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On the basis of the analyticity and unitarity, rigorous lower bounds on the imaginary parts of the

elastic scattering amplitudes are given in terms of the total cross section and the slope parameter. If we

assume that the interaction radius R is independent of s and take R = 1 fm, the imaginary parts of
the elastic scattering amplitudes must not have zeros for —t & 0.45 (GeV/c)2 at high energies. A

comparison with the CERN ISR data is given,

I. INTRODUCTION

The study of the rigorous bounds based on the
analyticity derived from axiomatic field theory
and the unitarity of the S matrix has the Froissart
bound" as the first result. The Froissart bound
is an upper bound on the imaginary parts of the

elastic scattering amplitudes in the forward di-
rection at the high-energy limit. In the physical
and unphy sic al nonf or ward re gion s, Martin' de-
rived rigorous bounds on the imaginary parts of
the elastic scattering amplitudes in terms of the
total cross section 0, . His lower bound is as
follows:

ImF(s, f ) P,+, '(I + t/2k') +P, '(I + t/2k') + e(2L + 3)P~„(1+f/2u')
ImF {s,0) (L + I}' +(2L + 3) o )

—o, =(L+ I)'+ e(2L+3) (0 ~ a & I}. (2)

Here s, I;, and k are the c.m. energy squared,
c.m. momentum transfer squared, and c.m. mo-
mentum, respectively, and t, is the threshold
value in the analyticity domain.

Under the assumption that the imaginary parts
a, (s) of the partial-wave amplitudes are mono-
tonieally decreasing functions of /, Avni and
Savit' derived the lower bound on the imaginary
parts of the amplitudes in terms of the total cross
section and the slope parameter S = —,'A',

ImE(s, f) ) 24, (RV- f ) f R~f (3 33 (3ImE(s, 0} R v'- f

In this paper, on the basis of the analyticity
derived from axiomatic field theory and the uni-
tarity of the S matrix, we derive the rigorous
lower bounds on the imaginary parts of the elas-
tic scattering amplitudes in terms of the total
cross section and the slope parameter. The
bounds hold in the physical and unphysical non-
forward regions. For 7i'P, K'P, PP, and PP
elastic pcatterings, our bounds together with
the value A = 1 fm imply that the imaginary parts
of the scattering amplitudes must not have zeros

where L, + 1 is the non-negative integer determined
by

II. DERIVATION OF THE BOUNDS

We consider the elastic two-body scattering
amplitudes of spinless massive particles. In
the analyticity domain derived from axiomatic
field theory, the imaginary parts of the scat-
tering amplitudes are expanded as follows:

ImF(s, t ) = P (2l + l)a, (s)P, (cos6) .
l=p

(4)

Here (9 is the c.m. scattering angle and cos6
=1+ t/2k' for elastic two-body scatterings. The
unitarity of the S matrix gives the constraint

0 «a, {s)«1.
Now we present the derivation of the bounds

in terms of the total cross section cr, and the

for —I «0.45 (GeV/e}' at high energies. Further-
more, under an assumption weaker than that of
Avni and Savit, ' it is shown that the same bound
holds in a wider region of I;. For the elastic
scatterings of particles with arbitrary spin,
similar bounds are obtained for the imaginary
parts of the helicity-nonf lip amplitudes. We
compare our bound with the CERN ISR data.

Section II is devoted to the derivation of the
bounds. In Sec. III a comparison with the ISR
data is given.
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slope parameter

8=—sB'=——ImE(s, t)I 2

dt C=O

For convenience we set

ImE(s, 0) .

The existence of such a region is shown in the
Appendix. Thus the following bound is obtained:

L

G(C 2 C ) «p G(t2 l)(2l+ I)a((s)
(2Cz+ 1)a

i.e. ,

ImE (s, t }=—g (2l + 1}a,(s)P, (cos8), ImF~(s, t )
0) Pc (cos8), (13)

ImF~(s, 0) = Q (2l+ 1)a, (s)
2=0

-=(2C~+ 1)az,

I
ImE~(s, 0) =

2 Q (2l + 1) (l'+l)a, (s)
l=O

—= „,(2Cz + 1) (C~'+ C~) ar, . (8)

where use is made of Eqs. (7) and (8}, and

g (l'+l) (2l+1)a, (s)
1=0

CL +CL
P (2l + 1)a, (s)
j=O

Hence CI is a monotonically increasing function
of I . As is shown in the Appendix, P,(z) is a
monotonically decreasing function of v in the
positive 1 —z region such that (1-z) (v + v) is
sufficiently small. Then

Using the formula

ye y ~
n&-&

P„(z)=Q, , Q (v'+ v —m' —m),
&=O

1m'(s, t }
)

