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The measurement of the charge asymmetry AFBðe−eþ → μ−μþÞ will play an important role at the
high-luminosity circular electron-positron collider FCCee considered for construction at CERN. In
particular, near the Z resonance,

ffiffiffi
s

p
≃MZ � 3.5 GeV, AFB will provide a very precise value of the pure

electromagnetic coupling constant αQEDðMZÞ, which is vitally important for overall tests of the Standard
Model. For this purpose, AFB will be measured at the FCCee with an experimental error better than
δAFB ≃ 3 × 10−5, at least a factor of 100 more precisely than at past LEP experiments! The important
question is whether the effect of interference between photon emission in the initial and final state (IFI) can
be removed from the AFB data at the same precision level using perturbative QED calculations. A first
quantitative study of this problem is presented here, with the help of the KKMC program and a newly
developed calculation based on soft photon resummation, matched with NLO and NNLO fixed-order
calculations. It is concluded that a factor of 10 improvement with respect to the LEP era is obtained. We
also present a clear indication that reducing the uncertainty of charge asymmetry near the Z peak due to IFI
down to δAFB ≃ 3 · 10−5, i.e. the expected experimental precision at FCCee, is feasible.
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I. INTRODUCTION

At the future high-energy high-luminosity circular
electron-positron collider FCCee [1–3] proposed for
construction at CERN, the measurement of the muon
charge asymmetry Aμ

FB ¼ AFBðe−eþ → μ−μþÞ will play
an additional important role. Near the Z resonance,ffiffiffiffiffi
s�

p ≃MZ � 3.5 GeV, the measurement of Aμ
FB may

provide a very precise value of the pure electromagnetic
coupling constant αQEDðMZÞ, which is vitally important for
overall tests of the Standard Model (SM), especially for the
SM prediction of sin2 θleff andMW [4], at a precision level at
least a factor of 10 better than presently. This kind of the
measurement of αQEDðMZÞ was proposed and analyzed
in Ref. [5].
QED interference between photons emitted from the

initial and final charged leptons (IFI) had to be taken
into account in past measurements of the charge asym-
metry Aμ

FB (forward-backward angular asymmetry) at the

electron-positron colliders LEP and SLC. Let us abbreviate
Aμ
FB ≡ AFB. In overall tests of the SM, the measurement of

AFB contributed mainly to knowledge of the Z couplings
and/or the effective electroweak mixing angle sin2 θleff [6].
Thanks to the very high luminosity of the FCCee [1], the

charge asymmetry AFBðMZ � 3.5 GeVÞ will possibly be
measured with an error δAFB=AFB ≃ 3 × 10−5 or even better
[2,5]. This immediately poses the question of whether the
effect of QED initial-final interference can be removed
from the data at the same precision level. How big is the
effect of IFI in AFB? Far from the resonance, it is about 2–
3% and it is even bigger for a tight cutoff on the total energy
of the emitted photons. At the top of the Z resonance, where
AFB was measured most precisely in the past LEP experi-
ments, the IFI effect is suppressed by the ratio ΓZ=MZ to
the level of δAFB ∼ 0.1%, due to the long time separation
between the creation and the decay stages of the Z
resonance, as elaborated in many LEP era works, see
Refs. [7–12]. As we shall see in our analysis, atffiffiffi
s

p
≃MZ � 3.5 GeV, the same ΓZ=MZ suppression of

IFI in AFB still works to some extent, but the IFI effect
is nevertheless at the δAFB ∼ 1% level, and growing for
tight cutoffs, in spite of partial cancellations in the differ-
ence between values at

ffiffiffi
s

p
≃MZ � 3.5, as already noticed

in Ref [5].
This effect is huge with respect to the planned exper-

imental precision at FCCee, and it would render measure-
ment of the AFBðMZ � 3.5 GeVÞ completely useless unless
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the theoretical evaluation of IFI is equally precise! Note that
in the LEP data analysis, a cutoff on the total photon energy
was imposed by requiring a minimum value of the effective
mass of the muon pair, Mμ−μþ , or a maximum acollinearity
angle, which was translated into an upper limit on the total
photon energy Etot

γ =s1=2 varying between 0.5 to 0.998 (see
Table 2.1 in Ref. [6]). Due to the higher precision of the
FCCee, a stronger cutoff probably will be preferred in order
to minimize the background from hadronic and tau pair
channels, and for better control of the angular dependence
of the muon detector efficiency.1 Also, theoretical control
over IFI may be better for a stronger cutoff (in spite of its
larger size) thanks to the power of soft photon resummation
and a better elimination of the four fermion contributions.
For this reason, we will use a photon energy cutoff
Etot
γ =s1=2 ≤ 0.2 or stronger.
How precise are the theoretical evaluations of the effect

of IFI in AFB presently available in perturbative QED? In
the pre-LEP era, Oðα1Þ fixed-order calculations were
quoted to provide ∼0.3–0.5% precision; see the review
of Ref. [7]. In the LEP1 phase near the Z resonance, thanks
to ΓZ=MZ suppression, the IFI effect in AFB at the Z peak
was not a burning issue. For instance, in the work of
Ref. [10] used in the final data analysis of LEP1 of Ref. [6],
the calculations of the IFI effect were done using ZFITTER

[13] and TOPAZ0 [14,15] programs, cross checking them
with the KORALZ Monte Carlo [16,17].
In all these calculations and programs, the treatment of

IFI was at the Oðα1Þ fixed-order level, without soft photon
resummation. Pioneering work on the resummation of soft
photon effects near a narrow resonance, including resum-
mation of lnðΓZ=MZÞ, was already done earlier by the
Frascati group, see Refs. [18–20], but it was not exploited
in the above studies, mainly because they did not include
hard photon effects in a realistic way.
Significant progress on the IFI issue was made just

before the end of the LEP era, with the advent of new
method of the soft photon resummation matched with
fixed-order QED corrections up to Oðα2Þ and electroweak
(EW) corrections up to Oðα1Þ, the so-called coherent
exclusive exponentiation [12,21] (CEEX) and its imple-
mentation in the KKMC program [22]. The CEEX imple-
mentation in KKMC has included all the advances of
soft photon resummation of the IFI contributions of
Refs. [18–20] relevant for narrow resonances.2 The SM
predictions of KKMC for AFB and other experimental
observables were possible for arbitrary event selections
(cuts), because KKMC is a regular Monte Carlo (MC) event
generator. Correct matching of the Oðα1Þ IFI contributions
with other non-IFI corrections up to complete Oðα2Þ QED
and Oðα1Þ electroweak was implemented throughout the

entire multiphoton phase space, including any number of
soft and hard photons.
The CEEX/KKMC calculation was instrumental in the

analysis of LEP2 data above the Z peak and near the WW
threshold, and helped to consolidate data analysis of
e−eþ → ff̄ processes near the Z peak. The precision of
the IFI calculations quoted at the end of the LEP era was
δAFB ≃ 0.1% at the Z peak and δAFB ≃ 0.3% far away from
the Z resonance; see Refs. [10–13,23]. These papers
represent the state of the art in the perturbative QED
calculation of the IFI contributions to AFB until the
present day.
The KKMC precision tag on the IFI calculations, both

near the Z peak and away from it, was more than sufficient
for analyzing all LEP experimental data at the end of the
LEP era. However, this precision was quite clearly under-
estimated, i.e. most likely it was far better. However, it was
difficult to better quantify the theoretical uncertainty of the
IFI prediction of KKMC, because there was no other
calculation at a similar level of sophistication to compare
with. One of the main aims of this work will be to develop a
new alternative numerical calculation of the IFI contribu-
tion, in order to compare with KKMC and quantify theo-
retical uncertainties of the IFI component in AFB at the
precision level higher than presently available.
Generally, one may be quite skeptical whether an

improvement of the QED calculation of IFI in AFB from
the LEP-era δAFB ∼ 10−3 down to δAFB ∼ 10−5, i.e. by a
factor of 100, is feasible at all! However, there is an
interesting precedence—the prediction of perturbative
QED for the Z line shape also progressed by a similar
factor from the time before LEP started until the end of the
LEP era. This was possible mainly due to soft photon
resummation techniques. The use of these techniques is
again critical for the present task of improving the QED
calculation of IFI in AFB. The aim of this paper is to check
how far we can advance on the road to the precision
required for FCCee.
Let us stress that present work is not a progress report on

the development of KKMC, simply because KKMC remains
the same as in 1999. It is, however, definitely a progress
report on the understanding of the IFI contribution, thanks
to several newly developed analytic calculations imple-
mented in the new computer code KKFoam and a wealth of
numerical results for various kinds of matrix elements,
phase space integrations, cutoffs, etc. This work will have
to be continued in the future, including possible upgrades
of the matrix element in KKMC, and/or development of new
MC programs even more sophisticated than KKMC.
Finally, in view of the growing interest in the higher

order SM calculations which would match the very high
precision of the FCCee experiment [4,24], it is important to
note that the CEEX methodology of photon resummation
and matching with fixed-order nonsoft QED and EW
corrections also addresses some important issues in the

1P. Janot, private communication.
2In particular, resummation of lnðΓZ=MZÞ was included.
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QEDþ EW perturbative calculations, beyond what was
typically done for the LEP data analysis, as quoted above.
The basic issue is that of the separation of QED and pure
EW parts of the SM in the perturbative expansion. This is
necessary, because QED corrections are larger, and their
soft part has to be resummed to infinite order while the
nonsoft part must be included up to Oðα4Þ, while the
perturbative series for more complicated EW corrections
can be truncated earlier, at Oðα2Þ or Oðα3Þ [24].
In the calculations for LEP data analysis (see [10] and

other Refs. quoted above), the issue of separating QED and
EW parts was not a critical one, because resummed higher-
order QED was typically confined to the initial state
radiation (ISR) effective radiator function, and in the
remaining Oðα1Þ calculations, the QED and EW parts
enter additively, and thus are well separated [except of
negligible IFI which was controlled up to Oðα1Þ]. Beyond
Oðα1Þ, the QED and EW parts often enter multiplicatively,
for instance in 2-loop graphs with one loop involving
photon exchange and another loop with massive bosons or
fermions, or one loop of pure EWorigin with a hard photon
emission insertion. The CEEX technique provides for clear
methodology of separating/factorizing QED and EW parts
at any order.
Omitting algebra which can be found in Refs. [12,21],

the main points of CEEX methodology can be summarized
as follows:

(i) In the first step of the factorization of the infrared
(IR) factors at the amplitude level, for any group of
multiloop graphs with one photon insertion, the IR
part is subtracted at the amplitude level using a well-
known (1-loop) function defined in the classic
Yennie-Frautschi-Suura work [25] times a finite
contribution one order lower without a photon
insertion. (A similar procedure applies for multiloop
corrections with two and more photon insertions.)
The remaining finite non-IR remnant will be used in
the next step. Similarly, for any group of real photon
insertions into a given multiloop diagram with pure
EW content, one subtracts, at the amplitude level, a
well-known eikonal factor times a basic diagram
with pure EW content.
A similar well-defined procedure applies for

amplitudes with more real and virtual photon in-
sertions. The first step is finalized by constructing
spin amplitudes for an arbitrary number of real
photons distributed over the entire phase space in
which non-IR remnants after IR subtractions are
reinserted in a well-defined way, while IR virtual
factors are exponentiated and explicit IR-divergent
eikonal factors are ready for MC integration in the
next step.3

(ii) The second step of resummation, that of squaring
spin amplitudes, spin summation and phase space
integration, is done numerically in the Monte Carlo
event generator. (There is no possibility of doing it
analytically.) In the above CEEX scheme, the bulk
of the IFI contribution is present in the resummed/
exponentiated realþ virtual form-factor and in the
interferences emerging from squaring multiphoton
spin amplitudes. Smaller contributions will remain
hidden in the nonsoft finite remnants.4 The treatment
of the nonfactorizable γγ and γZ Oðα1Þ boxes in the
above resummation scheme can be seen explicitly in
Eqs. (29), (33) for the matrix element in KKFoam
and in Eqs. (21–24) of Ref. [22] for the CEEX
matrix element in KKMC.

A somewhat more detailed overview of the CEEX
factorization and resummation in QED is given in
Secs. C.2.7 and C.3 of the recent review [24], while
complete details can be found in Refs. [12,21,22]. The
above CEEX factorization and resummation of the univer-
sal QED corrections will work equally well for extensions
of the SM (BSM), provided the BSM predictions are
formulated at the amplitude level. So far, KKMC for the
e−eþ → ff̄ þ nγ process is the only implementation of the
CEEX scheme. In Ref. [26], it is argued that in the context
of the FCCee project, it is urgent to implement it also for
the Bhabha process.
The so-called deconvolution of QED effects from LEP

experimental data which was instrumental in the construc-
tion of pseudo-observables [6,10] can also be reorganized
using the CEEX technique. In the LEP version, it was done
using ZFITTER, TOPAZ0 and KORALZ, and it was proven to be
acceptable within the LEP precision goals [10], but the
validity of this procedure is not automatically granted for
FCCee precision. In Sec. C.3 in Ref. [24], a proposal is
made for extending it to higher precision by exploiting the
CEEX factorization and resummation scheme in the MC
implementation. An updated discussion on the same theme
is also included in Sec. 5.7 of a more recent paper,
Ref. [27]. Validation of a more powerful scheme of
removing QED effects from experimental data at the
precision level of the FCCee experiments will require a
lot of numerical studies of the type done in Ref. [10], and
most likely the development of the MC programs more
powerful and versatile than KKMC.
The plan of the paper is the following: Sec. II explains

the origin and character of the IFI effect in the angular
distribution of the e−eþ → μ−μþ process.
Section III describes a new partly analytic, partly

numerical calculation in the semisoft approximation and

3Collinear contributions giving rise to nonsoft mass logarithms
are included order-by-order in the present version of CEEX.

