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We report a measurement of the branching fraction and final-state asymmetry for the B̄0 → K0
SK

∓π�
decays. The analysis is based on a data sample of 711 fb−1 collected at the ϒð4SÞ resonance with the Belle
detector at the KEKB asymmetric-energy eþe− collider. We obtain a branching fraction of ð3.60� 0.33�
0.15Þ × 10−6 and a final-state asymmetry of ð−8.5� 8.9� 0.2Þ%, where the first uncertainties are
statistical and the second are systematic. Hints of peaking structures are found in the differential branching
fractions measured as functions of Dalitz variables.

DOI: 10.1103/PhysRevD.100.011101

Three-body charmless hadronic B decays are suppressed
in the standard model (SM); the ones with an even number
of kaons have a smaller decay rate compared to those with
an odd number of kaons. These three-body decays proceed
via b → u tree and W-exchange diagrams, as well as
b → s; d penguin processes with a virtual loop. The latter
provides an opportunity to search for physics beyond the
SM since new heavy particles may cause deviations from
SM predictions. Due to possible interference between the
aforementioned diagrams, these decays are sensitive to CP
violation localized in the Dalitz plane [1,2].
Previous measurements of B̄0 → K0

SK
∓π� decays [3] by

BABAR [4,5] and LHCb [6–8] found hints of structures
in the low K−πþ and K−K0

S mass regions with a highly
asymmetric distribution in helicity angle. These studies
also reported no two-body resonance decays with K̄K�
final states. Furthermore, the yields were not sufficient to
draw firm conclusions with a Dalitz plot analysis. Similar
studies on Bþ → KþK−πþ performed by Belle [9], BABAR
[10], and LHCb [11,12] found an unexpected peak in the
KþK− invariant mass (MKþK− ) as well as strong evidence
for localized CP violation near MKþK− < 1.5 GeV=c2.
Assuming the excess is due to a two-body resonance, a
search for its isospin partner decaying to K−K0

S would help
elucidate the nature of the enigmatic resonance.
We report measurements of the branching fraction and

final-state asymmetry of B̄0 → K0
SK

∓π� decays. Using the
charges of final-state particles, the latter is defined as

A ¼ NðK0
SK

−πþÞ − NðK0
SK

þπ−Þ
NðK0

SK
−πþÞ þ NðK0

SK
þπ−Þ ; ð1Þ

where N denotes the signal yield obtained for the corre-
sponding final state of both B0 and B̄0. Here A is distinct
from the direct CP asymmetry (ACP); rather it is an
asymmetry between the decay final states of K0K−πþ

and K̄0Kþπ− where the K0 or K̄0 is reconstructed as a K0
S.

We measure this quantity as it can be more precisely
determined than ACP for this decay mode. A nonzero A
value would be an indirect manifestation of CP violation.
This is the first measurement of such an asymmetry in the
B̄0 → K0

SK
∓π� decay. In addition, we use the sPlot [13]

method to obtain background-subtracted yields for the
Dalitz variables MK−πþ , MπþK0

S
, and MK−K0

S
, and hence

to determine their differential branching fractions. The total
branching fraction is calculated by integrating the differ-
ential branching fraction. By utilizing this well-established
method, we can infer the existence of an intermediate
resonance and localized asymmetry in the background-
subtracted Dalitz plot, as well as compare the result from
this study with previous measurements [4–12].
Our measurement is based on the full data sample of

711 fb−1, corresponding to 772 × 106 BB̄ pairs, collected
on the ϒð4SÞ resonance with the Belle detector [14] at the
KEKB asymmetric-energy eþe− collider [15]. The detector
components relevant for this study are a silicon vertex
detector (SVD), a 50-layer central drift chamber (CDC), an
array of aerogel threshold Cherenkov counters (ACC), a
barrel-like arrangement of time-of-flight scintillation coun-
ters (TOF), and an electromagnetic calorimeter made of
CsI(Tl) crystals. These are located inside a superconducting
solenoid that provides a 1.5 T magnetic field.
Large samples of Monte Carlo (MC) events are gen-

erated with EVTGEN [16] and subsequently simulated with
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GEANT3 [17] with the configurations of the Belle detector.
We use these samples to obtain the expected distributions of
various physical quantities for signal and backgrounds, to
optimize the selection criteria, and to determine the signal
detection efficiency.
The selection criteria for the final-state particles in the

