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We show that a large class of multiperipheral models satisfy the bootstrap integral equa-
tion obtained by Krzywicki and Petersson and by Finkelstein and Peccei. We relate the lead-
ing-particle distribution directly to the parameters of the multiperipheral model. We present
a simple one-dimensional model, closely related to the Chew-Pignotti model, for which the
bootstrap equations are exactly soluble and we discuss the properties of the solution. We
show how the bootstrap integral equations can be modified to provide a two-component model

containing both pionization and diffraction.

I. INTRODUCTION

It is a well-known empirical fact that in produc-
tion processes, a particle with the same quantum
numbers as the projectile tends to retain, on the
average, about half the projectile energy. This
“leading-particle effect” is responsible for the
fact that in the inclusive process a+b-c +X,
there will be an enhancement in the fragmentation
region of a if a and ¢ have the same quantum
numbers, which is absent if they do not. Such an
enhancement is evident, for example, in the data
of Albrow et al.,' for the reaction p+p—~p+X, at
the CERN ISR.

Krzywicki and Petersson? have conjectured that
the distribution of particles in the fireball recoil -
ing off the leading particle, as a function of the
missing mass squared, M?, in the fireball rest
frame, is the same as the total distribution in the
c.m. frame, as a function of the total c.m. energy
squared, s. This conjecture has been partially
confirmed by the observation® that in the reaction
p+p—p+X at NAL, the charged-particle multi-
plicity in the fireball as a function of M2 is similar
to the total charged multiplicity as a function of s.

Given the leading-particle distribution, the
“bootstrap hypothesis” of Krzywicki and Petersson
leads to a recursion relation, in the form of an
integral equation, for the complete single-particle
distribution.?** The higher-order inclusive dis-
tributions,* correlation functions,® and the gener-
ating function for the multiplicity moments® can
also be determined. The implications of the
bootstrap hypothesis were first investigated in
detail by Finkelstein and Peccei? in the case where
all produced particles are identical and spinless,
and we shall limit ourselves to that case in this
paper. However, the inclusion of quantum numbers
in the model is straightforward.”

It has been pointed out® that the results mentioned
above tend to indicate that the bootstrap picture
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and the multiperipheral picture are equivalent.

In Sec. II we shall therefore look in detail at the
relationship between the bootstrap models and the
multiperipheral models, and we shall see ex-
plicitly that for a large class of simple multi-
peripheral models, the single-particle distribution
does satisfy the bootstrap integral equation. In

the process we shall obtain an explicit expression
for the leading-particle distribution in terms of
the parameters of the multiperipheral model. All
of the results known for multiperipheral models®
can then be directly applied to the bootstrap model.
It then becomes clear that the advantage of the
bootstrap formulation over the conventional formu-
lation of the multiperipheral model® is that we
obtain the inclusive distribution directly from the
bootstrap integral equation. Since this equation

is most simply formulated in terms of the Feynman
scaling variable x rather than the rapidity y, it is
best suited to describing the distribution in the
fragmentation region where we expect it to be
interesting (in the pionization region, as a function
of y, the single-particle inclusive distribution is
uninteresting since we expect nothing more than

a flat plateau).

In Sec. III we shall discuss in detail a simple
one-dimensional model, closely related to the
classic Chew-Pignotti model,'° for which the boot-
strap equation is exactly soluble. In Sec. IV we
shall briefly discuss the way in which a diffractive
component can be added to the model. We shall
discuss in detail the properties of this two-
component bootstrap model in a subsequent paper.
In Sec. V we shall offer some speculations as to
why even this two-component model may not be
adequate.

II. RELATION BETWEEN THE BOOTSTRAP MODEL
AND THE MULTIPERIPHERAL MODEL

The single-particle invariant inclusive cross
section is given by the expression
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where P=p, +p,, P’=s, dp,=d>p;/2E;, \"'(s) is
the flux factor and T is the T matrix for the process
DPatby—~pt" " p, Letusconsider asimple multipe-
ripheral-type model. The n-particle T matrix

can then be written

Tn:Z Dn,ﬂ’ ’
™

where D, , represents the contribution of a single
multiperipheral diagram corresponding to a given
permutation, m, of the momenta p,..., p,. We
sum over all n! permutations. The diagram
corresponding to the canonical ordering, where
7 is the identity permutation, I, is given in Fig. 1.
The leading particle is defined to be the particle
emitted at the top of the multiperipheral chain
(e.g., p,in the canonical ordering of Fig. 1). We
can define T, ; to be the sum of all n-particle
multiperipheral diagrams with particle i the lead-
ing particle. In Eq. (2.2), the contribution to
T,,; will come from the sum over the subset of
permutations that permute the momenta
Dy ooy Pi-y Pivyp ---, Dn, leaving the leading-
particle momentum p; unchanged. Calling this
subset of permutations 7/(¢), we can write Eq.
(2.2) as

(2.2)

<pa’pb ITi Ipls .

where
M2 =(p,+by =), i =(py—pi)*.