4For instance, spin amplitudes of the γ − Z box are split into an
IR-divergent part, which is moved to an exponentiated form-
factor, and the remaining IR-finite remnants are incorporated in
the multiphoton spin amplitudes.
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its software implementation, KKFoam. “Semisoft” means
that the upper limit on the total photon energy is smaller
than the total center-of-the mass energy s1=2, but in the
presence of narrow resonance Z it can be smaller or bigger
than ΓZ=MZ.
Multiphoton spin amplitudes (spin amplitudes) are

defined (Sec. III A), in such a way that they reproduce
the CEEX matrix element in the semisoft regime. Squaring
and summing spins is also done analytically, and finally, a
phase space integration over photon angles and energies is
also performed analytically keeping total real photon
energy fixed (Secs. III B and III C). Multiple sums over
photons and phase space integrations are done (exactly) in a
straightforward way, with a minimal use of Mellin-Fourier
transforms.5

The IFI effect appears in the resulting muon angular
distribution. The final analytic result involves a fourfold
convolution over radiator functions of the initial state
radiation (ISR), final state radiation (FSR) and two func-
tions due to initial-final state interference (IFI) (Sec. III C).
The remaining integration over the phase space is delegated
to a numerical Monte Carlo method.
Validity of the formula is formally extended to the full

phase space, such that the ISR and FSR radiator fun-
ctions can be upgraded with the known nonsoft QED
contributions up to Oðα2Þ (Sec. III D). Electroweak
Oðα1Þ corrections are also included at the same level
as in KKMC, that is using the DIZET library [28]. The
remaining 5-dimension integration over the fourfold
convolution and muon angle is slightly reorganized for
numerical integration (Sec. III E) using the universal
FOAM MC tool [29,30] for integration and simulation.
The resulting MC generator KKFoam is ready for use
in Sec. IV.
With all the above distributions and technicalities in

place, a wealth of numerical results produced by KKMC and

KKFoam is presented in Sec. IV. In particular, in Sec. IV C
it will be checked in the calibration exercise that for the
matrix elements with resummation and without IFI, the
three programs KKMC, KKFoam and KKsem agree within
∼10−5 precision for σtot and AFB. Note that in the case
where IFI is switched off, this kind of comparison of KKMC
with the numerical tool KKsem based on analytic expo-
nentiation was already done in Ref. [12]. The new thing
here is the inclusion of the IFI.
In Sec. IV D, the IFI effect in AFB will be examined for

three energies
ffiffiffi
s

p ¼ 10, 87.9, 94.3 GeVas a function of the
cutoff on total photon energy, comparing results of KKMC
and KKFoam. In Sec. IV E, we shall focus on the difference
of AFB between

ffiffiffiffiffi
sþ

p ¼ 94.3 GeV and
ffiffiffiffiffi
s−

p ¼ 87.9 GeV,
which is directly related to the measurement of αQEDðMZÞ.
Sections IV F and IVG will be devoted to estimating
higher-order QED uncertainties by means of comparing
results for AFB for several variants of the QED matrix
element in KKMC.
Section V summarizes the results, focusing on the

uncertainties in the QED calculation of the IFI effect
in AFB.
Three Appendices include details of the analytic

phase space integration in the semisoft approximation
(Appendix A), the kinematical mapping used in
KKFoam for the four-fold convolution (Appendix B) and
a recollection of some oldOðα1Þ analytic formulas without
exponentiation (Appendix C) to be used in the numerical
studies in Sec. IV.

II. THE PHYSICS OF IFI

Any efficient evaluation of IFI in perturbative QED
must be based on a good understanding of the basic
physics governing this phenomenon. Let us consider the
process e−eþ → μ−μþ accompanied with any number
of real and virtual photons, illustrated schematically in
Fig. 1. In the case of final fermions emitted at wide angles,
IFI can be neglected, and in the case of total photon
energy (ISRþ FSR) limited toK < E ¼ ffiffiffi

s
p

=2, the angular

μ

ee

μ

+

+

−

−
p

q

1

p

q

2

2

1

ikθ

ph
ot

on
s

−1 0 1

d σ/  Ωd

cos θ

IFI off

Δ

FIG. 1. Multiple photon emission at a wide scattering angle.

5Mellin transforms are used merely as generating functionals
for reorganizing combinatorics of the multiple sums over
photons.
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distribution is uniformly lowered by a θ-independent
Sudakov form factor,6

dσ
dcosθ

ðKÞ≃dσBorn
dcosθ

exp

�
−
Z

E

K

dk0

k0

�
2
α

π
ln

s
m2

e
þ2

α

π
ln

s
m2

μ

�
virt

�

¼dσBorn
dcosθ

e−ΔðK=EÞ: ð1Þ

The above relation is illustrated schematically in Fig. 1.
Photon emission is, however, suppressed in the small-

angle limit θ → 0, as illustrated schematically in Fig. 2,
simply because the outgoing muon inherits most of the
electromagnetic field accompanying the incoming electron
of the same charge as the muon; hence there is no need
for the compensating action of bremsstrahlung. In fact,
bremsstrahlung dies out completely at θ ¼ 0, and it is
the IFI contribution which kills both ISR and FSR. The
virtual form factor in the angular distribution at t → 0,
s − jtj − juj ¼ 0, juj → s becomes

Δ ¼
Z

E

K

dk0

k0

�
2
α

π
ln

s
m2

e
þ 2

α

π
ln

s
m2

μ
− 4

α

π
ln

jtj
juj

�

→
Z

E

K

dk0

k0

�
2
α

π
ln

jtj
m2

e
þ 2

α

π
ln

jtj
m2

μ

�
≃ 0: ð2Þ

On the other hand, in backward scattering, illustrated
schematically in Fig. 3, the situation is completely differ-
ent. The electromagnetic field accompanying e− has to be
replaced by that of μþ, hence the violent compensating
action of the bremsstrahlung is much stronger than for
wide angles. Here we have u → 0 (c → −1 side),
s − jtj − juj ¼ 0, jtj → s. Thus, IFI enhances the total
QED correction by a factor of 2:

Δ ¼
Z

E

K

dk0

k0

�
2
α

π
ln

s
m2

e
þ 2

α

π
ln

s
m2

μ
− 4

α

π
ln

jtj
juj

�

→
Z

E

K

dk0

k0

�
4
α

π
ln

s
m2

e
þ 4

α

π
ln

s
m2

μ

�
; ð3Þ

creating a dip in the muon angular distribution for back-
ward scattering (in the presence of a cutoff on the total
photon energy, as shown previously).

ee+ −

μ−

μ+

−1 0 1

d σ/  Ωd

cos θ

No cut

Photon energy cut

Δ

FIG. 3. Multiple photon emission at a backward scattering angle.

ee+ −

μ −

μ+

−1 0 1

d σ/  Ωd

cos θ

IFI on

Δ

FIG. 2. Multiple photon emission at a forward scattering angle.

6The subscript “virt” appears because virtual corrections
feature −

R
E
0 , while real emissions add þ R

K
0 , so that the

uncompensated remnant −
R
E
K is of virtual origin.
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In reality, the distribution of cos θ far from the resonance
appears as shown in Fig. 4 for a relatively strong cutoff on
total photon energy (2% of the beam energy).
The presence of a narrow resonance significantly

changes the pattern of QED cancellations. Let us analyze
briefly how the real and virtual corrections combine at a
resonance position

ffiffiffi
s

p ¼ MZ.
(i) For pure ISR, the virtual correction is

∼ − 2α
π ln s

m2
e
ln E

λ , as without a resonance, while the

real contribution is cut by the resonance profile
∼þ 2α

π ln s
m2

e
ln ΓZ

λ . The resulting cross section σðKÞ
is suppressed by the remnant virtual factor ½1 −
2α
π lnMZ

ΓZ
�virt for any cut above the resonance width,

K > ΓZ.
(ii) The effect of FSR is the same as in the case without a

resonance, i.e. σðKÞ is suppressed by the remnant
virtual factor ½1 − 2α

π ln s
m2

μ
ln E

K�virt.
(iii) The case of IFI is most complicated. The virtual

correction ∼ − 4α
π ln t

u ln
ΓZ
λ is cut by the resonance

(contrary to the ISR case). The real correction ∼þ
4α
π ln t

u ln
ΓZ
λ is also cut by the resonance (similar to the

ISR case). The resulting dσðKÞ=dΩ is strongly
power-suppressed by the ΓZ=MZ factor for any
cut above the resonance width, K > ΓZ! For an
energy cut below the resonance width, K < ΓZ, IFI
starts to rise logarithmically, i.e. the suppression
factor is ∼1 − 2α

π ln t
u ln

ΓZ
K .

Away from the resonance, IFI gradually changes to the
previous nonresonant case, and in the entire neighbor-
hood of the resonance, a QED calculation including

photon resummation at the amplitude level (CEEX) is
mandatory.
The above mechanism is clearly illustrated in Fig. 5,

where the IFI contribution to AFB is shown as a function of
vmax, the cutoff on the total photon energy in units of the
beam energy.7 As we see, far from the Z resonance and for a
loose photon energy cutoff, AFB ≃ 2% and grows for
stronger cutoffs. In the middle of the resonance, it is
strongly suppressed, AFB < 0.1%, and starts to grow below
vmax ≃ ΓZ=MZ ≃ 0.02. Remarkably, at the other two ener-
gies

ffiffiffi
s

p
≃MZ � 3.5 GeV, ΓZ=MZ suppression is still quite

strong, more than factor 1=5.
On the methodology side, although we are interested

mainly in the IFI effect off the Z peak, at
ffiffiffi
s

p
≃MZ �

3.5 GeV, it is worth also keeping an eye on
ffiffiffi
s

p ¼ MZ and
energies far away from the resonance. This is simply
because any technical problem or mistreatment of physics
which may cause a small effect at

ffiffiffi
s

p
≃MZ � 3.5 GeV

could be magnified there, making it easier to trace it
back and eliminate. This is why we shall often compare
our principal results with the results at

ffiffiffi
s

p ¼ MZ andffiffiffi
s

p ¼ 10 GeV.

III. NEW CALCULATION IN THE SEMISOFT
APPROXIMATION AND KKFoam MONTE CARLO

As outlined in the Introduction, the aim of this section
is to describe in detail all ingredients in the newly

FIG. 5. The dependence of IFI contributions to charge asym-
metry on the total photon energy cutoff vmax for various beam
energies. The distribution is obtained from KKMC.

FIG. 4. Muon angular distribution for IFI switched on and off
for total photon energy below 2% of Ebeam ¼ ffiffiffi

s
p

=2 ¼ 5 GeV.
The distribution is obtained from KKMC.

7More precisely, v ¼ 1 −M2
μμ=s. Here, we have temporarily

used the ALEPH definition of v.
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developed KKFoam Monte Carlo which will be served in
the next sections for validation of the KKMC predictions
for AFBðsÞ at a precision at least a factor of 10 better than
in the past. KKFoam is not a true event generator because
photon momenta are partly integrated out analytically.
Nevertheless, it provides weighted MC events with explicit
muon four-momenta; hence angular distributions of muons
with an arbitrary cutoff on the total photon energy can be
calculated.
In the following Sec. III A, the multiphoton matrix

element (spin amplitudes) will be defined. In Secs. III B
and III C the above matrix element will be squared, and
spin summation and phase space integration will be done
partly analytically. The IFI effect appears in the resulting
muon angular distribution. The resulting formula involves a
fourfold convolution over radiator functions of the initial
state radiation (ISR), final state radiation (FSR) and two
functions due to initial-final state interference (IFI).
(Further analytic integration is not possible.)
In addition, in Sec. III D, the phase space integration is

extended to the full phase space, and matching with the
known Oðα1Þ and Oðα1Þ results for the ISR and FSR
radiator functions is performed. The radiator functions are
convoluted with the effective Born spin amplitudes in
which EW corrections are included.
In Sec. III E, it is explained how the remaining

5-dimensional integration over the four radiator functions
(ISR, FSR and 2 × IFI) and the azimuthal angle θ of
the muon is performed numerically using a Monte Carlo
method. It is not trivial due to the presence of new types
of singularities in the IFI radiator functions, different from
the standard ones of the ISR and FSR radiator functions.
The newly developed computer program KKFoam is new
software tool, methodologically completely independent of
KKMC, although it exploits some building blocks of KKMC,
for instance the DIZET library of the EW corrections [28].

A. Matrix element of multi-soft-photon emission
in the semisoft approximation

Let us consider the matrix element of the process

e−ðp1Þ þ eþðp2Þ → μ−ðq1Þ þ μþðq2Þ þ γðk1Þ
þ � � � þ γðknÞ ð4Þ

near the Z resonance in the soft photon limit. The standard
kinematic variables s ¼ ðp1 þ p2Þ2, t ¼ ðq1 − p1Þ2, u ¼
ðq2 − p1Þ2 will be used. Around any narrow resonance, the
notion of the soft photon limit has to be refined. In the
framework of the standard Yennie-Frautschi-Suura (YFS)
[25] soft photon resummation, one starts with all photons
being very soft, i.e. k0i ≪ ΓZ ≪

ffiffiffi
s

p
=2. Near the resonance,

however, it is worth considering a wider soft photon range,
with k0i ≪

ffiffiffi
s

p
=2, but allowing photon energies comparable

to or even greater than the resonance width ΓZ. In the

following, we shall refer to this regime as the semisoft
approximation. Following the notation of Ref. [12], in the
semisoft regime, the matrix element of our process reads as
follows:

ℳμ1;μ2;…;μnðpi; qj; klÞ ¼
X
V¼γ;Z

X
P

eαB
V
4
ðsI ;t;mγÞ

Y
i∈I

jμiI ðkiÞ

×
Y
r∈F

jμrF ðkrÞMVðsI; tÞ;

sI ¼ P2
I ; PI ¼ p1 þ p2 −

X
i∈I

kj;

jμI ðkÞ ¼ eQe

�
pμ
1

kp1

−
pμ
2

kp2

�
;

jμFðkÞ ¼ eQf

�
qμ1
kq1

−
qμ2
kq2

�
;

αBV
4 ðs; t; mγÞ ¼ αB4ðs; t; mγÞ þ αΔBV

4 ðs; t; M̄2
VÞ:
ð5Þ

The above formula involves a sum over the set of 2n

partitions fPg ¼ fI; Fgn,

fPg ¼ fðI; I; I;…; IÞ; ðF; I; I;…; IÞ; ðI; F; I;…; IÞ;
ðF;F; I;…; IÞ;…; ðF;F; I;…; FÞg; ð6Þ

of photons among the initial and final state. The meaning of
the shorthand notation i ∈ I is that

Q
i∈I includes all

photons with Pi ¼ I and similarly Pr ¼ F for r ∈ F.
The form factor B4ðpi; qi; mγÞ is the standard one

appearing in YFS resummation [25] for four charged
particles in the scattering process. As stressed in
Refs. [18–20], in the semisoft regime, an additional term
in the form factor

αΔBZ
4 ðs; t; M̄2Þ ¼ −2QeQf

α

π
ln

�
t
u

�
ln

�
M̄2

Z − s
M̄2

Z

�
;

M̄2 ¼ M2
Z − iMZΓZ; ΔBγ

4 ≡ 0; ð7Þ
must be included, but only in the resonant component
of the amplitude. For γ exchange, only the standard αB4

of the YFS scheme is needed, and αBV
4 is not present.

Most important is that, in the semisoft approximation, the
energy argument of the resonance propagator in the Born
matrix elementMV must be shifted by the total energy lost
to initial state photons j ∈ I,8 because of its strong energy
dependence. The same additional dependence on sI also
enters into the form factor αBV

4 . The summation over all
partitions of n photons between the initial and final state
fI; Fg is mandatory in order to obey Bose-Einstein

8In the strict YFS soft limit this energy shift may be neglected.
In the semisoft regime it could also be neglected for the γ-
exchange part. For the sake of a better treatment of the collinear
(mass) singularities, it is best to keep it everywhere.
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symmetry and gauge invariance. Fermion spinor indices are
implicit inMV . The standard YFS virtual form factor B4 is
usually regularized with a photon mass mγ. The mass
regulator can be removed once the real and virtual
calculations are combined.
In the framework of coherent exclusive exponentiation

(CEEX) [12,22], the above matrix element represents a

zeroth-order CEEX matrix element defined throughout the
entire phase space, including hard photons. Higher orders
are also defined in the CEEX scheme, and implemented for
a finite number of the hard photons; see Ref. [12].
The same matrix element can be rewritten in a compact

form using a generating functional formulation (Mellin-
Fourier transform):

ℳμ1;μ2;…;μnðpi; qj; k1;…; knÞ ¼
X
V¼γ;Z

Z
d4Qd4x
ð2πÞ4 eix·ðP−QÞeαBV

4
ðQ2;t;mγÞ

�Yn
i¼1

Jμiðx; kiÞ
�
MVðQ2; tÞ

Jμðx; kÞ ¼ e−ik·xjμI ðkÞ þ jμFðkÞ: ð8Þ

The corresponding total cross section reads:

σðsÞ ¼ 1

fluxðsÞ
X∞
n¼0

1

n!