B̄0 → K0
SK

∓π� reconstruction are based on information
obtained from the tracking systems (SVD and CDC) and
the charged-hadron identification (PID) systems, namely
the CDC, ACC, and TOF. The charged kaons and pions are
required to have an impact parameter within �0.2 cm of
the interaction point (IP) in the transverse plane, and within
�5.0 cm along the z axis, defined as the direction opposite
the eþ beam. The likelihood values of each track for kaon
and pion hypotheses (LK and Lπ) are determined from the
information provided by the PID systems. A track is
identified as a kaon if LK=ðLK þ LπÞ > 0.6, otherwise it
is treated as a pion. The efficiency for identifying a pion
(kaon) is about 88% (86%), depending on the track
momentum, while the probability for a pion or a kaon to
be misidentified is less than 10%. The efficiency and
misidentification probabilities are averaged over the
momentum of final-state particles.
The K0

S candidates are reconstructed via the K
0
S → πþπ−

decay, and the identification is enhanced by selecting on
the output of a neural network (NN) [18], which combines
seven kinematic variables of the K0

S [19]. The invariant
mass of the K0

S candidate is required to be within
�10 MeV=c2 of its world average [20], which corresponds
to about three times the mass resolution. The K0

S → πþπ−

vertex fit is required to converge with a goodness-of-fit (χ2)
value less than 20.
We identify B mesons with two kinematic variables

calculated in the center-of-mass (CM) frame: the beam-
energy constrained Mbc ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
beam=c

4 − jp⃗B=cj2
p

, and the
energy difference ΔE≡ EB − Ebeam, where Ebeam is the
beam energy, and p⃗B (EB) is the momentum (energy) of
the reconstructed B meson. The B candidates are required
to have Mbc > 5.255 GeV=c2 and jΔEj < 0.15 GeV, with
the signal region given by 5.272 GeV=c2 < Mbc <
5.288 GeV=c2 and jΔEj < 0.05 GeV. We require a suc-
cessful vertex fit for B̄0 → K0

SK
∓π� candidates, where the

K0
S trajectory is included in the fit, with χ2 < 100.
About 9% of events in the data sample have more than

one B candidate, and the signal events have an average of
1.1 candidates. In such cases, we select the candidate with
the smallest χ2 value from the B vertex fit. According to
simulations, our best candidate selection method chooses
the correct candidate in 99% of cases.
The dominant background is from the continuum

eþe− → qq̄ðq ¼ u; d; s; cÞ process. To suppress it, we
construct a Fisher discriminant [21] from 17 modified
Fox-Wolfram moments [22]. To further improve the dis-
tinguishing power, we combine the discriminant output

with four more variables in an NN. These are the cosine of
the angle between the reconstructed B flight direction and
the z axis in the CM frame, the offset along the z axis
between the vertex of the reconstructed B and the vertex
formed by the remaining tracks, the cosine of the angle
between the thrust axis [23] of the reconstructed B and that
of the rest of the event in the CM frame, and a B meson
flavor tagging quality variable. The NN is trained with
signal and continuum MC samples. The NN output (CNN)
ranges from−1 to 1, and it is required to be greater than 0.7.
This removes 93% of the continuum background while
retaining 82% of the signal. We transform CNN to

C0
NN ≡ logðCNN−Cmin

NN
Cmax
NN −CNN

Þ, where Cmin
NN is 0.7 and Cmax

NN is the

maximum value of CNN.
Background events from B decays mediated via the

b → c transition (generic B decays) have peaking structures
in the signal region. They are mainly due to the decays
with two-body final states of D and J=ψ mesons, e.g.,
D0 → K−πþ, D− → K−K0

S, D−
s → K−K0

S, J=ψ → eþe−,
and J=ψ → μþμ−. These decays can be identified by peaks
at the nominal D and J=ψ mass [20] in the distributions of
the invariant masses of two of the final-state particles
(MK−πþ ,MπþK0

S
,MK−K0

S
, where we allow for a change in the

mass hypothesis of a charged kaon or pion). We exclude
events within �4σ of the nominal mass of the peaking
structures to suppress the contributions from D and J=ψ
mesons.
The rare B background from b → u; d; s transitions is

studied with a large MC sample in which the branching
fractions are much larger than the measured or expected
values. Two modes are found to have peaks near the ΔE
signal region: B0 → K−KþK0

S and B0 → π−πþK0
S, includ-

ing their intermediate resonant modes. The remaining rare
B events have a relatively flat ΔE distribution.
The signal yield and A are extracted from a three-

dimensional extended unbinned maximum likelihood fit,
with the likelihood defined as

L ¼ e
−P

j

Nj

N!