It is an essential feature of multiperipheral
models that the amplitude vanishes whenever the
momentum transfer between adjacent particles
becomes large. It is this feature of the model
that gives rise to the “strong ordering” and which
is responsible for the fact that the major contri-

(2.6)

pO
P,
Py
Pn-
Pn
Py

FIG. 1. The n-particle multiperipheral graph for the
canonical ordering of the particles.

.(217)4):1(5)2‘o (_n—l__l)l fdi’z"'dpn | Pa>s Dy |T|p1,< e p”>|254 (’P—Zn: P,~> ,

-ypn>:f(s‘M12,~ ti)<pa_pi’pb |T!P1, .-
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(2.1)
i=1
r
T,=y. 2. D,,. (2.3a)
i (i)
> Du=T . (2.3b)
mr(i)
so T, can be written as a sum of 7, ;,
n
Par bo [ TUDyy oo 22 =Y Pas o [ Tylprs oo D) -
i=1
(2.4)

The term T, ; can be represented by Fig. 2 where
the blob represents a sum over all permutations
of the outgoing momenta.

Since in multiperipheral models the D, , are
assumed to be @ factorizable,!! the dependence
on the leading-particle momentum will factor out
of each term in Eq. (2.3b) in the same way, as
indicated in Fig. 2, and hence out of 7, ;. The
remainder will be the sum over all multiperipheral
diagrams that contribute to the blob in Fig. 2.
However, the sum of all such diagrams is just
the total T matrix for the (z—1)-particle produc-
tion process,

(Pq _pl)+pb g 2R THRE FREE
We thus have

.pn'

"pl-l’pf+1”"1pn>' (2.5)

bution of each of the D, , will be in a different
region of phase space. This condition can be
assured by requiring that f vanish when the mo-
mentum transfer #; becomes large.

If the model is to satisfy Feynman scaling, f
must be a function only of the ratio (s/M,;?), not
of s and M,® separately. In a simple ABFST
(Amati-Bertocchi-Fubini-Stanghellini-Tonin)
model, f would in fact depend only on ¢;, and

Pq P;
Po™ Pj
Py
bi-l
pb Pi+l
Pn

FIG. 2. T, ;, the sum over all n-particle multiperi-
pheral graphs where particle 7 is the leading particle.
The blob represents the sum over all permutations of
the remaining » — 1 particles.
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would have the form
f(S9M12’ tl)zg/(t(—mz)' (2.7)

In a multi-Regge model, with a single trajectory
a, f would have the form
s o ()
Fls, M, t‘)=r(t,)<m > : (2.8)
i
Here I'(#) is a cutoff function that becomes small
when {; becomes large. It is necessary to meet
the above-mentioned condition, and, for the mo-
ment, shall remain arbitrary. The model can be
further simplified by assuming that the trajectory
is linear, a(f;)=at, +b. We shall discuss this
type of model in detail in Sec. III.

We thus wish to obtain an expression for the
single-particle inclusive distribution for the set
of models which satisfy Eqs. (2.4) and (2.5). The
fact that, in these models, after the dependence
on the leading particle has been removed the
remainder is described by the (z-1)-particle T
matrix is a restatement of the bootstrap hypothesis
from an exclusive point of view. We can thus see

—J

s,

dp,

n=1

that the bootstrap hypothesis is an essential aspect
of these multiperipheral models. What we now
wish to show explicitly is that these models satisfy
the bootstrap integral equation obtained by
Krzywicki and Petersson and by Finkelstein and
Peccei.