Z
d3q1
q01

d3q2
q02

Yn
i¼1

Z
d3ki
k0i

δ

�
P − q1 − q2 −

Xn
i¼1

ki

�

×ℳμ1;μ2;…;μnðp; q; k1;…; knÞ½ℳμ1;μ2;…;μnðp; q; k1;…; knÞ��; ð9Þ

where P ¼ p1 þ p2. Note that in the above expression, the
standard Lorentz invariant phase space integral extends
over the entire phase space, as it would in the Monte Carlo
implementation, i.e., energy conservation naturally limits
photon energies from above. A cutoff on the total photon
energy will be imposed later in our analytic calculations, in
order to perform phase space integration analytically.
In thesemisoft approximation, thematrixelement ofEq. (5)

is simple enough that in the absence of experimental cuts one
can perform an analytic integration over photon angles and
energies and sum explicitly over photonmultiplicities. This is
what we refer to as an analytic exponentiation.
The first important step will be reorganization of the

multiphoton distributions keeping phase space integration
untouched. Later on phase space integrations will be done in
the semisoft regime and finally contributions fromhard photon
phase space will be reintroduced in the standard matching
procedure at the level of partly integrated distributions.

B. Reorganization of multiphoton distributions

One may perform analytic reorganization of multi-
photon distributions, a necessary first step in the analytic

exponentiation, by means of a combinatorial reorganization
of the sum over photons without using the generating
functional (Mellin-Fourier transform) formulation of
Eq. (8). This method was developed in Ref. [12], albeit
for the resonant component only. Another alternative
method of integration/summation over semisoft photons
would employ a coherent states technique. This method
was used, for instance, in Refs. [18,19]. Let us start from
the generating functional form of Eq. (8), which was used
in the original YFS paper [25], although it was applied
there for the simpler nonresonant case. Of course, all three
methods lead to an identical final result.
In the first step, let us introduce the usual eikonal factors

for photon emission from the initial state, final state, and
their interference:

SIðkÞ ¼ −jIðkÞ · jIðkÞ; SFðkÞ ¼ −jFðkÞ · jFðkÞ;
SXðkÞ ¼ −jIðkÞ · jFðkÞ; ð10Þ

and Fourier representations of the δ-functions of the phase
space:9

σðsÞ ¼ 1

fluxðsÞ
X∞
n¼0

1

n!

X
V;V 0

Z
d3q1
q01

d3q2
q02

d4Qd4x
ð2πÞ4

d4Q0d4x0

ð2πÞ4 eix·ðP−QÞ−ix0·ðP−Q0Þ d4y
ð2πÞ4 e

iy·ðP−q1−q2Þ

×
Yn
i¼1

Z
d3ki
k0i

½e−iki·ðyþx−x0ÞSIðkiÞ þ e−iki·ðyþxÞSXðkiÞ þ e−iki·ðy−x0ÞSXðkiÞ þ e−iki·ySFðkiÞ�

×MVðQ; tÞM�
V 0 ðQ0; tÞeαBV

4
ðQ2;t;mγÞþαB�V0

4
ðQ02;t;mγÞ: ð11Þ

9The overall 4-momentum conservation δð4Þ-function will be present implicitly in the next steps.
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In the above functional representation, the summation over photon multiplicities (exponentiation) is trivial:10

σðsÞ ¼ 1

fluxðsÞ
X
V;V 0

Z
d3q1
q01

d3q2
q02

d4Qd4x
ð2πÞ4

d4Q0d4x0

ð2πÞ4 eix·ðP−QÞ−ix0·ðP−Q0Þ d4y
ð2πÞ4 e

iy·ðP−q1−q2Þ

× exp

�Z
d3k
k0

½e−ik·ðyþx−x0ÞSIðkÞ þ e−ik·ðyþxÞSXðkÞ þ e−ik·ðy−x0ÞSXðkÞ þ e−ik·ySFðkÞ�
�

× expfαBV
4 ðQ2; s; tÞ þ αðBV 0

4 ðQ02; s; tÞÞ�gMVðQ; tÞM�
V 0 ðQ0; tÞ: ð12Þ

The integrations over x; x0 and y can be reorganized in order to achieve a clear factorization into ISR, FSR, and IFI parts, as
shown in Appendix A.
A slightly reorganized form of Eq. (A2) with Uμ representing the total photon momentum of pure FSR emission, Kμ

representing the total momentum of pure ISR emission, and with Rμ and R0μ aggregating IFI photons present in MV and
M�

V 0 , correspondingly, reads as follows:

σðsÞ ¼ 1

fluxðsÞ
Z

d3q1
2q01

d3q2
2q02

d4Kd4Rd4R0d4Uδ4ðP − q1 − q2 − K − R − R0 −UÞ

×
Z

d4z
ð2πÞ4 e

iz·Kþ
R

d3k
k0
e−ik·zSIðkÞ

Z
d4u
ð2πÞ4 e

iu·Rþ
R

d3k
k0
e−ik·uSXðkÞ ×

Z
d4u0

ð2πÞ4 e
iu0·R0þ

R
d3k
k0
e−ik·u

0
SXðkÞ

Z
d4y
ð2πÞ4 e

iy·Uþ
R

d3k
k0
e−ik·ySFðkÞ X

V;V 0¼γ;Z

MVðP − K − RÞM�
V 0 ðP − K − R0Þ

× expf2αRB4ðs; t; mγÞ þ αΔBV
4 ððP − K − RÞ2Þ þ ðαΔBV 0

4 ððP − K − R0Þ2ÞÞ�g; ð13Þ

see also the illustration in Fig. 6.
The role of the Mellin transform in the above algebra was merely to provide compact bookkeeping of the complicated

sums in the multiphoton distributions, without any modification of the underlying phase space integration. At any step, we
could go back to standard phase space without any cutoffs; for instance Eq. (13) can be rewritten as follows:

σðsÞ ¼ 1

fluxðsÞ
Z

d3q1
2q01

d3q2
2q02

d4Kd4Rd4R0d4Uδ4ðP − q1 − q2 − K − R − R0 −UÞ

×
X∞
n1¼0

1

n1!

Yn1
i1¼1

d3ki1
k0i1

SIðki1ÞδK¼
Pn1

i1¼1
ki1

X∞
n2¼0

1

n2!

Yn2
i2¼1

d3ki2
k0i2

SXðki2ÞδR¼Pn1
i2¼1

ki2

X∞
n3¼0

1

n3!

Yn3
i3¼1

d3ki3
k0i3

SXðki3ÞδR0¼
Pn3

i3¼1
ki3

×
X∞
n4¼0

1

n4!

Yn4
i4¼1

d3ki4
k0i4

SFðki4ÞδU¼
Pn4

i4¼1
ki4

X
V;V 0¼γ;Z

MVðP − K − RÞM�
V 0 ðP − K − R0Þ expf2αRB4ðs; t; mγÞ

þ αΔBV
4 ððP − K − RÞ2Þ þ ðαΔBV 0

4 ððP − K − R0Þ2ÞÞ�g: ð14Þ

This is a generalization of Eq. (88) in Ref. [12], which was obtained there using pure combinatorics, without any use of the
Mellin-Fourier transform. Both virtual and real photon integrals are IR-regularized using finite photon mass mγ .
Another advantage of the compact Eq. (13) is that by means of adding and subtracting

Z
k0≤E

d3k
k0

½SIðkÞ þ 2SXðkÞ þ SFðkÞ�; E ¼
ffiffiffi
s

p
2

; ð15Þ

in the form-factor exponent, we obtain a manifestly IR-finite expression [25]:

10Both the virtual functions BV
4 and real emission integrals over S-factors are regularized temporarily using a small photon mass mγ ,

which will cancel in the final result.
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σðsÞ ¼ 1

fluxðsÞ
Z

d3q1
2q01

d3q2
2q02

d4Kd4Rd4R0 d4Uδ4ðP− q1 − q2 −K −R−R0 −UÞ

×
Z

d4z
ð2πÞ4 e

iz·Kþ
R

d3k
k0
½e−ik·z−θðk0<EÞ�SIðkÞ

Z
d4u
ð2πÞ4 e

iu·Rþ
R

d3k
k0
½e−ik·u−θðk0<EÞ�SXðkÞ

Z
d4u0

ð2πÞ4 e
iu0·R0þ

R
d3k
k0
½e−ik·u0−θðk0<EÞ�SXðkÞ

×
Z

d4y
ð2πÞ4 e

iy·Uþ
R

d3k
k0
½e−ik·y−θðk0<EÞ�SFðkÞ X

V;V 0¼γ;Z

MVðP−K −RÞM�
V 0 ðP−K −R0Þ; expfYðpi; qiÞ

þ αΔBV
4 ððP−K −RÞ2Þ þ ðαΔBV 0

4 ððP−K −R0Þ2ÞÞ�g; ð16Þ

where ðe−ik·y − 1Þ=k0 is IR-finite for k0 → 0 and the classic YFS form factor

Yðpi; qiÞ ¼ 2αRB4ðs; t; mγÞ þ
Z
k0≤E

d3k
k0

½SIðkÞ þ 2SXðkÞ þ SFðkÞ� ð17Þ

is also finite in the mγ → 0 limit.
Reintroducing an IR cutoff ε on the real photon energies, Eq. (16) can be also rewritten in the following equivalent form

with the standard phase space integration and without any Mellin transforms [31]:

σðsÞ ¼ 1

fluxðsÞ
Z

d3q1
2q01

d3q2
2q02

d4Kd4Rd4R0d4Uδ4ðP − q1 − q2 − K − R − R0 −UÞ
X∞
n1¼0

1

n1!

Z
k0i1

>ε

Yn1
i1¼1

d3ki1
k0i1

SIðki1ÞδK¼Pn1
i1¼1

ki1

×
X∞
n2¼0

1

n2!

Z
k0i2

>ε

Yn2
i2¼1

d3ki2
k0i2

SXðki2ÞδR¼Pn1
i2¼1

ki2

X∞
n3¼0

1

n3!

Z
k0i3

>ε

Yn3
i3¼1

d3ki3
k0i3

SXðki3ÞδR0¼
Pn3

i3¼1
ki3

×
X∞
n4¼0

1

n4!

Z
k0i3

>ε

Yn4
i4¼1

d3ki4
k0i4

SFðki4ÞδU¼
Pn4

i4¼1
ki4

exp

�
−

Z
ε<k0<E

d3k
k0

SðkÞ
� X

V;V 0¼γ;Z

MVðP − K − RÞM�
V 0 ðP − K − R0Þ

× expfYðpi; qiÞ þ αΔBV
4 ððP − K − RÞ2Þ þ ðαΔBV 0

4 ððP − K − R0Þ2ÞÞ�g: ð18Þ

The phase space integration in the above formula cannot be
performed analytically. (It is done numerically without any
approximation in the KKMC program.) In the following, this
phase space integration will be done analytically in the
semisoft approximation.

C. Analytic integration over photon momenta

In the next step, we shall integrate over the photon angles
in Eq. (16), introducing the cutoff Emax ¼ vmax

1
2
s1=2,

vmax ≪ 1, on the total photon energy in order to simplify
the phase space integral, and staying within the semisoft
approximation for the multiphoton distributions, as in
Eq. (16) and Eq. (18).
Let us show how it is done for the initial state part of this

multiphoton integral. In the semisoft photon limit, the
integrand of Eq. (16) has no dependence on the spatial
components of K outside of the eiz·K factor. Typically, the
Born matrix element and the resonant form factor have a
dependence on K0 through

ðP − K − RÞ2 ¼ P2 − 2P · ðK þ RÞ þ ðK þ RÞ2
≃ s − 2

ffiffiffi
s

p ðK0 þ R0Þ; ð19Þ

but no dependence on the spatial components K⃗. Thus, the
integral over K⃗ yields a factor δ3ðz⃗Þ and leads to11

e−

vI

vF I

V’V

V,V’=    ,Zγ
(1−v −r) (1−v −r’)I

μ− r’r

Δ BV
4

e−

Σ

FIG. 6. Exponentiated multiple photon emission from initial
and final fermions including ISR, FSR, and IFI in the resonant
process, as in Eq. (13). Dashed lines represent multiple real and/
or virtual photons.

11See also Eq. (36) in the next subsection for versions without
a Mellin transform.

