45,48]

Kiz 0 Kak —0.12+0.01 [45,48]
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FIG. 1.

For the form factor of kaon, we simply make the replace-
ments f, — fx, m& — m& and also for the nonperturbative
parameters in meson DAs. The power expansion is
shown explicitly in Egs. (28) and (29), which reads

O( 1):0(2—;):0(2—%):0(%):0(5—%) corresponding to the

contributions associated with leading twist, two-parton
twist-3, twist-2 times twist-4, three-parton twist-3 and
twist-4 DAs, respectively.

We take the PDG value in,(2 GeV) = 9613 MeV cor-
responding to /(1 GeV)=125"1"MeV. The well-known
chiral perturbative theory relations [41]

2
R=—"0 244415,
m, +my
2 2
- 4
Q=" (”;’“ + ”;d) 4 271087 (39)
md —_ mu

are used to determine the chiral masses of light mesons,

ZR 2
R "k (40)

2_ )
m[l + 7 (1= 55

mﬂ
07 2my

without involving the light quark masses m, and my,
because we neglect them elsewhere besides in m§ and
mf. The parameters for meson DAs chosen for the
numerical evaluation are listed in Table I, in which the
Gegenbauer moments a3, aX, af are evaluated from LQCD
with the new developed momentum smearing technique

[42]; all others are calculated from QCD sum rules.’

’Recently, the feasibility of calculating the pion DAs from
suitably chosen Euclidean correlation functions at large momen-
tum was investigated; this method allows us to study higher-twist
DAs from LQCD [43,44], and the result for the parameter &2
consists with it estimated from QCD sum rules, even though the
systematic errors are still not yet under control.

1.0F

0.8}
_ W T2-2P
o o06f |mT3-2p
Ty W T24-2P
o
o W T3-3P

04T |mr43p

M Total
0.2}
0.0F
5 10 15 20 25 30
Q%(Gev?)

Pion (left) and kaon (right) form factors calculated in the PQCD approach.

Our prediction of pion and kaon form factors is illus-
trated in Fig. 1, where the contributions from different
powers are shown separately. The contributions at leading
(red dashed-curves) and subleading twists (blue dotted-
curves) with two-parton-to-two-parton scattering have been
included in the NLO QCD corrections [19,20]. The chiral
enhancement at twist 3 is shown evidently, and this
effect for kaon form factor is stronger than that for the
pion form factor. We define a ratio between the subleading
and the leading twist contributions as Rp(Q?) =
FI?(Q?)/F*~?(Q?) with the notation P = 7 and K, and
take the deviation of their relative magnitude from the unit
A=1-R,(Q*)/Rg(Q?) to estimate the SU(3) asymme-
try. The result shows that this asymmetry does not exceed
30% in the considered energy region and vanishes in the
perturbative limit. Figure 1 also indicates explicitly the
power behavior as we claimed below Eq. (38): the con-
tributions from three-parton Fock states are at least 1 order
lower than the leading contribution from the lowest Fock
state in the larger energy regions Q% > 10 GeV?, while the
twist-2 times twist-4 contribution in the two-parton-to-two-
parton scattering is a litter bit larger than the contribution
from three-parton-to-three-parton scattering, but they are
still in the same order.

As listed in Table II, we compare our PQCD predictions
with the LCSRs results [6,17] at the energy point
0? = 10 GeV?, where the theoretical error in our calcu-
lation mainly comes from the input of the DAs; the two
sources of uncertainty in the LCSRs approach are the DA
inputs and the parameters of the approach itself. We do not
consider the scale dependence of the nonperturbative
parameters since this effect should be very small in the
large energy regions. We find that the prediction of the pion
and kaon form factors is comparable in the chosen energy
point within the uncertainty, and the difference between the
numerical results obtained in these two approaches
becomes smaller when Q7 is increasing.
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TABLE II. The PQCD and LCSRs predictions for the values of Q?F, x(Q?) at the point Q% = 10 GeV2.