When we substitute Eqs. (2.4) and (2.5) into Eq.
(2.1) we make the additional assumption that in
calculating the square of the 7 matrix, cross
terms, T; T; (i #j), can be neglected since each
of the T; will contribute mainly to a different region
of phase space. The contribution to the single-
particle inclusive cross section then divides
naturally into two parts: the contribution from
T,,%, where the observed particle is the leading
particle, which we shall call dg, /dp,, and the
contribution from 23, ., 7, ;°, where the observed
particle is nonleading, which we can call d&,/dp,.
Therefore,

@ _ dy | dix
ap, dp, ap,

and we have immediately for the first term

(2.9)

1 -1 F2 - 1 2 <
=3(2m\Hs) (s, M7, )Y mfdpg---dpnlm ~by Dy [T Doy ooy Pa) 6‘*(P—p,—; m), (2.10)

where, for simplicity, we have obviously written M®*=M,? t=(,. The sum in Eq. (2.10) is a function of the

two invariants, M?, the missing mass squared, and ¢, the
p.—p,- Since the total cross section is defined to be

o(s) = 12mA=1(9)3 % [ ap,-dpy [Parpy I TIDss - 00 |za4(p_z p‘)

we can write Eq. (2.10) as

daL —f2 2 A(M?3) 2
dp, =f3(s,M?,¢t) x(s) o(t,M?),
where

o(t,M2>=%(2n)“x”(M2)i (;ljln—!fdpz---dpnl<p,,—pl, p,,IT!pz,..-,pn>|26“(P—pl—z pi) :

o(t,M?) can be thought of as the total cross section
for the scattering of a particle with momentum

pp from an off-shell “exchanged object” with mo-
mentum p,-p,. For t=m? we recover the physical
cross section,

o(m? M?) =0 (M?). (2.13)

Because of the limit on momentum transfer in-
herent in the multiperipheral model, the exchanged
object cannot get too far off-shell, that is, we

must have
|t]<s,M?. (2.14)

It is therefore a reasonable approximation to set

mass” of the exchanged object with momentum

(2.11)

i=1

(2.12)

i=2

r

o(t,M*)=o(M?). (2.15)

In any event, any ¢ dependence of o(f,M?) can be
approximated by an additional ¢-dependent factor
that could be incorporated in the definition of f,
as has been done explicitly for the ABFST model.”?
We therefore have, dividing by o(s) to obtain the
inclusive density,
_ 1 daop(s)
Nb(ps S)_U(S) dpl
_ MM?*)a(M?)
A(s)o(s)

fAs,M* t). (2.16)

The fact that this type of representation is valid
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for the leading-particle distribution in multi-
peripheral models has been previously noted.'3*™
In allowing us to relate the behavior of the in-
clusive cross sections directly to that of the total
cross section this representation has certain
interesting consequences, particularly for the

J

doy

Comparing Eq. (2.17) with Eq. (2.1), we see that
except for kinematic factors the sum in Eq. (2.17)
is just the inclusive cross section, for the process
(pq—Do)+pp — p,+ anything, evaluated in the rest
frame of the fireball. However, since one line is
off-shell, this inclusive cross section will depend
on ¢, as well as on M,?, p!, and p;. We must there-
fore once again make an assumption about the off-
shell dependence. We can note that if we integrated
this inclusive cross section over p, we would
obtain (n(M,?)) o(¢,, M,?). Hence, if we assume

that the off-shell dependence can be factored out

of both the inclusive and the total cross sections,
this factor must be the same. We will thus assume
that if we divide the off-shell inclusive cross
section by the appropriate off-shell total cross
section, we remove the off-shell dependence and
obtain the on-shell inclusive density, N(p,,M,?)
Here p, is the vector obtained from p, by the
Lorentz transformation from the c.m. frame to

J

oc

fdGL dp1=%(21r)47\"(3)2 -

Now, since all the momenta are dummy variables
we can replace 7, ° by

1< 1
;;ng,,’f or by;’[;,z.

Comparing the result with Eq. (2.11), we see that
we obtain just the total cross section. Hence N,
must satisfy the normalization condition

fdeL(p,s)=1

This is just a restatement of the fact that there
is one and only one leading particle in each event.
Finkelstein and Peccei* and also Jengo,
Krzywicki, and Petersson® have shown explicitly
that the solution of the bootstrap equation must
satisfy the energy-momentum-conservation sum
rules. We can now see why that must be the case,
since we have obtained the bootstrap equation,

(2.22)

a =%(211’)47\"1(8)fdpzfz(s,Mzz, tg)z (;_}—2)-'- fdps“
1 n=2 :

: il)' fdpl"‘danpﬂ’pb'Tllpv".’p" , 54( Zp‘> .

correlation functions.**!®

We must now consider the second term. Since
the momenta p,, ..., p, in Eq. (2.1) are dummy
variables, the contribution to the inclusive cross
section of all of the T; (¢ #1) will be equal. We can
therefore replace 75,.," T;* by (n-1)T,* and we have