Y

N

i¼1

�

X

j

NjPi
j

�

; ð2Þ

where

Pi
j ¼

1

2
ð1 − qi ·AjÞ × PjðMi

bc;ΔEi; C0i
NNÞ; ð3Þ

N is the number of candidate events, Nj is the number of
events in category j, i is the event index, qi is the charge of
the K� in the i-th event, Aj is the value of final-state
asymmetry of the j-th category, Pj represents the value of
the corresponding three-dimensional probability density
function (PDF), and Mi

bc, ΔEi, and C0i
NN are the Mbc, ΔE,

and C0
NN values of the ith event, respectively.
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With all the selection criteria applied, 98% of the signal
MC events are correctly reconstructed while 2% are self-
crossfeed (scf). In the fit, the ratio of scf to correctly
reconstructed (“true”) signal events is fixed. The signal
yield (Nsig) is the combined yield of the true signal and
scf PDF. Five more event categories are included in the
fit: continuum background, generic B background,
B0 → K−KþK0

S, B0 → π−πþK0
S, and the remaining rare

B background. The true signal PDF is described by the
product of a sum of two Gaussian functions in Mbc, a sum
of three Gaussian functions in ΔE, and an asymmetric
Gaussian function in C0

NN. These PDF shapes are calibrated
including possible data-MC differences obtained from
the study of a high-statistics control mode B0 → D−πþ,
D− → K0

Sπ
−. The continuum background PDF is given by

the product of an ARGUS function [24] in Mbc, a second-
order polynomial in ΔE, and a sum of a Gaussian and an
asymmetric Gaussian function in C0

NN. All shape param-
eters of the continuum PDF are free in the fit, except for the
ARGUS endpoint which is fixed to 5.2892 GeV=c2. For
the other contributions (scf, generic B, B0 → K−KþK0

S,
B0 → π−πþK0

S, and rare B), their PDFs are described by a
smoothed histogram in ΔE and Mbc, and an asymmetric
Gaussian function in C0

NN whose shape is based on MC.
The yield of each category is floated. The A value is fixed
to zero for all background categories.
The signal-enhanced projections of the fit are shown in

Fig. 1. We obtain a signal yield of 490þ46
−45 with a statistical

significance of 13 standard deviations, and an A value
of ð−8.5� 8.9Þ%. The significance is defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2 lnðL0=LmaxÞ
p

, where L0 and Lmax are the likelihood
values obtained by the fit with and without the signal yield
fixed to zero, respectively.
The branching fraction is calculated using

B ¼ Nsig

ϵ × η × NBB̄
; ð4Þ

where Nsig, NBB̄, ϵ, and η are the fitted signal yield, the
number of BB̄ events (¼ 772 × 106), the signal
reconstruction efficiency, and the efficiency calibration
factor, respectively. We assume that charged and neutral
BB̄ events are produced equally at the ϒð4SÞ. The ϵ value
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FIG. 1. Signal-enhanced projections of the fit to B̄0→K0
SK

∓π�
decays on ΔE,Mbc, and C0

NN. (a) ΔE in 5.272 GeV=c2 < Mbc <
5.288 GeV=c2 and 0 < C0

NN < 5. (b) Mbc in jΔEj < 0.05 GeV
and 0 < C0

NN < 5. (c) C0
NN in jΔEj < 0.05 GeV and

5.272 GeV=c2 < Mbc < 5.288 GeV=c2.
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determined by MC, with all the selection criteria applied, is
ð26.7� 0.1Þ%. The calibration factor includes contributions
due to various systematic effects η ¼ ηK × ηπ × ηNN×
ηfit, where ηKð¼ 0.9948� 0.0083Þ and ηπð¼ 0.9512�
0.0079Þ are the corrections due to K� and π� identification,
and are obtained from a control sample of D�þ → D0πþ,
D0 → K−πþ. Similarly, ηNNð¼ 0.9897� 0.0208Þ is due to
the requirement on CNN and is obtained from a sample of
B0→D−πþ, D−→K0

Sπ
−. The factor ηfitð¼ 1.022� 0.004Þ

is due to fit bias, obtained from an ensemble test on the fitter.