0?(GeV?) 0’ F9"(0%)

QZF%CSRS (QZ)

QZF];(QCD(Qz) QZFI;(CSRS(Q2)

10 0.75(10)

0.51(15)

1.08(15) 0.76(22)

V. CONCLUSION

We study the pion and kaon electromagnetic form factors
with the inclusion of the high power contributions up to
twist 4 of the meson DAs; the PQCD calculation confirms
the convergence behavior of the twist expansion, which
shows that the contribution from the three-parton Fock state
is at least 1 order of magnitude smaller than that from the
lowest Fock state. The chiral enhancement of the sublead-
ing power contribution depends strongly on the corre-
sponding DAs, and this effect is quite obvious in our choice
of the conformal expansion of twist-3 DAs. The direct
comparison between the contributions to the pion and kaon
form factors from the two-parton-to-two-parton scattering
indicates that the SU(3) asymmetry is no more than 30% in
the considered energy region. Because the current lattice
QCD evaluation and experiment measurement of the meson
form factors is still in the small Q2 region, our calculation
cannot interplay directly with them now; we look forward
to seeing more data in the intermediate energy regions at
Jefferson Lab with the 12 GeV upgrade program, with
which the precise PQCD predictions presented in this paper
can be forwarded to extract the nonperturbative parameters
of meson DA, i.e., the moments in Gegenbauer expansion.
We compare our results with the predictions from the
LCSRs approach at the fixed energy point, and find the
parallel prediction power of these two approaches.
The further improvement in this project is to combine the
precise measurement of the timelike pion and kaon form
factors in the resonance energy regions with the PQCD
calculation at the large energy regions, in order to deter-
mine the meson distribution amplitudes.
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APPENDIX A: DEFINITION OF THE
DISTRIBUTION AMPLITUDES

LCDAs for a pseudoscalar meson with quark-antiquark
assignment are defined by the nonlocal matrix element
sandwiched between the meson state and vacuum [48,51],

(0li(z2)(r,75)q(z1)|P~(p))

1 X -
=fPA«ueﬂWWWQ&Qmewwa—@fmﬂm1

Pp(Z1 _12)2
+ |:(Zl -2), —m] 9273()6)}’ (A1)
(0a(z2)(0:r7s)q(z1)|P~(P))
= megAl dx e”¥PU~ixpn <1 - (IZ;:)2>
X [p(z1 = 22)r = P" (21 = 22) Jop (%), (A2)
(Oi(z2) (irs)q(z1)|P~(p))
1 . -~
= o [ axer g ), (A3)

where fp is the decay constant, mZ)D is the chiral mass of the
pseudoscalar meson, and @p, (pg’”, and g,p,p correspond
to the DAs at twist 2, twist 3, and twist 4, respectively.

For the quark-antiquark-gluon assignment, the DAs are
defined with the matrix element with the gluon field
strength tensor operator G = g,G¢,A%/2,

p(0li(22)(04075)Gre (20)a(21)| P~ (P))
= if3P / Dxie_ixlpzl—iX2P22—iX310 [(pkpfgk’f’ - pKIpTgKT/)

- (pkpr/gx’r - pKIpT/gkf)](p3P(‘xi)’ (A4)

P {0]a(z2)(7,75)Giw (20)q(21) P~ (p))
:fp/Dxie—ixlﬁzl—ixzﬂzz—ixﬂo

pK'(Zl - ZZ)K’ - pK’(Zl - ZZ)K
p(z1—22)

x {P,) @) (x;)

+ (GePe = G Pe)PL(X:) | (A5)

pH{0]it(22)(7,) G (20)9(z1) P~ (p))

:fp/Dxie—ixlpz]—ixzpzz—ixﬂg

P21 = 22) ¢ — P (21 — 22), .
X Xi
{pp p(z1 = 22) (pH( )

+ (GoxPw = Gy P)PL(x3) | (A6)
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where G =1/ 2€m</m/G" , the location of gluon file
strength is at zy = vz; + vz, with the free variable
v € [0, 1], @3p is the twist-3 DA, and @, @), are twist-

4 DAs. When g = d, s, the meson P = x, K, respectively.

APPENDIX B: EXPRESSIONS OF THE
DISTRIBUTION AMPLITUDES

LCDAs can be obtained by using the conformal partial
expansion, and the most familiar expression is the leading
twist DAs written in terms of the Gegenbauer polynomials,

(X, ) —6xea ) (2x - 1). (B1)

Two-particle twist-3 DAs are related to the three-particle
DA ¢3p(x;) and also to the leading twist DA ¢p by the
QCD equation of motion (EOM), the parameter p” =
(m, +m,)/ m} is introduced to reflect the quark mass
terms in the EOM, and in our calculation we only take into
account the strange quark mass, neglecting the u, d quark
masses unless in the chiral masses m},. To next-to-leading
order in conformal spin and to the second moments in
truncated conformal expansion of ¢@p, we get

P

oh(x.p) = 1+ 3pP(1 = 3aT + 6a])(1 + Inx) —% (3 = 27aP + 54aP)CV*(2x - 1)