“A@py [ Pa=Pos Py | T1Dy, by - - o, ) |20 (P—Pz-Z p,) :

i =2

(2.17)

—

the rest frame of the fireball. However, from
Eq. (2.12), we have

2 2 _ K(S) d6L
(s, M2 t,) = NOL)o(t., 3L7) dp, (2.18)
So Eq. (2.17) becomes
dON dO’L
b, fd P . N(p,, M%) . (2.19)

Adding dg, /dp, to obtain the total inclusive cross
section and dividing by o(s) to get the inclusive
density, we finally obtain

N(p, ) =Ny (p, )+ [dp'Ny (p", IN(p, M").

(2.20)

This, however, is just the Krzywicki-Petersson-
Finkelstein-Peccei bootstrap equation.

It is also clear that if we integrate over the
leading-particle distribution, we have

(2.21)

r

for a set of models, by writing the inclusive cross
section as a sum over exclusive cross sections,
each of which explicitly contains an energy-mo-
mentum-conservation 6 function. It was, in fact,
by a similar technique that these sum rules were
originally derived.'®

If we iterate Eq. (2.20),

N=N +N N, +N N Ny ++++ | (2.23)
its physical interpretation becomes clear. Each
term in the sum represents a sum of multiper-
ipheral diagrams where the observed particle
occupies a given position in the multiperipheral
chain. The leading-particle distribution, N,
is given by the sum of all diagrams where the
observed particle is the first particle emitted on
the chain. The second term in Eq. (2.23) rep-
resents the sum of all diagrams where the ob-
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served particle is the second particle on the multi-
peripheral chain, and so on. Thus, asymptotically,
each term in Eq. (2.23) represents the sum over

an infinite number of multiperipheral graphs,

but, of course, at any finite energy, the number

of graphs that contribute is limited. We can thus
see that the difference between the bootstrap
formulation of the multiperipheral model and the
usual formulation is in the order in which the
diagrams are summed.

It is also interesting to note that using the same
arguments, we can obtain a recursion relation,
similar to Eq. (2.20) for the semi-inclusive dis-
tributions.”” N®(p, s) is the semi-inclusive
density!® defined to be

1 dg™
N(")(P,S)= G-Gj %
1

where 0 is the n-particle total cross section and
do ™ /dp, is the semi-inclusive cross section,

the contribution to the inclusive cross section
from states of definite multiplicity. If we define
Ng') in the same way, it can be easily seen that,
analogously to Eq. (2.20), we have

N™(p,s)=NTNp, s)

, (2.24)

+ fdp'N(L")(p', S)NT=D( 5 M™),
(2.25)
Since in events of fixed multiplicity we also have

one and only one leading particle, we must have
for all n

fde(L"’<p, s)=1, (2.26)

but, instead of Eq. (2.16),

2\ (n=1)(as2
NE(p, s)= %ry((s—‘fl F2s, M2, 1), (2.27)

III. A SIMPLE, SOLUBLE MODEL

We now wish to consider a simple multi-Regge
model in more detail. For simplicity we shall
assume that there is no dependence on the Toller
angles and that there is only one trajectory, a(t),
which can be assumed to be linear, a(¢)=at+b.
In this case, the T matrix is assumed to have the
form

n-1
<pu’pb ITIpv RN )=gH r(t‘)(S('Hl)“(‘() ,

i=1
(3.1)
where
Si,i=(py+0;)%, 4 =(pg=p,=bs—-..py)*. (8.2)

From energy-momentum conservation, we must

have ¢,_,=(p, -p,)°. The cutoff function I'(¢) is
such that it is approximately constant and equal
to the coupling constant g when ¢; is small, but

it vanishes when {; becomes large. This factor is
necessary to ensure that the amplitude vanish
unless all of the momentum transfers are small.
The presence of this factor is merely a reflection
of the fact that Regge theory determines only the
asymptotic behavior of the model, that is, its
behavior in that region of phase space where each
of the sy ;., is large and each of {; is small. It is
a basic assumption of the model that the major
contribution to the amplitude comes from this
region of phase space and it is the presence of
the I'(¢,) factors that ensures that this will indeed
be the case.

