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Asymptotic behavior of form factors for two- and three-body bound states
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The asymptotic power behavior of the electromagnetic form factors is examined for two-
and three-body s-wave bound states, both relativistic and nonrelativistic. In the nonrelativis-
tic case, we consider local and separable two-body potentials and we make use of the Faddeev
equations in order to define the three-body bound states. For local potentials which behave
as (I k I)

i (0 & 8) for large momentum transfer, we obtain for the asymptotic power behavior
of the form factors of the two- and three-body bound states E&(q ) = (Iql) and E&(q }
=(lql) 6 2s, respectively. For separable potentials V=g(lkl)g(lk'I) and g{lkl}=(jkl} ~'2

we findE2(q ) =(lql) 2 " (0 &8 —-') E (q ) =(lql} ~ (-'~ &), and E&(q } = {lql) ', re-
spectively, For the relativistic case, we consider the two- and three-body Bethe-Salpeter
equation in the ladder approximation. %e treat the spin-zero case only but we believe that
our final conclusions willnotbe affected by the introduction of spin--,' particles. %'ith an
interaction which behaves as {k2) e (0 & 8) at large momentum transfer, we obtain E&{q2)
~ (q2) i 6 and + (q2) ~ (q2) 2 26

I. INTRODUCTION, RESULTS, AND CONCLUSIONS

The evaluation of the electromagnetic hadron
form factors has been a constant task for the last
five years. ' ' It soon became clear that the large-
momentum-transfer behavior of the form factors
provides a powerful means of studying the con-
stituents of the hadrons and their dynamics. It is
by now well accepted that the behaviors E„(q')
= I/q' and Eu, (q ') = I/(q')' are compatible with the
experiments. ' This fact suggests that the pion and
the nucleon certainly are of a different nature as
far as the electromagnetic interactions are con-
cerned. It seems also to suggest that the pion is
less composite than the nucleon because of the
faster decrease of the proton form factor. Re-
cently, the previous behaviors have been derived
from the minimal quark structure of the pion and
the proton ' so far, however, the three-particle
bound state has not been treated relativistically in
a convincing way, and this leaves the question open
whether the underlying two- and three-particle
structure can explain the different behavior of the
two form factors.

It is the aim of this paper to investigate the
large-q' behavior of the form factors of the two-
and three-particle s-wave bound states in a sys-
tematic way, both in relativistic and nonrelativis-
tic theories. Throughout the paper we consider
power behaviors only, neglecting possible loga-
rithmic factors. Here, in a first approach, we
restrict ourselves to spinless constituents, We
do not believe that the case of spin--,' constituents
makes a real difference in our final conclusions.
This case will be discussed elsewhere. "

We shall consider the potential scattering case
(Sec. II) for two main reasons. First, many fea-
tures of composite-particle models can be ex-
plained by means of the nonrelativistic quark mod-
el;" moreover, the Bethe -Salpeter equation in the
ladder approximation reduces to a nonrelativistic
form in the lar ge -mome nta limit, as it can be re-
covered from various (equivalent) three-dimen-
sional equations. ' " The second good reason for
studying the potential theory is the firm mathe-
matical ground on which the nonrelativistic three-
particle theory in the form of the Faddeev equa-
tions" is based (we do not consider three-particle
for ces}."

For both two- and three-particle cases, we shall
assume the two-body local potentials

and the separable potentials

I'(k, k') =g (Ik l)g(lk'I)

with

Our choice of the potentials is determined by
simple reasons. For the local potentials, the
limiting behavior (Ik I)

' is characteristic of the
singular potential (- X/r') which produces the un-
pleasant feature of a wave-function falloff depend-
ing on the coupling constant. ""On the other
hand, an even more singular potential gives rise
to the exponential decrease of both the wave func-
tion and the form factor, ' and this does not seem
to be the physical case. As far as the separable

960



C. ALABISO AND Q. SCHIZ RHOLZ

potential is concerned, the choice 8 &0 is imposed
by the very existence of scattering processes. The
use of nonlocal potentials is suggested both by the
existence of tensor forces in the spin--,' case and

by the structure of the relativistic potential as
recovered in the three-dimensional version of the
Bethe-Salpeter equation. "'" "

Our results are as follows. For the two-body
and three-body bound-state form factors we ob-
tain

note 25, where it is claimed that the consistency
argument, widely applied in our paper, does not
work for superrenormalizable interactions.