STANISLAW JADACH and SCOTT A. YOST PHYS. REV. D 100, 013002 (2019)

013002-10



Z
d4Kd4z
ð2πÞ4 eiz·Kþ

R
d3k
k0
SIðkÞ½e−ik·z−θk0<E�

¼
Z

dK0

Z
dz0

2π
eiz

0K0þ
R

dk0

k0
γI ½e−ik0z0−θk0<K0 � ¼

Z
dK0

K0
FðγIÞγI

�
K0

E

�
γI
; ð20Þ

where the integration over photon angles resulted in

γI ¼ γIðsÞ ¼
Z

d3k
k0

SIðkÞδð2k0=
ffiffiffi
s

p
− 1Þ: ð21Þ

The subtle point is that the elimination of
R
d3K⃗δ3ðK⃗ −

P
n
i¼1 k⃗iÞ implies that we keep K⃗ ¼ P

n
i¼1 k⃗i everywhere in the

entire integrand. Note that in KKMC, the above “recoil effect” in the Born matrix element and phase space integral is taken
into account correctly for hard photons as well. The function

FðγÞ≡ expð−γCEÞ
Γð1þ γÞ ð22Þ

is well known from YFS work (Eq. (2.44) in Ref. [25]) and is due to the competition of soft real photons for the available
fixed total energy.
Similarly, we are able to integrate over FSR and IFI photons:

Z
d4U

d4y
ð2πÞ4 e

iy·Uþ
R

d3k
k0
SFðkÞ½e−ik·y−θk0<E� ¼

Z
dU0

U0
γF

�
K0

E

�
γF
FðγFÞ;

Z
d4R

d4u
ð2πÞ4 e

iu·Rþ
R

d3k
k0
SXðkÞ½e−ik·u−θk0<E� ¼

Z
dR0

R0
γX

�
K0

E

�
γX
FðγXÞ;

Z
d4R0 d

4u0

ð2πÞ4 e
iu0·R0þ

R
d3k
k0
SXðkÞ½e−ik·u0−θk0<E� ¼

Z
dR00

R00 γX

�
K0

E

�
γX
FðγXÞ; ð23Þ

where

γF ¼ γFðsÞ ¼
Z

d3k
k0

SFðkÞδð2k0=
ffiffiffi
s

p
− 1Þ;

γX ¼ γXðcos θÞ ¼
Z

d3k
k0

SXðkÞδð2k0=
ffiffiffi
s

p
− 1Þ; ð24Þ

and θ is the angle the between the momenta p1 of e− and q1 of μ−.
Inserting all the above into Eq. (16), we finally obtain a compact elegant formula:

σðs; vmaxÞ ¼
3σ0ðsÞ

8

X
V;V 0

Z
1

0

dvI dvF dr dr0
Z

d cos θdϕ
2

θðvmax − vI − r − r0 − vFÞ

× ρðγI; vIÞρðγX; rÞρðγX; r0ÞρðγF; vFÞeYðpi;qiÞ

×
1

4

X
ετ

RfeαΔBV
4
ðsð1−vI−rÞÞMV

ετðvI þ r; cÞ½eαΔBV0
4
ðsð1−vI−r0ÞÞMV 0

ετ ðvI þ r0; cÞ��g; ð25Þ

where the Born spin amplitudes of Appendix C are used and we define

ρðγ; vÞ ¼ FðγÞγvγ−1; vI ¼
2K0ffiffiffi

s
p ; r ¼ ln

2R0ffiffiffi
s

p ; r0 ¼ ln
2R00ffiffiffi

s
p ; vF ¼ 2U0ffiffiffi

s
p : ð26Þ

The appearance of the real part R½MVM�
V 0 � has resulted from symmetrization over r and r0. The overall structure of the

above integral is illustrated in Fig. 6.
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Note that the YFS function ρðγ; vÞ obeys the following
nice convolution rule (related to the fact that it represents a
Markovian process):

Z
dv1 dv2δðv− v1 − v2Þρðγ1; v1Þρðγ2; v2Þ ¼ ρðγ1 þ γ2; vÞ;

ð27Þ

but this feature cannot be exploited to simplify the integral
of Eq. (25), because of the peculiar dependence of the
matrix element on r and r0. Let us stress that the double
convolution over ISR photons, separately for the Born
amplitude and its conjugate seen in Eq. (25), is the
landmark feature of the semisoft exponentiation pioneered
in Refs. [18,19] and implemented in KKMC.

D. Matching of analytic exponentiation
with fixed orders

Any matching of analytic exponentiation with fixed-
order calculations must address the inclusion of the
hard photon phase space beyond the semisoft regime

represented in Eq. (25) with the cutoff vmax ≪ 1 on the
total photon energy. The above matching will follow past
examples in Refs. [10,12,32]. It will result in the formula
valid for 0 < vmax ≤ 1.
In order to match analytic exponentiation with known

analytic Oðα1;2;3Þ QED results for ISR and FSR and
compare with KKMC over the entire phase space, let us
extrapolate the formula of Eq. (25) beyond the semisoft
regime to the entire range of the variable

v ¼ 1 −M2
μμ=s; v ∈ ð0; 1Þ; ð28Þ

replacing soft photon approximation

v ¼ vI þ vF þ rþ r0;

with a multiplicative ansatz guided by the collinear
kinematics,

1 − v ¼ ð1 − vIÞð1 − vFÞð1 − rÞð1 − r0Þ:

With this ansatz, Eq. (25) takes the form

σð0Þðs; vmaxÞ ¼
3σ0ðsÞ

8

X
V;V 0

Z
dv dvI dvF dr dr0δ1−v¼ð1−vIÞð1−vFÞð1−rÞð1−r0Þθvmax>v

×
Z

d cos θdϕ
2

ρðγIðsÞ; vIÞρðγFðsð1 − vIÞð1 − vFÞÞ; vFÞρðγXðcÞ; rÞρðγXðcÞ; r0ÞeYðpi;qiÞ

×
1

4

X
ετ

RfeαΔBV
4
ðsð1−vIÞð1−rÞÞMV

ετð1 − ð1 − vIÞð1 − rÞ; cÞ

× ½eαΔBV0
4
ðsð1−vIÞð1−r0ÞÞMV 0

ετ ð1 − ð1 − vIÞð1 − r0Þ; cÞ��g; ð29Þ

where c ¼ cos θ and we have inserted also the Born spin amplitudes of Appendix C, From now on we may use
0 < vmax ≤ 1.
In the numerical comparison of the above Oðα0Þexp formula with KKMC, it is worth including numerically significant

Oðα2Þ contributions from the trivial phase integration. It was shown in Ref. [12] [see Eq. (206) there] that the following
substitution does the job:

ρðγI; vIÞ → ρð0ÞI ðγI; vIÞ ¼ ρðγI; vIÞ exp
�
1

4
γI þ

α

π

�
−
1

2
þ π2

3

���
1 −

1

4
γI lnð1 − vIÞ

�
;

ρðγF; vFÞ → ρð0ÞF ðγF; vFÞ ¼ ρðγF; vFÞ

× exp

�
1

4
γI þ

α

π

�
−
1

2
þ π2

3

�
−
γF
2
lnð1 − vFÞ

��
1 −

1

4
γF lnð1 − vFÞ

�
; ð30Þ

where γF ¼ γFðsð1 − vIÞð1 − vFÞÞ.12
In order to compare with Oðα2Þ KKMC calculations [including non-IR contributions of IFI up to Oðα1Þ] it is also quite

easy to upgrade the ISR and FSR radiator functions in Eqs. (32) to Oðα2Þ:

12We could also use γF ¼ γFðsð1 − vÞÞ, but we have checked that it leads to the same numerical results.
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ρðγI; vIÞ → ρð2ÞI ðγI; vIÞ ¼ ρðγI; vIÞ exp
�
1

4
γI þ

α

π

�
−
1

2
þ π2

3

���
1þ γI

4
þ γ2I

8

þ vI

�
−1þ vI

2

�
þ γI

�
−
vI
2
−
1þ 3ð1 − vIÞ2

4
lnð1 − vIÞ

��
;

ρðγF; vFÞ → ρð2ÞF ðγF; vFÞ ¼ ρðγF; vFÞ exp
�
1

4
γI þ

α

π

�
−
1

2
þ π2

3

�
−
γF
2
lnð1 − vFÞ

�

×

�
1þ γF

4
þ γ2F

8
þ vF

�
−1þ vF

2

�
þ γF

�
−
vF
2
þ vFð2 − vFÞ

8
lnð1 − vIÞ

��
; ð31Þ

see Tables I and II in Ref. [12].
The resulting ISRþ FSRþ IFI formula of Ref. [29] with

all the above upgrades of ISR and FSR radiator functions
[with the resummation of lnðΓZ=MZÞ] is now ready for the
MC implementation.
We are also going to implement the following formula in

which IFI is completely neglected:

σð0Þno IFIðs; vmaxÞ

¼ 3σ0ðsÞ
8

Z
dv dvI dvFδ1−v¼ð1−vIÞð1−vFÞθvmax>v

×
Z

d cos θdϕ
2

ρðγIðsÞ; vIÞρðγFðsð1 − vIÞð1 − vFÞÞ; vFÞ

× eYðpi;qiÞ 1
4

X
ετ

jMετðvI; cÞj2: ð32Þ

In the final push towards inclusion of as many known
fixed order results as possible into the analytic exponen-
tiation formula, we include the complete Oðα1Þ virtual IFI
contributions. This amounts to adding the non-IR parts of
the γγ and γZ box diagrams explicitly provided in
Eqs. (C12) in Appendix C to the Born spin amplitudes:

Mετðs; tÞ → Mετðs; tÞ þMfγγg
ετ ðs; t; mγÞ þMfγZg

ετ ðs; t; mγÞ
− 2αB4ðs; t; mγÞMετðs; tÞ
− αΔBZ

4 ðs; tÞMZ
ετðs; tÞ: ð33Þ

This is done in the framework of the standard YFS-inspired
reorganization of the IR singularities, the same way as in
the CEEX matrix element of KKMC, without any danger of
double counting. The additional subtraction of αΔBV

4

prevents double counting with the resummation/exponen-
tiation of this term in the semisoft regime.
In addition electroweak and QCD corrections are also

included in coupling constants of Born amplitudes, the
same way as in KKMC. Both KKMC and KKFoam use the
DIZET library of Oðα1Þ EW corrections [28] [including
some of Oðα2Þ], and the method in which EW corrections
are inserted into Born-like parts of the spin amplitudes in

KKMC is essentially the same as in ZFITTER [13]. It is
described in Eqs. (21–25) of Ref. [22].
Finally, with all the above changes due to matching with

Oðα1Þ and Oðα2Þ known fixed-order corrections, we are
now ready to implement the results of analytic exponen-
tiation of Eqs. (29) and (32) with radiator functions of
Eq. (30), (31) and box insertions, using the Monte Carlo
method.
Coming back to the extension of the phase space in

Eqs. (29) and (32) we see that it has now a well defined
meaning: for IFI switched off these formulas coincide with
the well known QED convolution formulas for the total
cross section [10,12,32] including hard photons. However,
for the angular distributions Eq. (32) is not able to
reproduce exactly the Oðα1;2Þ angular distribution beyond
the soft limit. On the other hand, from the analysis of
Ref. [33] it is known that it reproduces numerically very
well Oðα1;2Þ MC results without IFI near the Z resonance
for AFB calculated practically for any choices on the
muon angle, within realistic cutoffs including hard photon
emissions. Unfortunately, the known nonsoft Oðα1Þ IFI
contributions to angular distributions, see Ref. [8] and
Appendix C, cannot be reproduced exactly13 by Eqs. (29),
(32). The main aim of Eqs. (29), (32) with radiator
functions of Eqs. (30), (31) is to test the soft limit of IFI
implementation in KKMC in the presence of Oðα2Þ ISR,
FSR and Oðα1Þ EW corrections.
How different are the above analytic resummations

of the IFI effect in the semisoft approximation from the
known similar calculations in the literature [18–20]?
Although the starting point in terms of multiphoton
amplitudes is the same, semisoft resummation in
Ref. [18] exploits techniques of coherent states and
Mellin transform for dealing with multiple sums over
photons and phase space integration, while our approach
is based on the straightforward combinatorics and direct
phase space integration. References [18–20] attempt to do
final phase space integration analytically, while in our
approach we perform them numerically, gaining more

13It would cost adding two extra phase space integration
variables in KKFoam in order to complete Oðα1Þ.
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flexibility in the matching with finite order results and in
numerical comparisons with KKMC.
As a parenthetical remark, let us remark that one may try

to do some extra ad hoc simplifications, strictly speaking

not justified in the semisoft regime, which may have some
practical advantages in the parametrization of the MC
results or data. One example is the following variant of
Eq. (29) which implements IFI in the approximate form:14

σð0Þðs; vmaxÞ ¼
3σ0ðsÞ

8

Z
dv dvI dvF du δ1−v¼ð1−vIÞð1−vFÞð1−uÞθvmax>v

×
Z

d cos θdϕ
2

ρðγIðsÞ; vIÞρðγFðsð1 − vIÞð1 − vFÞÞ; vFÞρð2γXðcÞ; uÞeYðs;cÞ

×
1

4

X
ετ

				
X
V

e2αΔB
V
4
ðsð1−vIÞð1−uÞÞMV

ετðc; 1 − ð1 − vIÞð1 − uÞ; cÞ
				
2

: ð34Þ

The simplification is due to neglecting r and r0 dependence
in the Born matrix element and keeping the integration over
u ¼ rþ r0. The quality of the above approximation can
only be judged using numerical tests.

E. Numerical integration methodology

Our aim is to perform numerically the 5-dimensional and
3-dimensional integrals in Eqs. (29) and (32) using the
Monte Carlo integrator FOAM [29,30]. This is not quite
trivial because the integrand of Eqs. (29) and (32) is
singular and nonpositive. Singularities due to ρI of ISR
and ρF of FSR can be easily eliminated with the following
simple mapping of variables:15

v ¼ xmaxy
1=γI
1 ; u ¼ xmaxy

1=γI
2 ; yi ∈ ð0; 1Þ:

The variable xmax ¼ 0.999… is a technical cutoff intro-
duced to avoid numerical instabilities near v ¼ 1. The main

problem is the integration over the two more strongly
singular and nonpositive ρX factors. This occurs when

γXðθÞ ¼ 2QeQf
α

π
ln

�
1 − cos θ
1þ cos θ

�
ð35Þ

becomes negative: γXðθÞ ¼ −β < 0 in the forward hemi-
sphere, where cos θ > 0.
In fact, one may think that in such a case the integral

of Eq. (25) does not make sense at all, because the
singularity rγX−1 ¼ r−β−1 from ρX is even not integrable!
However, a closer examination of the multiphoton integral
which has led to ρXðr; γXðθÞÞ reveals that the original
distribution is in fact regularized with the familiar plus-
prescription ð…Þþ.
In order to understand the problem better, it is worth

examining the generic YFS multiphoton integral:

Z
K0<E

d4Kd4z
ð2πÞ4 eiz·Kþ

R
d3k
k0
SðkÞ½e−ik·z−θk0<E�

¼
Z
K0<E

d4Ke−
R

d3k
k0
SðkÞθε<k0<E

X∞
n¼0

1

n!

Yn
i¼1

Z
ε<k0<E

d3ki
k0i

SðkiÞδ4
�
K −

Xn
i¼1

ki

�

¼
Z

E

0

dK0e−
R

γdk
0

k0
θε<k0<K0

X∞
n¼0

1

n!

Yn
i¼1

Z
ε<k0<K0

γ
dk0i
k0i

δ

�
K0 −

Xn
i¼1

k0i

�

¼
Z

E

0

dK0

Z
dz
2π

eizK
0þ
R

dk0

k0
γ½e−ik0z−θk0<K0 �

¼
Z

E

0

dK0

K0
γFðγÞ

�
K0

E

�
γ

¼
Z

1

0

dv γvγ−1FðγÞ ¼
Z

1

0

dv ρðγ; vÞ ¼ FðγÞ: ð36Þ

14There are more variants of this formula, for instance setting u ¼ 0 in Born matrix element and form factor, etc.
15FOAM can cope with these singularities even without such a mapping.
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It is easy to check that the above integral is always finite
and well defined for any choice of S ¼ SI, SF, SX, even for
negative S and for negative γ! Obviously, for γ > 0, the
singularity vγ−1 is integrable and does not require any
regulation. Closer inspection of Eq. (36) with an explicit
IR regulator ϵ ≪ 1 reveals that for any γ, including
γ ¼ −β < 0, the following holds:

ρðγ; vÞ ¼ e−
R

γdk
0

k0
θε<k0<K0

X∞
n¼0

1

n!