Figure 2 shows the background-subtracted Dalitz plot
obtained with the sPlot method. Structures around the
regions M2

K−K0
S
< 2 GeV2=c4 and 7 GeV2=c4 < M2

πþK0
S
<

23 GeV2=c4 are visible. We also obtain background-
subtracted distributions after separating into five bins,
and then calculate the differential branching fractions as
functions of the three Dalitz variables with the yield and
reconstruction efficiency within each bin. We use a similar
binning scheme as the one in Ref. [9]. Figure 3 shows the
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FIG. 3. Differential branching fraction as functions of Dalitz
variables.
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FIG. 4. Differential branching fraction as functions of the Dalitz
variables for the two reconstructed B final states: K0

SK
−πþ (red

points with error bars) and K0
SK

þπ− (blue points with error bars).
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differential branching fractions as functions of the three
Dalitz variables including comparison to the MC with a
three-body phase space model. Large deviations
from phase space expectations are found around
1.2 GeV=c2 in the MK−K0

S
spectrum as well as near

3.0–4.2 GeV=c2 in the MπþK0
S
spectrum. No obvious

structure is observed in the low-mass regions of both
MK−πþ and MπþK0

S
, which is consistent with previous

two-body decay measurements [5,7,8].
Differential branching fractions are shown separately for

the K0
SK

−πþ and K0
SK

þπ− final states in Fig. 4. Within
each bin of the Dalitz variables, the results are consistent
with no asymmetry. The details of the differential branch-
ing fraction calculation in each bin are summarized in
Table I.
Various sources of systematic uncertainties in the

branching fraction calculation are listed in Table II. The
uncertainty due to the number of BB̄ events is 1.4%.
The uncertainty due to the charged-track reconstruction
efficiency is estimated to be 0.35% per track by using
partially reconstructed D�þ → D0πþ, D0 → πþπ−K0

S. The
uncertainties due to K� and π� identification are obtained
by the control sample study ofD�þ → D0πþ,D0 → K−πþ.
The uncertainty due to the K0

S → πþπ− branching fraction
is based on its world average [20]. The uncertainty due to
K0

S identification is estimated to be 1.6% based on a
D�þ → D0πþ,D0 → K0

Sπ
0 control sample [25]. The uncer-

tainty due to continuum suppression with the requirement
on CNN is obtained from a control sample of B0 → D−πþ,
D− → K0

Sπ
−. The uncertainty of the reconstruction

efficiency is due to limited MC statistics. The uncertainty
due to fixed PDF shapes is estimated by the deviation of
fitted signal yield when varying the parameters of the PDFs
in different cases. For all the smoothed histograms, we vary
their binning parameters. For the PDFs with fixed para-
metrization, the fixed parameters are randomized by using a
Gaussian random number to repeat data fits, and the
uncertainty of the yield distribution is quoted. The uncer-
tainty due to fit bias is obtained from an ensemble test on
the fitter.
Various sources of systematic uncertainties in A are

listed in Table III. The uncertainty due to K� and π�

TABLE I. Signal yields, efficiency, and differential branching fraction in each MK−πþ , MK−K0
S
, and MπþK0

S
bin.

(c2=GeV) eff Yield dB=dMð10−7Þ
K0

SK
−πþ K0

SK
þπ− K0

SK
−πþ K0

SK
þπ−

yield yield dB=dMð10−7Þ dB=dMð10−7Þ
MK−πþ

0–1.1 0.301 69.2� 18.0� 3.0 4.1� 1.1� 0.2 40.3� 12.7� 1.7 28.9� 12.8� 1.2 2.4� 0.7� 0.1 1.7� 0.8� 0.1
1.1–1.5 0.306 71.3� 17.8� 3.1 11.4� 2.8� 0.5 31.4� 12.3� 1.4 39.9� 12.9� 1.7 5.0� 2.0� 0.2 6.4� 2.1� 0.3
1.5–2.5 0.289 47.5� 20.5� 2.0 3.2� 1.4� 0.1 9.4� 14.3� 0.4 38.1� 14.7� 1.6 0.6� 1.0� 0.0 2.6� 1.0� 0.1
2.5–3.5 0.262 149.7� 21.7� 6.4 11.2� 1.6� 0.5 56.5� 14.6� 2.4 93.2� 16.1� 4.0 4.2� 1.1� 0.2 7.0� 1.2� 0.3
> 3.5 0.237 152.7� 22.0� 6.6 7.4� 1.1� 0.3 79.9� 15.5� 3.4 72.8� 15.5� 3.1 3.9� 0.8� 0.2 3.5� 0.8� 0.2