Finally, it is worthwhile to remark that our
results are in agreement with the predictions
given in Refs. 8 and 9. Furthermore, our wave
functions turn out to be integrable, as was as-
sumed in Ref. 8 as a crucial hypothesis.

II. POTENTIAL SCATTERING

and

I".(q')=(lql) ' "
with local potentials, whereas we obtain

F,(q')=(lql) ' " («&-2),

+.(q')=(lql) "' (2-&),
and

+,(q')=(lql) ' "
with separable potentials.

In the framework of relativistic theories, we
consider (Sec. III) the s-wave bound states of two
and three particles described by the two-body
Bethe-Salpeter equation in the ladder approxima-
tion (Sec. III ') and by the relativistic Faddeev
equations (Sec. IIIB)." ""We shall assume a
two-body interaction of the form

V(k) ~ (k') 2, e& 0.

In the framework of a potential-scattering theory
we shall discuss the asymptotic behavior of the
two- and three-body bound-state form factors at
large momentum transfer; we shall consider s-
wave bound states only. Furthermore, in order
to simplify things, we shall always assume that
only one particle is charged. Let us start with the
two-body case. Here the charge form factor reads

)'.(i*)=f di'(*(i')0(i'-i),

where the wave function tt) satisfies the homoge-
neous Schrodinger equation

))(i)=q. ~ f di)'(i-i)(t&).

If we now consider a central potential which be-
haves at large Ikl as

1V(k)=, , e 0

we get the following behavior for P and E, :

Our interactions correspond to the Ay' theory for
8 = 1 and to the A.y' theory for the limiting case
8=0. For the latter case it has been proved""
that the high-momentum-transfer behavior of the
two-body wave functions and form factors depends
on the coupling constant, as in the singular (-X/r')
potential.

Our results for the asymptotic behavior of the
two- and three-body form factors are I"2{q')

(q2) 1 8 p {q2)~ (q2) 2 2()

Since the A.q theory leads to that strange depen-
dence on the coupling constant, we define the phys-
ical form factors as given by our superrenormal-
izable interaction in the limit 8-0; the asymptotic
behavior of our "pion" and "nucleon" form factors
turns out to be {q') ' and (q') ', respectively.

The spin-& constituents, which are more inter-
esting for the physical situation, present some
technical difficulties: Apart from the complicated
spin structure of the three-body wave function,
there appears a delicate region of integration, so
that one has to be more careful than in the spin-
zero case. However, we do not agree with Ref. 4,

1
4(q) —

~ ~

2&eI&I--

I
I"2(q ) .— - 2.()

I q) IqI

In the limiting case 8 =0 which corresponds to the
potential (- X/r') the form factor behaves like
(lql) ' "'" ' (0&a&-,') with an explicit de-
pendence on the coupling constant X (a similar
phenomenon occurs in the Bethe-Salpeter equa-
t;ion" "). With an even more singular potential,
the wave function (and hence the form factor) be-
comes exponentially decreasing. " In conclusion,
with a central potential, the desired I/q' behavior
of the "pion" form factor is achieved only with the
singular potential (-X/r') and only in the particular
limit A. - 4.

For the three-body case, we consider the Fad-
deev equations" with minor changes in the nota-
tions. Let p„p„p, be the three-momenta of the
three particles and let us introduce the new vari-
ables
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=pi+p2+p2 i
ponents satisfying the equation

f63P2 —Nl 2P3
m +m3

(m, + m, ) p, —rn, (p, + p, )
ql =

Pgl + Nl2+ PPg3

and their cyclic permutations k„q, and k„q,. Q
is the total momentum kl is the relative momen-
tum between the particles 2 and 3, and q, is the
relative momentum of the particle 1 with respect
to the cluster 2-3. These variables are the most
suitable ones for our purposes and any pair (k, , q,j
can be used for the description of the system.
From now on we shall assume equal masses and
m= 1. For practical purposes, we write down
some relations between the different variables:

Pl 3@ ql & P2 3@ &ql 1& 13 3~ &ql 1 &

l~ ~ ~ 3~ 1
q2 = —2 q, +k, , k2 = —gq, —2k, ,

q, = --, q, -k, , k, =gq, --,k, ,

0 T,(E) T,(E)
= —G,(E) T,(E) 0 T,(E)

T,(E) T,(E) 0

Here G,(E)=1/(ff, E)-, where H, is the free three-
body Hamiltonian and F- {the mass of the three-
body ground state) is below any threshold. T;(E)
is the two-body scattering operator between par-

ticles

s j and It (i xj e A }.
In order to evaluate the asymptotic behaviors,

we now introduce the "vertex function" q:
@=V' +9' +0' ~ (I' =GOD'

and we consider the once-iterated Faddeev equa-
tions:

T1 0 2 09 1 0 3 09

q, +q, +q, =0.

%e assume that the particle 1 only is charged;
then the form factor reads

+ T1GOT2GOV + TIGQT3GQ(P

V" = T2GQT1GQ&'+ T2GQT3GOV'

+ T2GQ T1GQ Q + T2670 T3GQ(P

y' = T3GQT, GQ(P'+ T3GQT2GQy'

+ T3GOTIGQp + T3GQT2GQ~

(10)

where P = P'+ g'+ P3 and g' are the Faddeev com-
The first term of the first equation reads explic-
itly

V-'( l, qi) dkadq2f((k(~q2+ &ql~E &ql 6@ } 2 . i (2 E J.q +ql q2+q2 -+ + 6 Q2

1
f2( ql 2q29k2'IE @ql (( } gm 1 . l g2 v. +~2 0 Q(ql&kl)q,' +q,' ~ q', + q,' -E +, Q

where (k'„q'J and [k,'„q,'[ are related by Eq. (6}. The high-q' behavior of the form factor (7) is given once
we know the behavior of (}( (or y) for large

~ q) and ~k] (we always suppose that the low momenta do not
create any trouble). In this region the f matrix behaves as the potential up to logarithms, so that, for the
potential (3),

1
t(kk ), '

k -k' '+

by means of a simple consistency argument we find that the only behavior consistent with Eq. (11}is given
by

1 I 1 1 1 1
V o(ql 1) 2 (

(
x k [1+6

)
(1+9

[
1 k [1+8

(
)1+((

l&1I - ql )
—aql+ 1 ql aql+ 1 ql

lq,I-
(12}

%e can obtain this result starting with a definite ansatz on the asymptotic behavior of the vertex function
[for example the estimate (7.36) of Ref. 16]. Because we are faced with a Euclidean metric, we can apply
the Vfeinberg theorem ' and the asymptotic behaviors are simply given by a power counting. %e find in-
consistency, unless the ansatz is precisely the one given in formula (12). The behavior of y' and y' is
easily found, so that from (9}and (12) we recover the following behavior for the wave function:
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1
i Q( ll&kl) k 3 3 3 I m2 E v Q(Qlrkl)

1 4 1 6 ~
1 1 1

k, '+q ' Iq, I""
I --,'q, +k, I'"+

1 1
I--' k I"'

I

1
I -,'q, +k, I

"e

1 1 1 1

I ~q, +k, i" I-,'q, +k, l" Iq I" I —-'q +k I"
(13)

The three terms which appear in Eq. (13) are
easily understood. Equation (13), in fact, turns
out to be symmetric in q„q„q, and, consequently,
in p„p„p,. By counting the powers in Eq. (13)
and by observing that no dangerous region of inte-
gration exists {we could express everything as a
function of p„p„p,), we see that the wave function

g is integrable and

Furthermore, we shall assume that this part of
the potential is dominating at short distances so
that we can consider an interaction entirely de-
scribed by the potential (16). The related t matrix
is given by the simple expression"

t(k, k'&}=g(lk l)t(E)g(lk I) .. (I't)
where

1
0o+q(ki, tl, -q) =,-(...e .