9
+3(10n5p = p7(aF = SaE)CY* 2= 1)+ (10mspip = 3P )€Y 1)

= 3nspwspCy (2x = 1),

P
P (x, ) = 6x(1 —x){l +%(2 —15a} +30a) + pP (3(1713 -

1
T3 (13p(10 = w3p) + 3p”a

+3p"P (1 = 3al + 6a}) lnx},

1
p3p(x;) = 360x1x2x3{1 + A (01 =) +o3p 5 (Tx; = 3)}9

where the contributions from the three particle and from the
two particle by the EOM are separated clearly, the three
parameters f3p, A3p, @w3p can be defined by the matrix
element of local twist-3 operators, and their evolution has
the mixing terms with the quark mass [48].

1 x
sttt
2 Jo

Gp(x) =

gip(x) =

(B2)
—Sag’)cf/z(zx— 1)
ab) 3P (2x = 1) + nypApCy (2 = 1)
(B3)
(B4)

For the two-particle twist-4 DAs, the definition consid-
ered in the strictly light-cone expansion in Eq. (A1) is more
convenient to be used in the QCD calculation, and their
relations to the invariant amplitudes y4p, ¢4p defined in the
Lorentz structure are

%mwwlwwmw. (B5)

The relations between different operators by EOM indicate that these Lorentz invariant amplitudes are written in terms of
the “genuine” twist-4 contribution from the three-particle DAs ¢ (x;), ¢, (x;) and the Wandzura-Wilczek-type mass
corrections from the two-particle lower twist DAs, distinguishing by parameters 5% and m% respectively. The corrected

expressions are [45]

20 49
virts) = 53[5 e 1+ Bapelee-)

18
+ m%{6pp(1 —3al 4+ 6a)CY*(2x - 1) — {? al +3pP(1 = 9aT 4+ 18a%) + 12K4p} Cl*(2x-1)

18
+ 2 -6pP(al = 5al) + 6035 Cy* (2x — 1) + <? al’ —

9
+ (Z a, — 6’73736037>> ?(2x

)} +6m2(1 —3al +6a5) Inx,

16
9pPaj + = Kap + 207737>/137>> Cy?(2x - 1)

(B6)
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200
Pap(x) = 6%{ <— +196(2x — l)af>x2)"c2 + 21wgp (xx(2 4 13xx) + [2x3(6x% — 15x + 10) Inx] + [x <> ¥])

3

—14al (xx(2x = 1)(2 = 3x%) — 2x3(x = 2) Inx] + [x < )_CD}

+ m%{lfkw(x(zx —x)(1 —2xX) + [5(x —2)x* Inx] — [x < X])

+ dn3pxx[60% + 10435 ((2x — 1) (1 — xX) — (1 = 5x%)) — w3p(3 — 21xX + 28x%x> + 3(2x — 1)(1 — 7xX))]

36

5 4

+ 4xx(1 + 3xX) (1 +§(2x - 1)a§’) }

1
-—adb (—x)'c(4 —9xx + 110x%x%) + [x*(10 — 15x + 6x?) Inx] + [x < )‘c])

(B7)

with n3p = fap/(fpm}). It is noticed in Eq. (B6) that w4p(x) has a logarithm end-point singularity for the finite quark
mass, while this singularity does not exist in ¢,p(x). The conformal expansion of three-particle twist-4 DAs reads

21 7
v (x;) = 120x,x,x3 {6%3 {? (x1 = x0)mgp + 20

1 7
l//l(x,-) = 30)(%{5%3 |:3 (.X] —xz) +E

9 1
al(1- 3x3)] + m3, [—2—0 (x; = xp)al + §K47):| } (B8)

21

al (=x3(1 = x3) +3(x; = x2)%) + — wyp(x; —x5)(1 — 2)@)}

4

9 1

+ mp(1 - x3) [E (X1 —x) = §’<47>] } (B9)
) (1T, 2
@) (x;) = —120xx,x30% 3t74 (x1 = x2) +§604P(1 —3x3) ¢, (B10)
) N 7 5 21
l//J_(.X'i) = 30)(3 573 g(l —)C3) —Eal (.X'l —Xz)(4X3 - 3) +Zw4p(1 —)Cg,)(l - 2)(73)

2|9 pio oy 1
Hmp | 5@ (0] = A+ x) =2 (- )k | o (B11)

in which three nonperturbative parameters 6%, @ p, k4p are introduced. We close this section by noticing that all parameters
in the conformal expansion of DAs have the scale dependence and the behaviors of their evolutions can be found in
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