Yn
i¼1

Z
ε<k0<K0

γ
dk0i
k0i

× δ

�
K0 −

Xn
i¼1

k0i

�

¼ δðvÞFðγÞ
�
1 −

Z
1

ε
dv0 γv0γ−1

�

þ θðv − εÞFðγÞγvγ−1 ¼ FðγÞ½δðvÞ þ ðγvγ−1Þþ�:
ð37Þ

The standard plus prescription can be formulated either in a
regulator-independent way

Z
1

0

dvϕðvÞðγvγ−1Þþ ¼
Z

1

0

dv ½ϕðvÞ − ϕð0Þ�γvγ−1; ð38Þ

or with an explicit regulator ε ≪ 1

ðγvγ−1Þþ ¼ γvγ−1θðv − εÞ − δðvÞ
Z

1

ε
dv0 γv0γ−1

¼ γvγ−1θðv − εÞ − δðvÞ½1 − εγ�: ð39Þ

Of course, for γ > 0, it becomes simpler, because for
ε → 0, we get ðγvγ−1Þþ → γvγ−1 − δðvÞ and ρðγ; vÞ →
FðγÞγvγ−1. However, the explicit IR regulator remains
mandatory for γ < 0.
As a closing cross check, let us verify that for γ < 0 and

regularized

ρð−β; vÞ ¼ Fð−βÞ½δðvÞε−β − θðv > εÞβv−1−β�; ð40Þ

the basic convolution rule of Eq. (27) still holds:16

Z
dv1 dv2δðv − v1 − v2Þρð−β; v1Þρðγ; v2Þ ¼ ρðγ − β; vÞ:

ð41Þ

In terms of the Markovian process, the function ρðγ; vÞ for
γ > 0 represents adding more (soft) photons. The other
ρð−β; vÞ function is undoing that (backward evolution).
In the context of the explanation of the physics of IFI in

Sec. II, the presence of ρðγ; vÞ with negative γ in the
forward hemisphere in Eq. (25) is now perfectly

understandable: ρðγX; rÞρðγX; r0Þ is undoing part of the ISR
and FSR photon emission coming from ρðγI; vÞρðγF; uÞ!
See the upward (blue) arrow in Fig. 7 for the corresponding
graphical illustration.
In the numerical MC integration, it is not difficult to

introduce a small IR regulator ε into ρðγX; rÞ when γX < 0.
In the integrand for FOAM, this is done as a part of the
mapping of the integration variables r and r0 into internal
variables of FOAM.
Another issue is that the integrand becomes negative

for γX < 0, for r > ε, or for r0 > ε. This is handled in a
standard way using weighted MC events with a nonpositive
weight. In the actual integration by means of FOAM, the
modulus of the integrand is used during the exploration
stage, while in the following MC calculation of the integral,
the MC events are weighted with the true signed distribu-
tion. The distribution of the MCweights in the second stage
has two peaks:17 the bigger one close toþ1 and smaller one
near −1; see Fig. 8. More details on the mappings used in
the construction of the integrand for FOAM in KKFoam
program are given in Appendix B.

IV. NUMERICAL RESULTS
FROM KKFoam AND KKMC

In this section, we present results from the updated v4.22
of KKMC, also referred to as KKMCee, the non-MC inte-
grator KKsem,18 and the newly developed MC integrator
(simulator) program KKFoam, based on the C++ version
of FOAM [30]. KKFoam implements the 5-dimensional
integral of Eq. (29) including IFI, together with its
3-dimensional variant without IFI of Eq. (32). They will

−1 0 1

d σ/  Ωd

cos θ

IFI off

IFI on

FIG. 7. The role of IFI. In forward scattering, the upward arrow
(IFI) partially counteracts the action of the downward arrow
(ISRþ FSR).

16In the ε → 0 limit, of course.

17This entails a certain loss of integration precision, but it turns
out to be affordable.

18KKsem uses Gauss quadrature programs to integrate analytic
formulas up to 3 dimensions. It was developed at the time of
preparing Ref. [12].
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be often nicknamed in the following as KKFoam5 and
KKFoam3, correspondingly.
Another subgenerator in KKFoam taking care of 2-

dimensional integration over v and cos θ will be used
for reproducing and/or implementing old pure Oðα1Þ
results without resummation.
In KKFoam5 and KKFoam3, one may choose ISR and

FSR structure functions with soft photon exponentiation
and QED corrections up to Oðα0Þ, Oðα1Þ and Oðα2Þ, as
defined in Tables I and II in Ref. [12]. Pure QED non-
logarithmic Oðα2Þ corrections are < 10−5, hence are
neglected for ISR, FSR and IFI. They should be included
and evaluated more precisely in the future.
The Born cross section in both KKFoam5 and KKFoam3

is implemented using two types of subprograms of KKMC,
both of them using spin amplitudes: either calculated in the
global positioning of spin (GPS) scheme19 of Ref. [12] and
labeled with GPS or CEEX, or using spin amplitudes of
KORALZ [17] and labeled as EEX. Note that it is not possible
to useEEXBorn for IFI implementation; hence inKKFoam5
only GPS/CEEX Born amplitudes are implemented.
Electroweak and QCD corrections are included in

KKFoam in the rescaled coupling constants of Born
amplitudes, both for CEEX/GPS and EEX type, the
same way as in KKMC. Contributions from nonfactorizable
γγ and γZ boxes are also included; see also Eq. (33) for the
details. Both KKMC and KKFoam use DIZET library of the
Oðα1Þ EW corrections [28] [including some of Oðα2Þ]

and the method in which EW corrections are inserted into
Born-like parts of the spin amplitudes in KKMC is essen-
tially the same as in ZFITTER [13]. It is described in
Eqs. (21–25) of Ref. [22]. This method protects complete-
ness of the Oðα1Þ content of the EW corrections. If there is
any bias introduced in this method, then it has to be
of Oðα2Þ.
It should be kept in mind that in KKFoam5, hard photon

corrections are included in integrated form in the structure
functions up to Oðα2Þ for ISR and FSR, while for IFI they
are not included—only the finite parts of the virtual Oðα1Þ
IFI corrections (γ − Z boxes) are included there. (In
KKFoam3, IFI is completely absent.)
The immediate short-term aim in this section is to prove

that these programs correctly calculate σðv < vmaxÞ and
AFBðvmaxÞ with physical and technical precision δAFB ∼
10−4 and δσ=σ ∼ 3 × 10−4. This is a factor of 10 better than
at LEP, but still a factor of 10 short of what needed for
FCCee near the Z resonance. An additional cutoff j cos θj <
cmax will sometimes be imposed. An analysis for more
realistic cuts will be presented in a separate publication.
The IFI effect in AFB depends strongly on the cutoff on the
total photon energy vmax, which will typically be varied
between vmax ¼ 0.002 and vmax ¼ 0.200. As already
pointed out in the Introduction, such a cutoff stronger
that in typical LEP data analysis may be necessary at
FCCee for the sake of better control of backgrounds and
higher order QED effects. Moreover, the expectation is that
semisoft photon resummation employed in KKFoam5
(taking into account the energy shift due to ISR in the Z

FIG. 8. The right-hand plot is an example of the MC weight distribution for calculating the total cross section using FOAM according
to Eq. (29). The left-hand plot presents the MC weight distribution without IFI, see Eq. (32).

19This is a variant of Kleiss-Stirling method of Ref. [34].
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propagator) will work fairly well in this cutoff range near
the Z pole.20

In the following analysis, event selection will be exam-
ined in terms of two variables only, cos θ for the angle
between e− and μ− and v ¼ 1 −M2

μμ=s. The variable v
represents approximately the total energy of all ISR and
FSR photons, in units of the beam energy. (More results for
realistic selection cuts will be shown in the next paper.)
Of course, once harder photons are allowed, the definition
of cos θ is no longer unique. For the KKMC results, we
will use the cos θ definition of Ref. [8] unless otherwise
stated—see the following Sec. IV B for more discussion of
other choices of cos θ and their precise definitions.

A. Outline of the numerical investigations

We have conducted numerical studies with three different
programs, KKMC, KKsem and KKFoam, featuring several
variants of QEDmatrix elements and different types of phase
space integration. For the convenience of the reader, we
summarize in Table I all types of programs and QED matrix
elements (M.E.) used in them. The CEEX matrix element of
KKMC for IFI component is rated in the table as Oðα1Þ
because of missing nonsoft Oðα2Þ parts of the pentabox
diagrams specified in Fig. 5 in Ref. [12], but the soft/infrared
parts of these diagrams are included thanks to the semisoft
resummation technique. It would be desirable to include
these pentaboxes in a future version of KKMC.21

Let us outline the plan of the following tests which will
lead to new estimates of the theoretical uncertainty of the
IFI calculation:

(i) In the following Sec. IV B, we shall find that the
influence of the choice of the muon scattering angle
on the measurement of AFB is negligible.

(ii) Section IV C is devoted to a calibration exercise in
which the correctness of the MC integration is
checked by comparing the cutoff dependence of
σðvmaxÞ and AFBðvmaxÞ from three programs, KKMC,
KKsem and KKFoam, with IFI switched off. It is
done first for a maximally simple variant of the QED
matrix element with resummation and then for the
best one.

(iii) In the next step, in Sec. IV D, the IFI effect in AFB is
examined in the results for AFBðvmaxÞ from KKMC
and KKFoam for a maximally simple and the best
QED matrix element separately for three energies
s1=2 ¼ 10, 87.9, 94.3 GeV.

(iv) Section IV E is devoted to the difference
ΔAIFI

FBðvmaxÞ ¼ AIFI
FBðvmax; sþÞ − AIFI

FBðvmax; s−Þ, in
which the IFI effect cancels. Results from KKMC
and KKFoam for this difference will be compared.
ΔAFB is directly related to the measurement of
αQEDðMZÞ at FCCee.

(v) Finally, in Sec. IV F results for the energy difference
ΔAIFI

FBðvmaxÞ from KKMC will be analyzed for QED
matrix elements with an increasing level of sophis-
tication in order to estimate its theoretical uncer-
tainty due to missing higher orders of QED.

B. On the choice of the scattering angle θ

In the limit when all photons are very soft, the momenta
of the final muons are back to back and the scattering angle
θ between e− and μ− is unique. Once at least one photon
becomes energetic, the final muons are not back to back
and there are many possible definitions of the effective θ.
Using θð1Þ ¼ ∠ðe−; μ−Þ or θð2Þ ¼ ∠ðeþ; μþÞ is not a
favorable choice experimentally, because it does not exploit

TABLE I. Tableof various types ofQEDmatrix elements, resummationmethodologyandphase space integrationmethods in the following
numerical studies. “Semisoft” indicates that exactmultiphotonM.E.with narrow resonance effects included. “Soft.+Col.” indicates the use of
collinear photondistribution functions (PDFs) for ISRandFSR. “GPSBorn”means the use ofBorn spin amplitudes as inCEEX,while “EEX
Born” indicates the use of Born of the EEX scheme. EW corrections are placed in the Born-like part of the spin amplitudes.

MC Prog. M.E. Resum. ISR FSR IFI EW

KKMC CEEX2 Semisoft Oðα2Þ Oðα2Þ Oðα1Þ Yes
KKMC CEEX1 Semisoft Oðα1Þ Oðα1Þ Oðα1Þ Yes
KKMC CEEX0 Semisoft Oðα0Þ Oðα0Þ Oðα0Þ Yes
KKMC EEX3 Soft.+Col. Oðα3Þ Oðα2Þ None Yes
KKMC EEX2 Soft.+Col. Oðα2Þ Oðα2Þ None Yes
KKMC EEX1 Soft.+Col. Oðα1Þ Oðα1Þ None Yes
KKMC EEX0 Soft.+Col. Oðα0Þ Oðα0Þ None Yes
KKsem2 EEX Born Soft.+Col. Oðα2Þ Oðα2Þ None Yes
KKsem0 EEX Born Soft.+Col. Oðα0Þ Oðα0Þ None Yes
KKFoam5 GPS Born Soft.+Col. Oðα2Þ Oðα2Þ Oðα1Þ Yes
KKFoam3 EEX Born Semisoft Oðα2Þ Oðα2Þ None Yes
KKFoam2 EEX Born None Oðα1Þ Oðα1Þ Oðα1Þ Yes

20On the other hand, strict YFS soft photon approximation
neglecting the ISR energy shift in the Z propagator is expected to
be adequate for our precision requirements only for vmax ≤ 10−4.

21Another urgent desirable update of the M.E. in KKMC would
be inclusion of the α3 ln3ðs=m2

eÞ corrections.
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fully the power of the tracker detector, which detects both
μ� equally well.
An example of a choice favorable for experiments,

taking full advantage of the very good angular resolution
of the muon detectors (trackers), which is much higher than
the energy resolution, is that of ref [33]:

cos θ• ¼ y1 cos θ1 − y2 cos θ2;

y1 ¼
sin θ2

sin θ1 þ sin θ2
; y2 ¼

sin θ1
sin θ1 þ sin θ2

;

y1 þ y2 ¼ 1: ð42Þ

However, it was shown in Ref. [8] that analytic evalu-
ation of the IFI effect according to the Oðα1Þ QED matrix
element can be easily done using

cos θ⋆ ¼ x1 cos θð1Þ þ x2 cos θð2Þ; xi ¼ q0i =ðq01 þ q02Þ;
x1 þ x2 ¼ 1: ð43Þ

Weuse this choice formost of thenumerical results presented
in this work, unless otherwise stated. Moreover, in Ref. [8]
compact analytic results were obtained for a charge asym-
metry defined using the first moment,

Ã�
FB ¼ 3

2

Z
1

−1
cos θ�

dσ
σ
; ð44Þ

instead of the conventional forward-backward asymme-
try AFB ¼ ðσF − σBÞ=σ.
For KKFoam, the choice of cos θ is irrelevant as long as

all photons are sufficiently22 soft. Once at least one photon
becomes energetic, the Oðα1Þ contribution calculated for a
well-defined choice of cos θ should be included in
KKFoam. So far, this is not yet done—it should be done
in the next version. Most likely, the preferred choice for
KKFoam will be cos θ⋆.
On the other hand, KKMC is a regular MC event generator

providing four-momenta of both muons (and all photons);
hence it provides a prediction for AFB with any definition of
cos θ. Let us examine, using KKMC, how different the QED
predictions for AFB are for the above two choices of θ when
v < 0.2. Figure 9 shows that the difference between A•

FB
and A�

FB is below expected FCCee experimental precision
of δAFB ∼ 3 × 10−5, i.e. all of our analysis for cos θ• is valid
for cos θ⋆ and vice versa.
Using KKMC, it is easy to examine the difference between

Ã�
FB and A�

FB. Figure 10 shows that such a difference might
be sizable, up to ∼1%. However, the difference in the IFI
component could cancel between two calculations—for
instance, we have checked that it does cancel in the
difference between KKMC and KKsem, for IFI switched on.

C. Baseline calibration, ISR+FSR without IFI

Let us start with the baseline calibration of the MC tools
at the precision level ∼10−5 at

ffiffiffiffiffi
s−

p ¼ 87.9 GeV andffiffiffiffiffi
sþ

p ¼ 94.3 GeV. Although KKsem does not include
IFI, it is still useful for checking the normalization of both
KKMC and KKFoam. Of course, normalization is irrelevant
for our main observable, AFBðvmaxÞ, but it is still profitable

FIG. 9. The difference between A⋆
FB and A•

FB, from KKMC at
10 GeV with IFI on.