Iqi-~ lq
k1 q1f1Xed

»om (7), (13), and (14), making use of the Wein-
berg theorem, "we finally get

(15)

I(ki, k') =~g(lki)g(lk I). (16)
I

which ha. s to be compared with F3(j') = 1/I jl'
given in Eq. (4). The asymptotic behavior of the
form factors, therefore, does depend on the num-
ber of the constituents {at least for 2 and 3). The
slowest decrease we can achieve is I jl ' and

Idyll

in the limiting case 8-0.
It is interesting to remark that the three-body

result is not affected by the existence or nonexis-
tence of bound states in the two-body subchannels;
in fact, for large momentum transfer, the two-
body P matrix is dominated by the scattering part
and not by the discrete spectrum {cf.Ref. 16,
Theorem 4.2).

In the second part of this section we shall dis-
cuss the case of separable potentials for reasons
given above. Let us assume a separable contribu-
tion to the potential:

Oo

t(F-) = 1+4am d q

1
4g(q) — I-I, „g,Iql--

( 1F(tl } —,„,e, 0&8- —, ,qi- lq

1
&3(tl') = - 3.3.e,„ Iqi

(20)

If we insert the t matrix (17) in Eq. (8), we ob-
tain the following simple structure of the three-
body bound-state wave function:

g(ik;l)t(Z-4tl 3 ——,
' Q3)g'(lq; l)

where the functions g' satisfy the (noniterated)
coupled equations

In order that t(E) may exist, we have to assume

1
g(lql) —

[
[1/3+8,

lqi ~ q

Then, in the two-particle case, we immediately
obtain from (1) and (2)

g'(IZ, I)= dp
' ' * ' g 'p '

[ '(I I) '(I I)] I=123
q& +q; ~ p+p -E+ +@2 (22)

1
( Zf) ' i3+38

lqg
(23)

From the assumption (19) and the structure (18) of
the t matrix, it directly follows that the only be-
havior compatible with Eg. (22} is

This leads to the asymptotic behavior of the wave
function

1 1
o(k„q,), —,

k 3 3 Q (k [,)3~a
(

p~3e . (24)
lk1I 1 +ql f=1 q)
I q,i--
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This wave function is not integrable, but the same
analysis we have applied in the local case still
works and we obtain

yo(P) = (- i X) d "k V(P k—) G, (k)(po(k)

1
F3(q)

~

~5+2eq
(25) G,(k) = [ (-,' Q + k)' —1] '

[ (-'- Q —k)' —1]

Therefore, the )q)
' behavior of the two-body

form factor is achieved with the potentials {16}in
the limit 8-0 without any dependence on the cou-
pling constant. %'ith the same limiting potential
the three-body form factor behaves like ) q) '.

III. RELATIVISTIC MODELS

A. Two-body case

We assume the interaction of the form

v(p) =

o(p-')
2

(p') ", 0(8 1

so that

I'(P), (P')—'

Next we consider the asymptotic behavior of the
form factor of relativistic two - and three -body
bound states. Again, we only consider s-wave
bound states and always assume that the masses
are equal, m = 1, and only one particle is charged.

For the two-body bound state, the electromag-
netic current in the ladder approximation is shown
in Fig. 1(a) and it can be written

d'p qo(p)(, @, )2 1
(0+ 2p+ q)„

1

2

Here, the A.cp' and the Xy' theories are described
by 8 = 1 and 8 = 0, respectively. By means of a
simple consistency argument it is straightforward
to derive from Eq. {27}the following asymptotic
behavior of the two-body wave function' '.

V'o(p), ,—(p') ',
which, inserted in Eq. {26), gives for the form
factor' '

&& q&.,(p+ 2q),

where y is the vertex function satisfying the
Bethe-Salpeter equation [cf. Fig. 1(b)]

2Q+P+qI

—Q —
p

l

2

From Eqs. (30) and (32) it follows that with a
Aq' theory we obtain E,(q') = (q') ', whereas we
reach the I/q' behavior in the limiting case 9-0,
8&0. For 8 =0 the consistency argument does not

apply any longer, and this reflects the well-known
fact that in the A.y' theory, which corresponds to
the case 8=0, the large-momentum-transfer be-
havior of the form factor depends on the coupling
constant"" [cf. the potential (- Xlr') in Sec. II).