As we have previously noted in Sec. II and dis-
cussed in detail elsewhere,!* if the T matrix is
given by Eq. (3.1), then it can be easily seen that
the leading-particle distribution is given by Egs.
(2.8) and (2.16). Since A(s)=s for large s, we
have for this model
200 (t)=1 0(1\’[2)

—(-7—(-5—‘ . (3.3)

N, (b, s)=T2() <1\%>

To say anything more about the shape of the lead-
ing-particle distribution, we must make an as-
sumption about the asymptotic behavior of the
total cross section. The simplest assumption is
that the total cross section behaves like a power
of s. Because of the Froissart bound, this power
must be negative,

o(s)~s~¢, (3.4)

so that we would have
s 200 (t)+e=-1
NL(P»S)=F2(”(W> . (3.5)

Hence, we conclude that if the cross section falls
like s™¢, the intercept of the effective trajectory
that determines the shape of the leading-particle
distribution (and, hence, through the bootstrap
equation, the shape of the whole inclusive dis-
tribution) is increased by 3 € over what it would
have been if the cross section were constant,

a . (t)=a(t)+3€ . (3.6)

The model can be further simplified by integrat-
ing over transverse momenta to obtain a one-
dimensional model essentially equivalent to the
Chew-Pignotti model. Since

t=m,*(1-x)+m? +(p** + m?)/x (3.7)

in the limit p "?»> p*2, m?, it is clear that N, in
Eq. (3.5) satisfies Feynman scaling, and, there-
fore, so must N. We can therefore define
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dxp* L
f(x)= | 75=3Nx, p),
f2(2n) (3.8)
_ [a" L
g(x) - fz(zﬂ)aNL (x’ p ) .
The normalization condition Eq. (2.22) then be-
comes

fl %g(x)daml, (3.9)

which can only be satisfied if
£(0)=0. (3.10)

We have taken g(x) to be the distribution of the
leading particle associated with the projectile.
We must therefore have asymptotically

gx)=0, x<0. (3.11)

The probability that the leading particle is travel-
ing backward must be zero since it would involve
a momentum transfer ¢ of the same order of
magnitude as s. However, there must also be a
“lagging particle” associated with the target with
distribution 2(x). If the target and projectile are
identical, we must have

&(x)=g(-x). (3.12)
We could also define the symmetrical distribution
g(x)=g(x)+g(x), (3.13)

and of course for the region x>0, g=g. Hence,

if we restrict ourselves to this region, it does

not matter whether we consider g or g as the
leading-particle distribution. Finkelstein and
Peccei seem to have taken the latter case.
Finkelstein and Peccei have shown® that if we
restrict ourselves to the region x> 0 and integrate
Eq. (2.20) over p*, we obtain the one-dimensional
bootstrap equation

= dy x
Fw=gw+ [ D ')f<——-) . (3.14)
£ ) y &Y 1-y,
If the target and projectile particles are identical,
we can obtain f for x <0 from the symmetry of f,

fx)=f(-x). (3.15)

If they were not identical, then for x <0 we would
have

0 dy x
(x)='X)+f LA (y) (——) 3.16)
fe=z | Ty eV () -
It is clear that when Eq. (3.12) holds, Eq. (3.16)
leads to Eq. (3.15).

Hence, the simple case where the target and
projectile are distinct but all produced particles
are identical can be dealt with without using the
multichannel formalism of Kronenfeld and Peccei.”

For x>0, f(x) is determined by the leading-par-
ticle distribution g(x), and for x< 0 by the lagging-
particle distribution g(x). If we insist that f(x)
be continuous at x=0 there would be a self-con-
sistency condition that g(x) and g(x) must satisfy.
For simplicity, we shall consider only the case
where the projectile and target are identical,
below.

If N, is given by Eq. (3.5), it is clear that we
can integrate over p* and write

glx) =y (x)(1-x)">* . (3.17)

Here « is an average value for the effective Regge
trajectory. y(x) is a cutoff function which must
satisfy

y(0)=0 (3.18)

in order that Eq. (3.10) be satisfied.!’®* The be-
havior of y(x) for small x is determined by that
of I'*(t) for large ¢ since for small x, t~1/x. In
particular, if I'?(¢) falls off like 1/¢ then y(x)~x
for small x. Since the cutoff function is arbitrary
except for Eq. (3.18) and the requirement that it
be a smooth function of x, we should therefore
choose it so as to make the model as simple as
possible. Let us therefore consider the case
where we choose y(x)=cx. The constant ¢ is
determined by the normalization condition and we
would then have

g)=(B+1)x(1-x)8, B=(1-2a). (3.19)

Once we have chosen the cutoff function, the
model depends on two parameters, « and the
parameter € that determines the behavior of the
total cross section. In the Chew-Pignotti model
there are also two parameters, the average
Regge trajectory a, and the coupling constant g.
From Eq. (3.6) it is clear that we have a =a +3€.
However, we also have the Chew-Pignotti relation,

—€=2a,-2+g%, (3.20)

whence

a=1-3g2. (3.21)
Hence we obtain the peculiar result that the effec-
tive average trajectory a, which determines the
shape of the inclusive distribution, depends only
on the coupling constant g2 and not on the average
exchanged trajectory a,. The parameter o,
affects only the asymptotic behavior of the total
cross section.