FB max

FB FB FB

FB

FB

max

FB

KKfoamKKMC

FBFB

FBFB

FBFB

FIG. 10. The difference between AFB and ÃFB at 94.3 GeV with
IFI on.22Sufficiently from the point of view of the FCCee precision.
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to test it, simply because some technical problem that
would be evident in σðvmaxÞ could produce a small
annoying effect in AFB as well. Thus, it is better to keep
an eye on both of these.
As already underlined, our main aim in the present study

is a precise prediction for AFB at two energies
ffiffiffiffiffi
s�

p ¼ 87.9
near Z resonance. However, in order to get better con-
fidence in the implementation of the QED matrix element,
we will also check AFB at

ffiffiffi
s

p ¼ 10 GeV, where the Z
resonance is negligible, and at

ffiffiffi
s

p ¼ MZ, where the
suppression of IFI due to the long life time of the Z is
maximal.
Let us start with a purely technical test with IFI off atffiffiffi
s

p ¼ 94.3, 87.9 and 10 GeV, presented in Fig. 11. In the
LHS plot, all cross sections σðvmaxÞ are divided by the
reference cross section from KKsem. All calculations are at
simplistic exponentiated Oðα0Þ QED including ISR and
FSR, but without IFI. Different types of the Born matrix
element, EEX or GPS, are used. Very good agreement is
seen, up to statistical error δσ=σ ∼ 3 × 10−5. The agreement
for AFB is also very good, essentially up to statistical error
δAFB ∼ 1 × 10−5 at

ffiffiffiffiffi
s�

p
. The above equality of the

KKFoam and KKsem results is very important, because
it illustrates/proves the quality of the MC integrators—it
should be kept in mind that for IFI off they integrate exactly
the same 3-dimensional integrand. Even more significant is
the agreement, to within δσ=σ ∼ 1 × 10−5 near the Z
resonance, of KKMC with the other two programs for the
simplified EEX0 matrix element. This is because for MC
statistics of 2 × 1010 events one may expect problems with
rounding errors in the accumulation of the weights in the
histograms.23 The slightly bigger discrepancy beyond
statistical error of δAFB ∼ 3 × 10−5 for 10 GeV is not yet
statistically significant and not so important for our aims.
We conclude that the technical precision of the MC

numerical integration in all three programs, KKsem,
KKFoam and KKsem, is satisfactory for our needs.
Moreover, the above test is also important due to the fact
that the IFI effect is added in KKMC by reweighting MC
events generated without IFI. Hence, the technical preci-
sion established for the non-IFI mode persists when IFI is
switched on.
In Fig. 12, we continue baseline testing without IFI, now

with Oðα2Þ exponentiated ISR and FSR. The relative
differences δσ=σ between KKMC and KKFoam vs KKsem
are examined. It is done for the CEEX/GPS and EEX Born
matrix element. The relative difference δσ=σ ∼ 3 × 10−4 for
KKMC confirms all older tests in Ref. [12], rated at the ∼1 ×
10−3 level.24 On the other hand, the differences in AFB
between KKMC and KKFoam or KKsem are again of the

order of the statistical error, which is ∼3 × 10−5, exceptffiffiffi
s

p ¼ 10 GeV, where it is slightly bigger.
The main result of the tests presented in Figs. 11 and 12

is that the basic technical precision (in the MC integration)
of KKMC and KKFoam3 near the Z resonance is generally
better than δAFB ∼ 3 × 10−5. The implementation of QED
photonic corrections for ISR and FSR (no IFI) up to Oðα2Þ
was also tested at this precision level.25

D. IFI contribution to AFB from KKMC and KKFoam

Let us now increase the level of sophistication by one
important step—including IFI. This will be done first in the
simpler case (A) for ISR, FSR and IFI at the level Oexpðα0Þ
with exponentiation, and next in the case (B) for expo-
nentiated IFI at the level Oexpðα1Þ, accompanied by ISR
and FSR up to exponentiated Oexpðα2Þ.
In case (A), results for AFBðvmaxÞ from KKMC and

KKFoam are shown in Fig. 13, while in case (B), the
results are shown in Fig. 14, for energies

ffiffiffi
s

p ¼ 87.9, 94.3,
10 GeV in both cases. The absolute predictions for AFB
from KKMC and KKFoam are seen in the LHS plots of the
these figures. The differences in AFB due to switching on
the IFI contribution are quite sizable and rising quickly for
vmax ≤ 0.06, up to 5% for vmax ≤ 0.002.
The IFI contribution to AFB is shown more clearly in the

RHS plots of Figs. 13 and 14, where the absolute
predictions for the IFI effect in AFB from KKMC and
KKFoam are presented. The most important result is the
one represented by the red curve (c) in the RHS figures in
Fig. 14. It represents the difference between KKMC and
KKFoam for the IFI contribution. This crucial difference is
up to δAFB ∼ 5 × 10−4. (It will be analyzed carefully one
more time in the next section.) It is definitely above the
technical precision level δAFB < 3 × 10−5, established
previously in case of IFI switched off.
How can we understand the above result? In the case of

Fig. 13 where both KKMC and KKFoam are at the same
Oexpðα0Þ level for ISR, FSR and IFI, with semisoft
resummation of IFI, the source of the difference is a
different treatment of the matrix element far away from
the infrared point vmax ¼ 0. Remembering that the energy
shift in the Z-resonance propagator is properly taken into
account in the semisoft approximation, the difference
between KKMC and KKFoam should be proportional to
vmax and should vanish for vmax → 0. This is what we see in
Fig. 13.26

23Running in parallel on 100 nodes and combining the histo-
grams afterwards helps to reduce this problem.

24This is not a high priority, but we shall try later to find the
source of these differences in the normalization.

25This is not true for KKFoam, where subprograms with and
without IFI are independent modules generating their own
different MC events.

26The slight difference at vmax → 0 for
ffiffiffi
s

p ¼ 10 GeV can be
traced to small spikes in the 0.99 < j cos θj < 1 range, to be
examined separately. It goes away for realistic experimental
cutoffs.
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In the case of Fig. 14, the difference between KKMC and
KKFoam should reflect the fact that in KKMC the entire
Oexpðα1Þ real and virtual contributions are included, while
in KKFoam5, the Oexpðα1Þ real contribution is incomplete.

This could increase the difference between KKMC and
KKFoam. In fact it changes sign and increases the differ-
ence by at most a factor of 2. This can be seen as
unexpected. In order to have an idea how big the

FIG. 11. Technical test, Oexpðα0Þ ISRþ FSR without IFI at 94.3, 87.9 and 10 GeV.
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Oexpðα1Þ real photon IFI contribution can be, we have also
included this contribution [curve (e)] in Fig. 14, subtracting
the soft component in an ad hoc manner. As we see, curve
(e) typically has the same sign as the difference between
KKMC and KKFoam shown in curve (c), but is a factor of

3–4 bigger. Apparently, KKFoam includes most of the
Oðα1Þ hard photon IFI contribution.27

FIG. 12. Results with Oexpðα2Þ ISRþ FSR without IFI at 94.3, 87.9 an 10 GeV.

27It would be interesting to include this missing Oexpðα1Þ real
photon IFI contribution in KKFoam.
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The inclusion of QED Oexpðα1Þ virtual corrections and
box diagrams was done in KKFoam following the pre-
scription of Eq. (33). The pure Oðα1Þ numerical results in
Fig. 14 were reproduced using analytic formulas of

Refs. [8,33], which are collected and tested numerically
one more time in Appendix C.
In spite of the incompleteness of the Oðα1Þ IFI in

KKFoam, the above result makes us confident that we

FIG. 13. Results with Oexpðα0Þ ISRþ FSR and IFI at 94.3 GeV, 87.9 GeV and 10 GeV.
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are quite close to reaching our first intermediate goal of
controlling the IFI effect in AFB at the level of δAFB ∼ 10−4

in the semisoft resummation regime (vmax ≤ 0.06).
Let us also finally show just one example of the entire

angular distribution dσ=d cos θ from KKFoam and KKMC,

simply because agreement in AFB does not necessarily
imply agreement in the angular distributions. In Fig. 15,
such a comparison is done for a relatively mild cutoff
vmax ¼ 0.02 on the total photon energy. The angular
distributions agree to within 0.005% as expected.

FIG. 14. Results with Oexpðα2Þ ISRþ FSR and Oexpðα1Þ IFI at 94.3, 87.9 and 10 GeV.
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E. AFBðs�Þ from KKMC and KKFoam
in presence of IFI

As explained in Ref. [5], the QED coupling constant
αQEDðMZÞ is closely related to AFBðs�Þ, but the exact
relation is not straightforward and we are not trying to
reproduce it. We limit our interest to the propagation of
errors from AFBðs�Þ to αQEDðMZÞ, which is simpler and
can be read from Eq. (4.9) in Ref. [5]. For our purpose, it
will be enough to use a simplified version of this equation,

δαQED
αQED

				
MZ

≃
δAFBðsþÞ − δAFBðs−Þ
AFBðsþÞ − AFBðs−Þ

; ð45Þ

which is valid for small δAFBðs�Þ and/or when there are no
strong cancellations between them.28 This will be true in
the following numerical examples, and we shall show
typically the numerator δAFBðsþÞ − δAFBðs−Þ along with
the uncertainties δAFBðs�Þ.
Having the above in mind we reexamine the comparisons

between KKMC and KKFoam of the previous section for
this ΔAFB.
From now on, we impose a realistic cutoff j cos θj < 0.9

in the tests; however the cutoff has little influence on the
resulting AFB. To start with, in Fig. 16 we show AFBðvmaxÞ
from KKMC at

ffiffiffiffiffi
s�

p
with IFI switched on/off and with the

best QED matrix element in KKMC. The AFB changes sign
between these two energies. On the other hand, IFI keeps
the same sign, hence we expect partial cancellation of the
IFI effect in the αQEDðMZÞ. We do not pursue the
reconstruction of αQEDðMZÞ and only plot the difference
of IFI effect between two energies in the LHS of Fig. 16 as
a guide.

We have produced the same figure for KKFoam, but we
do not show it here, because it looks essentially the same as
Fig. 16. What is more interesting is to reexamine the
difference between KKMC and KKFoam,

δAFBðs�Þ ¼ AFBðs�ÞjKKMC − AFBðs�ÞjKKFoam; ð46Þ

already shown in curve (c) of Fig. 14, and its difference
between two energies

ffiffiffiffiffi
s�

p
,

ΔδAFB ¼ δAFBðsþÞ − δAFBðs−Þ; ð47Þ

relevant for the uncertainty in the measurement of
αQEDðMZÞ. We are interested in the above quantity pri-
marily for IFI switched on. This quantity is shown in
Fig. 17; see curve (c) there. It turns out that ΔδAFB ≤
2 × 10−4 within the interesting range of photon energy
cutoff vmax ≤ 0.1. In Fig. 17, we have also included two
dashed lines29 marking the band of the present uncertainty
δαQED=αQEDðMZÞ ¼ 1.1 × 10−4 according to Ref. [35].
The aim of FCCee is of course to get a substantially
smaller error than that.
The main contribution to ΔδAFB in curve (c) comes

from the uncertainty in the IFI implementation (most likely
in KKFoam), as can be seen from curve (d) in Fig. 17,
which represents ΔδAFB for IFI switched off. The aim of
future work will be to get ΔδAFB ≤ 3 × 10−5 for IFI on,
that is to the same level as for IFI off, in the semisoft
regime vmax ≤ 0.06.
The above ΔδAFB ≤ 2 × 10−4 can be treated as an (over)

conservative estimate of the uncertainty of the IFI pre-
diction for KKMC in the semisoft regime, which is much

FIG. 15. Comparison between KKMC and KKFoam for the angular distribution for the cutoff on total photon energy vmax ¼ 0.02.

28We thank P. Janot for pointing this out to us.

29The dashed lines of the band are at �1.1 × 10−4jAFBðsþÞ−
AFBðsþÞjvmax→0 ¼ �0.57 × 10−4.
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better than the LEP-era estimate but still not up to the needs
of FCCee. A less conservative estimate will be provided in
the next section.

F. On AFB for OexpðαiÞ, i= 0;1;2 in KKMC

The differences between KKMC and KKFoam provide
much valuable information, because the two programs

differ quite a lot technically (MC soft photon phase space
integration vs analytic integration), while implementing the
same physics of QED corrections. However, KKMC alone
offers interesting insight into missing higher order QED
corrections related to IFI.30

In KKMC, one may choose three types of the QED
multiphoton matrix element with resummation at increas-
ing sophistication levels, OexpðαiÞ, i ¼ 0; 1; 2. In Fig. 18
we examine differences in the IFI contribution AIFI

FBðvmaxÞ
between Oðα2Þ and Oðα1Þ and also between Oðα1Þ and
Oðα0Þ. In all of them, IFI may be switched on or off.
Complete non-IR Oðα1Þ corrections are included in the
OðαiÞ; i ¼ 1; 2 case while in the Oðα0Þ case, only the IR
part of exponentiated IFI is implemented. In the most
sophisticated case of the Oexpðα2Þ QED matrix element
in KKMC, only pure nonlog photonic corrections are
missing.31

In the LHS of Fig. 18, we show plots of the IFI
component for all three cases OexpðαiÞ, i ¼ 0; 1; 2, while
in the RHS we see the differences, for the two energy
points

ffiffiffiffiffi
s�

p
.32

The most important difference in Fig. 18, between AFB

for Oðα2Þ and Oðα1Þ, is below the statistical error of 10−4.
This can be treated as a measure of the missing QED
photonic higher-order corrections in the KKMC predictions
for AFB for this particular type of experimental cutoff,

FB max

max

FB +

-

-4

FB
IFIon

IFIon

IFIon
FB
IFIoff
FB

–3

FIG. 17. Difference δAFBðvmaxÞ between AFB from KKMC and
KKFoam and their difference between two energies

ffiffiffiffiffi
s�

p
. IFI is

switched on/off in both KKMC and KKFoam. The band marked
with a dashed line corresponds to the precision estimate of the
αQEDðMZÞ of Ref. [35].

FIG. 16. AFBðvmax; s�Þ from KKMC with Oexpðα2Þ ISRþ FSR and Oexpðα1Þ IFI.

30Provided we trust the smallness of the technical precision
error of KKMC.

31In particular, the non-IR parts of QED pentaboxes are
missing; see Fig. 5 in Ref. [12].

32Differences in Fig. 18 are obtained using MC weights event
per event, so statistical errors are grossly overestimated. This
explains the lack of fluctuations among bins.
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vmax < 0.2 and j cos θj < 0.9, near Z resonance,
jMZ −

ffiffiffi
s

p j ≤ 3.5 GeV.
Finally, let us remark that the MC results for AFB

presented here with a statistical precision of 10−4 were
obtained using ∼1010 MC events generated in parallel runs
on PC farms. Reducing the statistical error to 10−5 will be
feasible, but not trivial. However, higher precision may be
also feasible with less MC events using the technique of
recording differences of the MC weights, as it was done in
some plots shown in the following.