The use of the parameter 6 in t:he definition of
the potential is essentially the procedure applied
in the analytic regularization"; on account of the
possible nonanalytic dependence of the renormal-
izable theories on this parameter, however, we
should not be surprised at this discontinuity.

—Q
I

2

—Q
I

2

) Q/+k

p-k

B. Three-body case

For the three-body case we shall assume a pair-
wise interaction between the constituents and we
shall consider the ladder graphs given in Fig. 2

(b)

FIG. 1. (a) The electromagnetic form factor in the
ladder approximation for a two-body bound state. (b) The
Bethe-Salpeter equation in the ladder approximation for
the wave (vertex) function of a two-body bound state.
The elementary bvo-body interaction is defined in
formula (29).

I"IG. 2. The general graph in the ladder approximation
for a system of three particles interacting w'th a two-
body interaction.
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only.
%e make the Faddeev decomposition of the bound-

state vertex function, i.e. , y = y'+ y'+ q', where
q" is related to all the graphs in which the inter-
a, ction between particles 2 and 3 comes first.
Graphically, the once-iterated relativistic Fad-
deev equations are shown in Fig. 3, where the
zig-zag lines stand for a two-body ~ matrix with a
three-body propagator (cf. Fig. 4). It is easy to
see that the iteration of Fig. 3 reproduces all the
(uncrossed) ladder graphs. The integral equation
for the vertex function can be written in a symbolic
form similar to the nonrelativistic equation [Eq.
{10)]:

y' = T,G, T2Goy'+ T,GoT3GO(P'

T1GQT2~0y + T,~OT3~0

@'= T2Go TOGO@'+ T2GOT3G. V"

+ T2GO Tycho'g + T2607 360@ )

O' = T3Go~iGOV' + T3GoT2GOV

+ T ~oTiGOV + ~3~oT2~O

where now, symbolically)

(p, p, p , I T, I p,'pl.p

FIG. 3. The once-iterated relativistic Faddeev equa-
tions for the wave (vertex) function of a three-body
bound state. The symbol ~~~ means the Faddeev com-
ponents (' (p'). The ziz-zag lines represent the two-
body Bethe-Salpeter T matrix in the ladder approxima-
tion.

~P P2&3 i f, l P, P2P~)

1 1 1

P, —1P2 —1P3

[Relativistic Faddeev equations have been written
down by many authors in different approximations.
See for example Refs. 12-15 and 21.]

As we did in the nonrelativistic case. we intro-
duce the four -momenta

Here t, is the usual two-body Bethe-Salpeter
scattering matrix between particles 2 and 3 in the
ladder approximation, and

2p —(p +p))
3

and their cyclic permutations k„q, and k„q, [the
relation a.mong them is the same as given in Eq.
(16)]. Equation (33) now reads explicitly

y~(k„q, ) = fN'dQ'f, (3Q ——,'g, + A, ) gQ ——,'-Q, —0, ) 3Q ——.'Q"'+ A ', 3Q + —,'Q'' —0' —g, )

&& [(,'-Q ——,'q'+k')' —1]
' [(-,'-Q+,-q'-k'- q, )' —1]

XI ('Q q, , , g+2q It' qj ~ —Q+q -Q —,q

&[(lQ q')'-1] '](lQ --,'q'-&')'-ll 'q', 8', q')

~ ~ ~ (p + ~ ~ ~ (p +2 0 0 ~ 3

q &(4,q, ) ="

In terms of the vertex function y = q'+ y'+ y', the electromagnetic current for the three-body bound state
now reads (cf. Fig. 5')

(&i&„l 0) = «ldll ', q&(~~', q', ) [(kQ+ q', )'-1] '(3Q+2q', + q)„

& [( Q — q +k ) —1] [{Q —:q—k ) —ll I. ( Q+ q + q)' —1] 'qo„(k'„q,'+ q). (38)