MπþK0
S

0–1.1 0.275 27.1� 12.7� 1.2 1.8� 0.8� 0.1 13.3� 9.2� 0.6 13.8� 8.7� 0.6 0.9� 0.6� 0.0 0.9� 0.6� 0.0
1.1–1.5 0.269 19.4� 12.4� 0.8 3.5� 2.2� 0.2 3.0� 8.8� 0.1 16.5� 8.7� 0.7 0.5� 1.6� 0.0 3.0� 1.6� 0.1
1.5–2.5 0.252 84.8� 20.0� 3.6 6.6� 1.5� 0.3 48.3� 14.2� 2.1 36.5� 14.1� 1.6 3.8� 1.1� 0.2 2.8� 1.1� 0.1
2.5–3.5 0.264 65.7� 17.6� 2.8 4.9� 1.3� 0.2 32.2� 11.7� 1.4 33.4� 13.2� 1.4 2.4� 0.9� 0.1 2.5� 1.0� 0.1
> 3.5 0.283 293.4� 31.5� 12.6 11.9� 1.3� 0.5 120.7� 21.7� 5.2 172.7� 22.8� 7.4 4.9� 0.9� 0.2 7.0� 0.9� 0.3

MK−K0
S

0–1.1 0.245 32.9� 8.5� 1.4 2.4� 0.6� 0.1 19.1� 5.8� 0.8 13.7� 6.2� 0.6 1.4� 0.4� 0.1 1.0� 0.5� 0.0
1.1–1.5 0.258 154.6� 19.6� 6.6 29.3� 3.7� 1.3 66.1� 13.0� 2.8 88.5� 14.7� 3.8 12.5� 2.5� 0.5 16.8� 2.8� 0.7
1.5–2.5 0.235 96.9� 21.3� 4.2 8.1� 1.8� 0.3 43.0� 15.3� 1.8 53.9� 14.8� 2.3 3.6� 1.3� 0.2 4.5� 1.2� 0.2
2.5–3.5 0.267 83.4� 18.1� 3.6 6.1� 1.3� 0.3 32.1� 12.3� 1.4 51.3� 13.2� 2.2 2.4� 0.9� 0.1 3.8� 1.0� 0.2
> 3.5 0.292 122.6� 27.8� 5.3 4.8� 1.1� 0.2 57.2� 19.5� 2.5 65.5� 19.9� 2.8 2.3� 0.8� 0.1 2.6� 0.8� 0.1

TABLE II. Summary of systematic uncertainties on the branch-
ing fraction.

Source in %

NBB̄ 1.4
Tracking 0.7
K� identification 0.8
π� identification 0.8
BðK0

S → πþπ−Þ 0.1

K0
S → πþπ− reconstruction 1.6

Continuum suppression 2.1
Limited MC statistics 0.1
Signal PDF 2.7
Background PDF 0.4
Fit bias 0.4

Total 4.3
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detection bias are obtained from the control samples of
Dþ → ϕπþ and Dþ

s → ϕπþ [26], and Dþ → K0
Sπ

þ [27],
respectively. The uncertainties due to the fixed PDF shapes
are treated similarly to those on the branching fraction.
They are estimated from the deviation of the fitted value of
A with varying the conditions of those PDFs in differ-
ent cases.
In summary, we have measured the branching fraction

and asymmetry A of B̄0 → K0
SK

∓π� using a data sample
of 711 fb−1 collected by Belle. We obtain a branching
fraction of ð3.60� 0.33� 0.15Þ × 10−6 and an A of
ð−8.5� 8.9� 0.2Þ%, where the first uncertainty is stat-
istical and the second is systematic. The measured A value
is consistent with no asymmetry. Hints of peaking struc-
tures are seen in the regions M2

K−K0
S
< 2 GeV2=c4 and

7 GeV2=c4 < M2
πþK0

S
< 23 GeV2=c4 in the Dalitz plot.

The peaking structure in M2
K−K0

S
is consistent with

the result from the previous Bþ → KþK−πþ measure-
ment. A cross-check is performed by calculating the
differential branching fraction after projecting onto
each Dalitz variable, and hints of peaking structures
are found near 1.2 GeV=c2 in MK−K0

S
and around

4.2 GeV=c2 in MπþK0
S

when compared to the phase

space MC. No obvious K� structure is seen in either
low MK−πþ or MπþK0

S
spectra, which are consistent with

the BABAR and LHCb results [5,7,8]. No localized
final-state asymmetry is observed. In the near future,
experiments with large data sets such as Belle II and
LHCb can perform a more detailed analysis exploiting
the full Dalitz plot.
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