& Pc (cos8)

for any I . Therefore we obtain the lower bound

we find that P„(z) is a convex function of the
argument v'+ v in the (1 -z) region such that
(1-z) (v'+ v) is sufficiently small:

(9)
ImE(s, t)

}
~ Pc(cos8)

for sufficiently small positive 1 —cos0. Here
C = C is given by

(16)

G((Z( X( (v( + v()) «Z( X( G(v( + v() (10) which is obtained by using the definition

for S=sA = —ImF(s, t)2

dt S=O

G(v'+ v)= P, (z), Z,X(=—1, and 1).; ~ 0. (11) By using the relation
I

1 I

+Z

ImF(s, 0) .

at high energies, the lower bound

J,(fl l:~ IW&)ImE(s, 0)

as 0-«) for 0- Rv-«t /v2 «3.83 (19)

is obtained in the same way as Eq. (16). Here
we have used the fact that J,(x) has the smallest
value at x =3.83 and is a convex function of x'
in the interval 0 «x' «(3.83)'.

We wish to give, numerically, the domain of
k and t in which our lower bounds (16) and (19)
hold. For any fixed z, we can draw the curve of
the function P, (z) for the argument v'+ v in Fig 1. .
Each I egendre function P„(z) in the expansion
(4) of the scattering amplitudes lies on that curve.
For each given (ao(s), a, (s), . . . , a, (s), . . . j, the
point with the coordinate

a, ( ) ((*~ () g(2( ~ (la, (*))',(al
)=0

Z(2( ()I ( )

+~
g

~ Pg

2~+ & s{~

Q (2l + 1)a, (s}
f0

1,ies on a segment between certain two points on
that curve. It is known from the numerical cal-
culation that P„(z) is a convex function of v'+ v

in the interval 0 c v & vo(z), where vo(z) is the val-
ue of v at which P, {z) takes its smallest value.
Thus the inequality (16) holds for C 4 v, (cos8}.
Now we can give the domain of jt and t in which
our lower bound (16) holds for the interaction ra-
dius, for example, A = 1 fm. This is shown in
Fig. 2. The domain at the high-energy limit is
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FEG. 1. The curve of the Legendre function P, (z) of the argument v +v with z =0.
l 1 — = dan s convex in the interval 0 ~v &v . That P Iz' takes '

v=v () di o f t' f ~ inthc ion o v +v e interval 0~v~v Iz~ was conf
~z «0.99 and 0.11»v~+v ~3600

p() as confirmed by numerical calculations for —0.94
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FEG. 2. The domain of A and t in which our lower bound (16) holds. The slo e
The bound (16) holds in the d

un ( ) o s. The slope parameter is taken to be R =1 fm.
o s e omain between the k axis and the solid line (—). The dashed line ——refers t

of the right-hand side of Eq. (16). The dash-dot (-.--) and dash-dot-dot -- ~ —~ - lines(- ~ ~ —~ ~ ) ymp o
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0 « —I 4' 1.14 (GeV/c)'. This is nothing but the
domain in which the lower bound (19) holds.

For the unphysical t, the lower bounds

&Pc 1+, for 0&t&t0,ImE(s, I ) t
(21)

The derivation of the bounds (25}, (26), (27), and
(28) is quite similar to that of the bound (16). In
this way, under an assumption (23) weaker than
that of Avni and Savit, ' we obtained the same
bound which holds in a region of t wider than
theirs.

By using the formula (2l + l}P,(z) =P„,'(z}
-P, , '(z), the imaginary parts (4) of the scat-
tering amplitudes are rewritten as follows:

ImE(s, t) =+ [a, ,(s) -a„,(s)]P, '(cos8).
l=z

(24)

The function 2P„'(z)/(v + v) is convex for the
argument v'+ v —2 in the (1 -z) region such that
(1-z) (v'+ v —2) is sufficiently small. From
analyticity, unitarity, and Eq. (23}, we obtain
the lower bounds,

ImE(s, I ) Pc. '(cos8)
ImE(s, 0) (C"+C )

for a certain small-angle region, (25)

ImE(s, t ) J,(R v t)-
ImE(s, 0} R v f-

as h-~ for 0 «Rv- t «5.14, (26)

ImE(s, t ) Pc.'(I+ f/2k')
ImE(s, 0) (C"+ C')

ImE(s, I ) I, (R v t )~ 2 ' ~ as 0-~ for 0&1 &tQ,ImE(s, 0) Rv t

where

C'= [(kR)'+ ]'"——' (29)

ImE(s, I) ~ f, [R(-,'I)"'] as }t-~ for 0& t&t,
ImE(s, 0)

(22)

are obtained in a similar way, where C is given
by Eq. (17}and I, is the threshold value in the
analyticity domain. Here one uses the fact that
ImEz(s, I )/ImEz(s, 0) is monotonically increasing
with L, for t&0. It should be noted that the lower
bounds (16), (19), (21), and (22) are obtained
only from the analyticity and unitarity and are
valid even for finite energies.