G. More on the uncertainty
of the ISR effect in AFB

In this section, we will present a few results from KKMC

which, in particular, will give us more insight on the ISR
effects in AFB when IFI is switched on and off.
In Fig. 19, we show differences between OexpðαiÞ, i ¼

1; 2 results from KKMC with the CEEX matrix element
in the case of IFI switched off—that is pure ISR and
FSR effects. In fact, the ISR effect is dominant here.

FIG. 18. IFI component in AFBðs�Þ obtained using KKMC program with three types of increasingly sophisticated QED matrix
elements, OexpðαiÞ, i ¼ 0; 1; 2. The band between the dashed lines corresponds to the precision estimate of the αQEDðMZÞ of Ref. [35].

FIG. 19. Differences between AFB calculated using CEEX matrix element OexpðαiÞ, i ¼ 1; 2 with IFI switched off. The band between
the dashed lines represents the precision estimate of the αQEDðMZÞ of Ref. [35].
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The variation is smaller than 3 × 10−5 and cancels between
the two energies

ffiffiffiffiffi
s�

p
.33

The same phenomenon is seen in Fig. 20, albeit the
differences are smaller, as expected. Note also that in
both of the above cases, the effect of ISR is completely
negligible for vmax ≤ 0.05, that is for cutoffs on photon
energy interesting experimentally!
Finally, we switch on IFI and examine again the dif-

ferences betweenOexpðαiÞ, i ¼ 1; 2 results from KKMCwith
the CEEX matrix element in the case of IFI switched

on. The results are shown in Fig. 21. This is the most
interesting result, because it shows the indirect influence of
ISR on the IFI contribution to AFB. Curve (c) shows that for
the difference in AFB between the two energies

ffiffiffiffiffi
s�

p
, the

first and second order results agree to within ≤ 2 × 10−5.
The disagreement is larger than was seen in the previous
graph with IFI off in the semisoft region vmax ≤ 0.06.
One may conclude that the above result provides a strong

indication that the QED uncertainty in AFB from KKMC
is of the order of the expected FCCee experimental error
δAFB ≃ 3 × 10−5. In the above plots, statistical MC errors
are negligible because all differences between the various
QED matrix elements are calculated using weight
differences for the same sets of weighted MC events.

FIG. 20. Differences between AFB calculated using the EEX matrix element OexpðαiÞ, i ¼ 2; 3, which is without IFI.

FIG. 21. Differences between AFB calculated using the CEEX matrix element OexpðαiÞ, i ¼ 1; 2 with IFI switched on.

33Such a cancellation of the ISR effect was already noticed in
Ref. [5].
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V. SUMMARY AND OUTLOOK

The extensive numerical results presented in this work
and summarized in Table II allow us to conclude that the
technical and physical uncertainty of the prediction of
KKMC for the IFI component of AFB near the Z resonance is
of order ∼10−4 (row 3 in Table II). This is definitely better
than the state of art in the LEP era ∼2 × 10−3–3 × 10−3. For
IFI switched off, the technical precision ∼10−5 was
obtained (rows 1–2 in Table II). Some of the results
presented here indicate that the physical precision (higher
orders) of the IFI component of AFB near the Z resonance
from KKMC is in fact at the level ∼1.5 × 10−5 (row 7 in
Table II). I.e., what is needed in the FCCee experiment
proposed to measure the QED coupling constant at the
scale MZ with this precision. This would allow αQEDðMZÞ
to be determined to a precision significantly better than the

present estimate of Ref. [35], which is δαQED
αQED

≃ 1.1 × 10−4.

However, more work is needed to achieve better confidence
in the technical precision and higher order photonic QED
corrections in the KKMC results. More work is also needed
to estimate other missing nonphotonic QED corrections
(e.g. pair emission) and electroweak corrections. Extension

of the presented analysis to more realistic experimental
selections (cuts) is also desirable.
The newly developed auxiliary MC program KKFoam

was instrumental in the above achievement. For more
precise tests of KKMC, it would be profitable to include
in the phase space of KKFoam the exact contribution from
nonsoft real Oðα1Þ emission matched with semisoft ana-
lytic resummation.
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APPENDIX A: FACTORIZING THE
EXPONENTIATED FORMULA

Starting from Eq. (12), let us introduce
R
d4zδ4ðz − y−

xþ x0Þ ¼ 1,
R
d4uδ4ðu − yþ xÞ ¼ 1 and

R
d4u0δ4ðu −

yþ x0Þ ¼ 1 in the Fourier expression, obtaining

σðsÞ ¼ 1

fluxðsÞ
X
V;V 0

Z
d3q1
q01

d3q2
q02

d4Qd4x
ð2πÞ4

d4Q0d4x0

ð2πÞ4 eix·ðP−QÞ−ix0·ðP−Q0Þ d4y
ð2πÞ4 e

iy·ðP−q1−q2Þ

×
Z

d4Kd4z
ð2πÞ4

d4Rd4u
ð2πÞ4

d4R0d4u0

ð2πÞ4 eiðz−y−xþx0Þ·Kþiðu−y−xÞ·Rþiðu0−yþx0Þ·R0

× exp

�Z
d3k
k0

½e−ik·ðyþx−x0ÞSIðkÞ þ e−ik·ðyþxÞSXðkÞ þ e−ik·ðy−x0ÞSXðkÞ þ e−ik·ySFðkÞ�
�

× expfαBV
4 ðQ2; t; mγÞ þ αðBV 0

4 ðQ02; t; mγÞÞ�gMVðQ; tÞM�
V 0 ðQ0; tÞ: ðA1Þ

The lowest-order spin amplitudesMV; V ¼ γ; Z are, up to a normalization constant, equal to the amplitudesMV
ετ defined in

Appendix C, but fermion helicities are temporarily suppressed.
Thanks to the above reorganization, we may clearly factorize the result into contributions due to the ISR, FSR, and IFI

components of multiphoton emission:

TABLE II. Table of the most important estimates of technical and physical uncertainties of AFB due to IFI. We define
ΔAFB ≡ AFBðsþÞ − AFBðs−Þ. The quoted numbers represent maximum values for the vmax ∈ ð0.0–0.05Þ and vmax ∈ ð0.0–0.20Þ ranges
in the corresponding figures.

No. Uncert. IFI Source Ref. vmax ≤ 0.05 vmax ≤ 0.20

1. Tech. OFF jAFBðs�ÞjKKMCceex0−KKsem0 Fig. 11 2 × 10−5 2 × 10−5

2. Tech. OFF jAFBðs�ÞjKKMC2ceex2−KKsem2 Fig. 12 2 × 10−5 3 × 10−5

3. Phys. ON jΔAIFI
FBjKKMCcce2−KKfoam5 Fig. 17 2 × 10−4 3 × 10−4

4. Phys. ON jAIFI
FBðsþÞjCEEX2−CEEX1 Fig. 18 0.3 × 10−4 0.40 × 10−4

5. Phys. ON jAIFI
FBðs−ÞjCEEX2−CEEX1 Fig. 18 0.3 × 10−4 0.30 × 10−4

6. Phys. OFF jΔACEEX2
FB − ΔACEEX1

FB j Fig. 19 0.01 × 10−5 0.20 × 10−4

7. Phys. ON jΔACEEX2
FB − ΔACEEX1

FB j Fig. 21 0.15 × 10−4 0.15 × 10−4
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σðsÞ ¼ 1

fluxðsÞ
Z

d3q1
q01

d3q2
q02

d4Qd4x
ð2πÞ4

d4Q0d4x0

ð2πÞ4 eix·ðP−QÞ−ix0·ðP−Q0ÞX
V;V 0

×
Z

d4K d4Rd4R0 eið−xþx0Þ·Kþið−xÞ·Rþiðþx0Þ·R0

×
Z

d4z
ð2πÞ4 e

iz·Kþ
R

d3k
k0
e−ik·zSIðkÞ

Z
d4u
ð2πÞ4 e

iu·Rþ
R

d3k
k0
e−ik·uSXðkÞ

×
Z

d4u0

ð2πÞ4 e
iu0·R0þ

R
d3k
k0
e−ik·u

0
SXðkÞ

Z
d4y
ð2πÞ4 e

iy·ðP−q1−q2−K−R−R0Þþ
R

d3k
k0
e−ik·ySFðkÞ

× expfαBV
4 ðQ2; t; mγÞ þ αðBV 0

4 ðQ02; t; mγÞÞ�gMVðQÞM�
V 0 ðQ0Þ

¼ 1

fluxðsÞ
X
V;V 0

Z
d3q1
q01

d3q2
q02

d4Qd4Q0

×
Z

d4K d4Rd4R0 δ4ðP − K − R −QÞδ4ðP − K − R0 −Q0Þ

×
Z

d4z
ð2πÞ4 e

iz·Kþ
R

d3k
k0
e−ik·zSIðkÞ

Z
d4u
ð2πÞ4 e

iu·Rþ
R

d3k
k0
e−ik·uSXðkÞ

×
Z

d4u0

ð2πÞ4 e
iu0·R0þ

R
d3k
k0
e−ik·u

0
SXðkÞ

Z
d4y
ð2πÞ4 e

iy·ðP−q1−q2−K−R−R0Þþ
R

d3k
k0
e−ik·ySFðkÞ

× expfαBV
4 ðQ2; t; mγÞ þ αðBV 0

4 ðQ02; t; mγÞÞ�gMVðQÞM�
V 0 ðQ0Þ: ðA2Þ

APPENDIX B: MAPPINGS IN THE FOAM
INTEGRAND

The regularized radiator distribution for the IFI compo-
nent in the semisoft photon analytical exponentiation,

ρðγ; vÞ ¼ FðγÞðδðvÞεγ þ θðv − εÞγvγ−1Þ;Z
1

0

dv ρðγ; vÞ ¼ FðγÞ≡ Fγ; ðB1Þ

is valid for both positive and negative γ. The regulator ε
should be smaller that any scale dependence in the Born
cross section times the target precision of the calculation. In
our case it should be below ΓZ=MZ by a factor of at least
10−4, i.e. ε < 10−5 is recommended.34 The distribution for
FOAM should be positive in the exploration phase; hence,

ρ̃ðγ; vÞ ¼ jρðγ; vÞj ¼ Fγ½δðvÞεγ þ θðv − εÞjγjvγ−1� ðB2Þ

is used. The mapping from v to the internal variable r ∈
ð0; 1Þ of FOAM is chosen such that its Jacobian compen-
sates exactly ρ̃ðvÞ. More precisely, vðrÞ is the solution of
the equation

r
Z

1

0

dv0 ρ̃ðγ; v0Þ ¼
Z

v

0

dv0 ρ̃ðγ; v0Þ ¼ FγRðvÞ: ðB3Þ

Note that for γ > 0 we have Rð1Þ ¼ 1, while for γ < 0 we
get Rð1Þ ¼ 2eγ − 1 > 1. Differentiating Eq. (B3) we get
FγRð1Þdr ¼ ρ̃ðγ; vÞdv; hence the Jacobian is

JðvÞ ¼ jdv=drj ¼ FγRð1Þðρ̃ðγ; vÞÞ−1: ðB4Þ

For γ > 0, the mapping [with Rð1Þ ¼ 1 and RðεÞ ¼ εγ] is
simply

vðrÞ ¼ 0; for r < RðεÞ ¼ εγ;

vðrÞ ¼ r1=γ; for r > RðεÞ: ðB5Þ

The corresponding Jacobian is

JðvÞ ¼ 1=RðεÞ ¼ ε−γ for v ¼ 0 and

JðvÞ ¼ Fγðρ̃ðγ; vÞÞ−1 ¼
v
rγ

for v > ε: ðB6Þ

For γ < 0 the mapping [with Rð1Þ ¼ 2εγ − 1 and
RðεÞ ¼ εγ] is more complicated:

vðrÞ ¼ 0; for r <
RðεÞ
Rð1Þ ¼

εγ

2εγ − 1
;

vðrÞ ¼ ½2RðεÞ − rRð1Þ�1=γ ¼ ½2εγ − rð2εγ − 1Þ�1=γ

for r >
RðεÞ
Rð1Þ : ðB7Þ

34In the actual MC runs, we use ε ¼ 10−6.
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The corresponding Jacobian reads

JðvÞ ¼ Rð1Þ
RðεÞ ¼

2εγ − 1

εγ
for v ¼ 0 and

JðvÞ ¼ FγRð1Þ
ρ̃ðγ; vÞ for v > ε: ðB8Þ

In the second simulation stage, FOAM generates
weighted MC events with the IFI component being
w ¼ JðvÞρðγ; vÞ. In the case of γ > 0, the weight

(component) in FOAM will be w ¼ 1 for any v, while for
γ < 0 it will be w ¼ Rð1Þ for v ¼ 0 and w ¼ −Rð1Þ
for v > ε.
In addition, special care has to be taken in the case of

γ → 0, that is for cos θ ≃ 0, because in this region the above
mappings can be numerically unstable due to the limited
range of the exponent in floating-point arithmetic. Because
of that, when jγ ln εj < Δ ≪ 1, many of the above formulas
have to be expanded accordingly.35

For jγ ln εj < Δ ≪ 1 and γ > 0, the expanded distribu-
tion, mapping, and Jacobian read:

ρ̃ðvÞ ¼ ρðvÞ ¼ Fγ

h
δðvÞð1þ γ ln εÞ þ θðv > εÞ γ

v

i
; RðεÞ ¼ ð1þ γ ln εÞ; Rð1Þ ¼ 1;

vðrÞ ¼ 0 for r < RðεÞ; vðrÞ ¼ exp

�
−
1

γ
ð1 − rÞ

�
for r > RðεÞ;

JðvÞ ¼ 1=RðεÞ for v ¼ 0 and JðvÞ ¼ Fγðρ̃ðγ; vÞÞ−1 for v > ε: ðB9Þ

For γ < 0, the expanded expressions with RðεÞ ¼ 1þ γ ln ε, Rð1Þ ¼ 1þ 2γ ln ε > 1, read:

ρ̃ðvÞ ¼ jρðvÞj ¼ Fγ

�
δðvÞð1þ γ ln εÞ − θðv > εÞ γ

v

�
;

vðrÞ ¼ 0; for r <
RðεÞ
Rð1Þ ¼

1þ γ ln ε
1þ 2γ ln ε

;

vðrÞ ¼ exp
�
1

γ
ð1 − rÞRð1Þ

�
; for r >

RðεÞ
Rð1Þ ;