In order to evaluate the asymptotic behavior of the form factor, we need the behavior of the vertex function
for large momenta. In this limit, the t matrix reduces to the potential up to logarithms and the asymptotic
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integral equation reads

» [1[»„»,)= ff »'»» [i*-'», -», -'*»' ~ »')*] '[ill -l»' ~ »'i*[-

[(-,' [))+ ,' q'--k'- q, )'1 ' [(q, -q')'] [(39+q')'] '
[(~3 ——,'q' —k')'] '&pq(k', q'}

+ ~ ~ 1 Q + ~ ~ ~ p + i ~ ~ (p

q &(k„q,)= "~,
V)o(k„q,)= "

If we first consider the integration over a finite volume, we immediately obtain the following behavior:

q)q(q„k, )=[(2q, —k,)'] (q, ') '(q, ') + ~ ~ ~

=2[(-'q, -k,)'1'(q ') '(q, ') '+2((-'q +k.)'1 '(q, ') '(q ') '.

(39)

When the integration variables are big, we substitute this ansatz in Eq. (39) and evaluate the contribution
to the asymptotic behavior coming from the other regions of integration": k'„small and q,' = O(q, ) or
q„' = O(2q, -k, ) and vice versa; q„' = O(q, ) and (2q' —k'), = 0(-,'q, -k, ), etc. The behavior (40) turns out to
be dominant. Collecting from Eq. (39) the missing terms, we obtain for the vertex function [cf. (13)]

qo(q„k, ) =(q,') ' '([(kq, -k,)'] '+ [(lq, +k,)'] 'j+ [(lq, -k,)'] ' '((q, ') '+ [(-'q, +k,)'] ')

+[(-'q, +k,)'] ' '((q, ') '+[(kq, -k, )'] 'k.

From Eq. (41) it follows that the wave function

(=G.q)-f&(q„k, ) =((kQ+ q, )' —1] '[(3[)) --,'q, +k, )' —1]-'[(3@--'. q, -k, )' —1] 'q, (q, ,lk, ) (4 2)

is integrable. Furthermore,

q...(k„q,+-'q),— (q') ' ".
&q.~~ f' ed

(43}

though spinless) model for the pion and the nucleon
form factors.
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F( 2) ~ (q2)-2-a8
4f2~ oo
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In order to evaluate the asymptotic behavior of
the form factor (38), we first consider a, finite
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The other regions of integration confirm the be-
havior (44) as the dominant one. The nucleon
form factor would correspond to the limiting case
8-0 as it was necessary to consider in the two-
body case in order to recover the correct pion
form factor. So far, we have a consistent (al-

Q

I I—Q ——q+k2

I I—Q ——
q

—k2

Q+q

FIG. 4. The two-body Bethe-Salpeter T matrix with a
three-particle propagator.

FIG. 5. The electromagnetic form factor in the ladder
approximation for a three-body bound state.
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It is shown that all meson-baryon and meson-meson 0 terms which can be extracted from
experiment can be reconciled with the (3, 3} chiral-symmetry-breaking scheme, H' =u()
+ cua, provided that c assumes the value c- —1.0.

I. INTRODUCTION

In a world in which many of the symmetries of
nature are approximate, it is important to know
how such symmetries are broken. For the case
of the algebra of currents, a framework of
SU, x SU, breaking has been given by Gell-Mann'
and elaborated upon by Gell-Mann, Oakes, and
Renner' (GMOB) and by Glashow and Weinberg. '
In the GMOB scheme, the symmetry-breaking
part of the Hamiltonian density 8' takes the form
uo+ cu„where uo and u, transform according to

the (3, 3) +(3, 3) representation of SU, x SU, . The
parameter c can be determined from the "0 terms"
of meson-baryon and meson-meson scattering or
from the pseudoscalar mass formula. In the latter
case, GMOB assume that all the pseudoscalar
mesons are Goldstone bosons which obey a quad-
ratic mass formula. They conclude that c= —1.25,
quite near the SU, x SU, limit c = —W2, which in
turn implies that the various pion 0 terms should
be small. However, o(mA) has been estimated4
to be large, and a recent study of low-energy mN

and KN scattering'' has unified previously con-