From the phenomenological analysis for w'P,
K'P, PP, and PP elastic scatterings at high en-
ergies, the imaginary parts a, (s) of the partial-
wave amplitudes appear to be monotonically de-
creasing functions of l . Now let us assume the
following inequality:

a, ,(s) -a„,(s) ~ 0 for any positive integer l .

III. COMPARISON WITH CERN ISR DATA

Our lower bounds are the constraints on the
imaginary parts of the elastic scattering ampli-
tudes. For elastic differential cross sections,
our bound (19) gives

do'

-«.[R(-kf)'"])' as u-~.
(optical point)

Here (optical point) is (I/16m)o, '. The same
bound can be obtained also for the scatterings of
particles with arbitrary spin. The domain of t in
which the bound (30) holds is 0 « —f «0.45/R'
(GeV/c)'. Here R is in units of fm.

For the PP scatterings at CERN ISR (Intersecting
Storage Rings} energies, the ratios of the real to
imaginary parts of the helicity-nonf lip amplitudes
are experimentally' consistent with zero at t =0.
Also the helicity-flip amplitudes are kinematically
zero at t =0. Hence we may safely assume that the
helicity-flip amplitudes and the real parts of
the helicity-nonf lip amplitudes are negligibly
small in the neighborhood of t =0. Under this
assumption, the ISR data for elastic differential
cross sections tell us that 8= 2.4 fm at s=2800
GeV' (i.e. , k =27 GeV/c). Then we can compare
the lower bound (J', [R(- I)"'])' with the ex-
perimental values' of the elastic differential
cross sections for PP scatterings. This com-
parison is given in Fig. 3, from which it is seen
that our lower bound (30) is consistent with the
ISR data.

IV. SUMMARY

For the elastic scatterings of spinless par-
ticles, we obtained the lower bounds (16), (19),
(21), and (22) on the imaginary parts of the scat-
tering amplitudes in the physical and unphysical
regions based on the analyticity derived from
axiomatic field theory and the unitarity of the
S matrix. These bounds are given in terms of
the total cross section and the slope parameter.
It should be noticed that our bounds are obtained
based on the analyticity and unitarity only and
that they are valid for any finite energies. Fur-
ther assuming that the imaginary parts of the
partial-wave amplitudes are decreasing functions
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APPENDIX

1 —z
(Pz)= (

Z—, ~ 1, 1; (Al)

We present a proof that the Legendre func-
tion P„(z) is convex with respect to the argument
v'+ v in a region of sufficiently small positive
1 —z. The function is written for any positive
number v as follows:

FIG. 3. Comparison of our lower bound with the CERN
ISR data on the Pp elastic differential cross section at
2SOO GeV2 (i.e. , 4=27 GeV/c). The solid line is for our
lower bound(JO[R(-qt}vt])t. O.p. means "optical point

( —1)" (1 —z)"

n

x g [v'+ v —(m —1}'—(m —I)]

of l, we have derived the lower bounds (25), (25),
(27), and (28). Similar bounds are obtained also
for the helicity-nonf lip amplitudes for the scat-
terings of particles with arbitrary spin.

The bound (19) implies that the imaginary parts
of the scattering amplitudes must not have zeros
for 0 ~ —t a 0.45/R (GeV/c)' at the high-energy
limit. Similarly the bound (26) implies the non-
existence of zeros for 0 ~ —t ~0.55/R' (GeV/c)'.
Here R is in units of fm. In particular, for
m'P, K'P, PP, and pp elastic scatterings, the
interaction radius R is about 1 fm at high ener-
gies.

In Sec. III, our bound (30}was compared with
the ISR data and found to be consistent with them.
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v' -{ —1)' -( —1)
2

m= 1 m

(A3)

The second derivative with respect to v'+ v is

8 2

s(v'+ v}
P„(z)

I:(',') =Z 2 („')

v'+ v —(m —1)' —(m —1)X
2

lll=l m

The author would like to thank Dr. T. Kawai,
Dr. S. Naito, Professor T. Nakano, Professor Then

(A4)

1 1-z
(v + v)

(
s

)
P))(z) (2()s

1-z
2 I (n!)' '(v'+ v) &, , —,'n(n —1)+

1 -z, [", (v'+ v)!"i ' "
( '+ )

(

—,'n(n —1) ([

-oil' ('-*)(.*..)i ), (~z)

where [v) is the Gauss symbol, i.e. , the largest integer which is not larger than the value of v.
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The same method applies to positive z —l. Hence, there is a region of z such that P„(z) is a convex
function of the argument v'+ v.

In a similar way we can show that in a region of sufficiently small positive 1-z the Legendre function
P„(z}decreases monotonically as v'+ v increases.
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