JðvÞ ¼ Rð1Þ
RðεÞ ¼ for v ¼ 0 and JðvÞ ¼ FγRð1Þ

ρ̃ðγ; vÞ for v > ε: ðB10Þ

APPENDIX C: ZERO AND FIRST ORDER AMPLITUDES WITHOUT RESUMMATION

For constructing the semisoft photon analytical resummation and matching with the fixed-orderOðα1Þ result, we need the
zeroth and first order amplitudes and distributions in analytical form. In particular, we will need the differential cross section
of the final muons, integrated over photon angles, but keeping control over the photon energy. The relevant results are
scattered over several papers [8,33,36]. See also Refs. [7,9,37], where they are sometimes incomplete, or given in a form not
suitable for our purposes; hence it is worth collecting them once more in this Appendix.
Following the notation of Ref. [33], the Born cross section and charge asymmetry read as follows:

dσð0Þðsð1 − vÞÞ
dc

¼ 3σ0ðsÞ
8

1

4

X
ε;τ¼�

jMετðv; cÞj2 ¼
3σ0ðsÞ

8
½ð1þ c2ÞDðvÞ þ 2cD̄ðvÞ�;

Mετðv; cÞ ¼ Mγ
ετðv; cÞ þMZ

ετðv; cÞ ¼ ðετ þ cÞDε;τðvÞ;
Dε;τðvÞ ¼ Dγ

ε;τðvÞ þDZ
ε;τðvÞ ¼

qq̃
1 − v

þ gεg̃τ
ζ − v

;

ζ ¼ s −M2
Z þ iΓZMZ

s
; gτ ¼ gV þ τgA; g̃τ ¼ g̃V þ τg̃A; σ0 ¼

4απ2

3s
; ðC1Þ

where c ¼ cos θ, q ¼ Qe, q̃ ¼ Qμ are electric charges, ε; τ ¼ � are twice the helicity of e− and μ−, and

35The value Δ ¼ 10−4 used now looks OK, as the error of ∼Δ2 ¼ 10−8 is more than acceptable.
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DðvÞ ¼ 1

4

X
ετ

jDε;τðvÞj2 ¼
c0

ð1 − vÞ2 þℜ
2c1

ð1 − vÞðζ − vÞ þ
c2

jζ − vj2 ;

D̄ðvÞ ¼ 1

4

X
ετ

ετjDε;τðvÞj2 ¼ ℜ
2d1

ð1 − vÞðζ − vÞ þ
d2

jζ − vj2 ;

c0 ¼ ðqq̃Þ2; c1 ¼ qq̃gvg̃v; c2 ¼ ðg2v þ g2aÞðg̃2v þ g̃2aÞÞ;
d1 ¼ qq̃gag̃a; d2 ¼ 4gvgag̃vg̃a: ðC2Þ

The integration over cos θ results in

σð0Þ ¼ σ0
1

4

X
ετ

jDε;τð0Þj2; σΔð0Þ ¼
Z

2 cos θΔdσð1Þ ¼ σ0
1

4

X
ετ

ετjDε;τð0Þj2

Að0Þ
FB ¼ 3

4
h2 cos θΔið0Þ ¼ 3

4

R
2 cos θΔdσð0Þ

σð0Þ
¼ 3

4

P
ετετjDε;τð0Þj2P
ετjDε;τð0Þj2

¼ 3

4

D̄ð0Þ
Dð0Þ : ðC3Þ

Following the notation of Ref. [33], the noninterference Oðα1Þ results with implicit integration over photon angles and
explicit integration over photon energy up to x ¼ vmax read:

Āð1Þ
FBðxÞ ¼

3

4

σ̄Δð1ÞðxÞ
σ̄ð1ÞðxÞ ; σ̄Δð1ÞðxÞ ¼

Z
v<x

2 cos θΔdσ̄ð1Þ;

σ̄ð1ÞðxÞ
σ0

¼ ½1þ FðxÞ�Dð0Þ þWðxÞ; σ̄Δð1ÞðxÞ
σ0

¼ ½1þ FΔðxÞ�D̄ð0Þ þWΔðxÞ;

WðxÞ ¼
Z

x

0

dv

�
γIðsÞPðvÞ þ q2

α

π
ΔsδðvÞ

�
ð1 − vÞDðvÞ;

WΔðxÞ ¼
Z

x

0

dv

�
γIðsÞPðvÞ þ q2

α

π
ΔsδðvÞ − q2

α

π
v

�
ð1 − vÞD̄ðvÞ; ðC4Þ

FðxÞ ¼
Z

x

0

dv

�
γFðsð1 − vÞÞPðvÞ þ q̃2

α

π
ΔsδðvÞ

�
; Δs ¼ −

1

2
þ π2

3
;

FΔðxÞ ¼
Z

x

0

dv

�
γFðsð1 − vÞÞPðvÞ þ q̃2

α

π
ΔsδðvÞ − q̃2

α

π
v

�
;

PðvÞ ¼
�
1þ ð1 − vÞ2

v

�
þ
¼ −δðvÞ 3

4
ln
1

ε
þ θðv − εÞ 1þ ð1 − vÞ2

v
: ðC5Þ

In Ref. [33], analytical integrations over v were done, but for the purpose of the present resummation, we are more
interested in the above unintegrated version.
In Ref. [8], the contribution of IFI was added to the above charge asymmetry, but in a version that was integrated over v.

The unintegrated version36 including ISRþ FSRþ IFI with complete Oðα1Þ for v ∈ ð0; 1Þ, needed for resummation is as
follows:

36The unintegrated version of UΔ
ε;τðxÞ was obviously used in Ref. [8], but was not explicitly shown there. Also, Uε;τðxÞ was not

provided there.
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Að1Þ
FBðxÞ ¼

3

4

σΔð1ÞðxÞ
σð1ÞðxÞ ¼ 3

4

R
v<x cos θ

Δdσð1Þ

σð1ÞðxÞ ;

σð1ÞðxÞ ¼ σ̄ð1ÞðxÞ þ σ0UðxÞ; σΔð1ÞðxÞ ¼ σ̄Δð1ÞðxÞ þ σ0UΔðxÞ;

UðxÞ ¼
Z

x

0

dvρð1ÞX ðvÞð1 − vÞD̄ðv; 0Þ þ 3qq̃
α

π
ℜfAγB̄

γð0Þ þ AZB̄
Zð0Þg;

UΔðxÞ ¼
Z

x

0

dvρΔð1ÞX ðvÞð1 − vÞDðv; 0Þ þ 2qq̃
α

π
ℜfAΔ

γ Bγð0Þ þ AΔ
ZB

Zð0Þg;

ρð1ÞX ðvÞ ¼ 2qq̃
α

π

�
δðvÞ

�
3 ln

1

δ

�
þ θðv − δÞð−3Þ 2 − v

2v

�

ρΔð1ÞX ðvÞ ¼ 2qq̃
α

π

�
δðvÞ

�
5 ln

1

δ

�
þ θðv − δÞ ð−1Þ

ð2 − vÞv ½10ð1 − vÞ þ 3v2�
�
: ðC6Þ

The combined contributions to the total cross section from real soft emission (interference part) and virtual γγ and γZ
boxes can be deduced from the kmax → 0 limit of formulas in Ref. [36]:

Aγ ¼ −
1

2
; AZ ¼ − ln j1 − ζj − ζ þ ð1 − ζÞð2 − ζÞ ln −ζ

1 − ζ
:

Bγð0Þ ¼ c0 þ
c1
ζ�

; BZð0Þ ¼ c1
ζ�

þ c2
ζζ�

: ðC7Þ

The analogous contributions to σ△ð1Þ can be obtained from formulas in Ref. [8]:

AΔ
γ ¼ 65

36
− i

2

3
π;

AΔ
Z ¼ 31

9
ζ − 9ζ2 þ 4ζ3 − lnð1 − ζÞ

�
15

2
− 13ζ þ 12ζ2 − 4ζ3

�

þ lnð−ζÞ
�
5 −

17

3
ζ þ 2ζ2

�
þ 4ζð1 − ζÞ3

�
Li2

�
−ζ
1 − ζ

�
−
π2

6

�
:

B̄γð0Þ ¼ d1
ζ�

; B̄Zð0Þ ¼ d1
ζ�

þ d2
ζζ�

: ðC8Þ

The following combinations of the Born amplitudes are involved:

Dðv; uÞ ¼ ℜ
1

4

X
ετ

ðDε;τðvÞ�Dε;τðuÞÞ

¼ ℜ

�
c0

ð1 − vÞð1 − uÞ þ
c1

ð1 − vÞðζ� − uÞ þ
c1

ðζ − vÞð1 − uÞ þ
c2

ðζ − vÞðζ� − uÞ
�

D̄ðv; uÞ ¼ ℜ
1

4

X
ετ

ετðDε;τðvÞ�Dε;τðuÞÞ

¼ ℜ

�
d1

ð1 − vÞðζ� − uÞ þ
d1

ðζ − vÞð1 − uÞ þ
d2

ðζ − vÞðζ� − uÞ
�
;

BVð0Þ ¼ 1

4

X
ετ

DV
ε;τð0Þ�Dε;τð0Þ; B̄Vð0Þ ¼ 1

4

X
ετ

ετDV
ε;τð0Þ�Dε;τð0Þ; V ¼ γ; Z: ðC9Þ

Let us remark that the following relations hold:

DðvÞ ¼ Dðv; vÞ; D̄ðvÞ ¼ D̄ðv; vÞ; ðC10Þ

ℜBγð0Þ þℜBZð0Þ ¼ Dð0Þ; ℜB̄γð0Þ þℜB̄Zð0Þ ¼ D̄ð0Þ: ðC11Þ
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We also need the virtual box and real soft contributions before integration over c ¼ cos θ. Spin amplitudes for two γγ box
diagram and two γZ box diagram contributions, normalized the same way as the Born spin amplitudes, read as follows:

Mfγγg
ετ ¼ ðqq̃Þ2ðετX1ðcÞ þ X2ðcÞÞ;

MfγZg
ετ ¼ qq̃gεqτðετZ1ðcÞ þ Z2ðcÞÞ: ðC12Þ

Their interference with Born amplitudes leads to the following contributions:37

dσγγ

dc
¼ 3σ0

8

1

4

X
ετ

2ℜ½Mfγγg
ετ M�

ετð0; cÞ�

¼ 3σ0
8

1

4

X
ετ

2ℜfðqq̃Þ2½X1ðcÞ þ cX2ðcÞ þ ετðcX1 þ X2ðcÞÞ�D�
ετð0Þg

¼ 3σ0
8

qq̃2ℜ

��
c0 þ

c1
ζ�

�
½X1ðcÞ þ cX2ðcÞ� þ

d1
ζ�

½cX1ðcÞ þ X2ðcÞ�
�

¼ 3σ0
8

qq̃2ℜ

��
c0 þ

c1
ζ�

�
½FγγðcÞ − Fγγð−cÞ� þ d1

ζ�
½FγγðcÞ þ Fγγð−cÞ�

�
; ðC13Þ

where

X1ðcÞ þ cX2ðcÞ ¼ FγγðcÞ − Fγγð−cÞ;

cX1ðcÞ þ X2ðcÞ ¼ FγγðcÞ þ Fγγð−cÞ; c� ¼ 1� c
2

;

FγγðcÞ ¼ 2
α

π

�
2

�
ln
m2

γ

s
þ iπ

�
c2þ ln

c−
cþ

−
1

2
cðln2c− þ 2iπÞ þ cþðln c− þ iπÞ

�
: ðC14Þ

Similarly, for the γZ box, we have:

dσγZ

dc
¼ 3σ0

8

1

4

X
ετ

2ℜ½MfγZg
ετ M�

ετð0; cÞ�

¼ 3σ0
8

1

4

X
ετ

2ℜfqq̃½Z1ðcÞ þ cZ2ðcÞ þ ετðcZ1 þ Z2ðcÞÞ�D�
ετð0Þg

¼ 3σ0
8

qq̃2ℜ

��
c1 þ

c2
ζ�

�
½Z1ðcÞ þ cZ2ðcÞ� þ

�
d1 þ

d2
ζ�

�
½cZ1ðcÞ þ Z2ðcÞ�

�

¼ 3σ0
8

qq̃2ℜ

��
c1 þ

c2
ζ�

�
½FγZðcÞ − FγZð−cÞ� þ

�
d1 þ

d2
ζ�

�
½FγZðcÞ þ FγZð−cÞ�

�
; ðC15Þ

where FγZðcÞ is related in a simple way to fðs; t; uÞ of Ref. [38]:

FγZðcÞ ¼ 2
α

π
c2þsfðs; t; uÞ; FγZð−cÞ ¼ 2

α

π
c2−sfðs; u; tÞ: ðC16Þ

In the KKMC code, the γZ box of Ref. [38] is programmed as follows:

FγZðcÞ ¼ ln
t
u
ln

m2
γ

ðtuÞ1=2 − 2 ln
t
u
ln
M̄2 − s
M̄2

þ Li2

�
M̄2 þ u
M̄2

�
− Li2

�
M̄2 þ t
M̄2

�

þ ðM̄2 − sÞðu − t − M̄2Þ
u2

�
ln
−t
s
ln
M̄2 − s
M̄2

þ Li2

�
M̄2 þ t
M̄2

�
− Li2

�
M̄2 − s
M̄2

��

þ ðM̄2 − sÞ2
us

ln
M̄2 − s
M̄2

þ ðM̄2 − sÞ
u

ln
−t
M̄2

; ðC17Þ
where M̄2 ¼ M2

Z −MZΓZ, t ¼ −ð1 − cÞs and u ¼ ð1þ cÞs.

37We use ð1=4ÞPετ ετqq̃gεg̃τ ¼ d1 ¼ qq̃gag̃a and ð1=4ÞPετ gεg̃τ ¼ c1 ¼ qq̃gvg̃v.
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Finally, the above box contributions have to be combined
with (interference) the corresponding soft real emission
contribution:

dσsoftX

dc
¼ dσð0Þ

dc
qq̃

α

π
δsoftX ðcÞ;

δsoftX ðcÞ ¼ 4 ln
c−
cþ

ln
s1=2ϵ
mγ

þ ln2c− − ln2cþ

þ 2Li2ðcþÞ − 2Li2ðc−Þ; ðC18Þ

such that the usual cancellation of the IR regulator mγ

occurs, leaving out the IR cutoff on photon energy
v ≤ ϵ ≪ 1.
Let us finally define explicit relations between integrated

and unintegrated virtualþ soft contributions:

3Aγ ¼
Z

dcðFγγðcÞ − Fγγð−cÞ þ δsoftX ðcÞÞ;

2AΔ
γ ¼

Z
2cdcðFγγðcÞ þ Fγγð−cÞ þ δsoftX ðcÞÞ;

3AZ ¼
Z

dcðFγZðcÞ − Fγγð−cÞ þ δsoftX ðcÞÞ;

2AΔ
Z ¼

Z
2cdcðFγZðcÞ þ Fγγð−cÞ þ δsoftX ðcÞÞ: ðC19Þ

Finally, in Figs. 22 and 23 we crosscheck the old
analytical results with KKFoam, in which the integration
over cos θ (virtual) and over photon energy v (real photon)
is done numerically. As we see, there is perfect agreement
between old analytical formulas and new results using
KKFoam.

FIG. 22. Oðα1Þ from old papers and KKFoam.

FIG. 23. Oðα1Þ from old papers and KKFoam.
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