It is a simple matter to see that with g(x) given
by Eq. (3.19), the bootstrap equation is exactly
soluble. Substituting Eq. (3.19) into Eq. (3.14), we
can see by inspection that a solution of the equa-
tion is

fx)=(B+1)(1-x)".
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It is obvious that this solution satisfies three con-
ditions that must be satisfied by any solution:

fx)=glx), Osx<1 (3.23a)

Lim [ f (x)-g(x)]/f (x)= 0, (3.23Db)
ff(x)dx= 1. (3.23¢)
(¢]

Equation (3.23c) is just the energy-momentum-
conservation sum rule.

We can consider the properties of the solution
in three different cases:

8>0, a<?i (3.24a)
B=0, a=31 (3.24b)
-1<B<0, i<a<l. (3.24c¢)

The second case, a =3, 8=0, has already been
dealt with by Finkelstein and Peccei. We have
g(x)=x, f(x)=1 and the single-particle density

is constant over the whole range 0 <x <1. In the
first case, >0, it is clear that the function
f(x)=(8+1X1-x)® will have a maximum at x=0 and
will go to zero at x=1. Such behavior of the
single-particle inclusive density can be called
“pionization-like” (Fig. 3). As 8 becomes larger,
the peak at x=0 becomes sharper.

In the third case, -1<8<0, $<a<1, f(x) will
have a minimum at x =0 and will become infinite
at x=1. We can call such behavior “diffraction-
like” (Fig. 4). It has, in fact, been noted that for
sufficiently small values of the coupling constant,
diffraction-like behavior can be manifested by a
multiperipheral model.?® We should note that the

FIG. 3. “Pionization-like” behavior of the bootstrap
model. The single-particle inclusive distribution (solid
line), f(x)= (B+1)(1L—x)B, the leading particle distribu-
tion, g() = (8+ 1)x(L — x)® (dashed line), the nonleading
particle distribution, h(x) =f(x) —g(x)= (5+1)(1 —x)B *!
(dotted line) for the choice of parameter, 8= 0.4 corres-
ponding to a = 0.3.

case a =1, which from Eq. (3.21) would correspond
to a vanishingly small coupling constant, is not
allowed since in this case, neither f(x) nor g(x) is
integrable, and, consequently, neither the normal-
ization condition (3.9) nor the energy-momentum
sum rule (3.23c) could be satisfied. However, as
we shall see below, this difficulty could be over-
come, at any finite energy, by dealing more real-
istically with the behavior of g(x) in the region
x=1.

The nonleading-particle distribution, i(x)=f(x)
-g(x), also has Regge behavior near x=1,

h(x)=(B+1)(1~-x)8*1, (3.25)

but the trajectory intercept is decreased by 3.
Hence, even for ~1< 3<0 where f(x) is diffraction-
like, h(x) will be pionization-like. Hence, in this
model, the diffraction peak is due entirely to the
leading-particle distribution, and if the leading
particle is removed from each event it will dis-
appear, even though the nonleading particles are
also produced by the exchange of a trajectory with
an a >3. This is a consequence of energy-momen-
tum conservation.

Finally, we should emphasize that our approach
is somewhat different from those of previous
authors.>*+® They have obtained f(x), or con-
straints on it, from experiment or from Mueller-
Regge analysis. The bootstrap equation was then
used to obtain information about the leading-par-
ticle distribution, multiparticle distributions,
and correlation functions. On the other hand, we
have assumed that the leading-particle distribu-
tion is given directly by the model and the boot-
strap equation is used to obtain additional infor-
mation from it.

FIG. 4. “Diffraction-like” behavior of the bootstrap
model. f(x) (solid line), g(x) (dashed line), and A(x)
(dotted line) for = —0.4, a=0.7.
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IV. TWO-COMPONENT BOOTSTRAP MODEL

The model we have just discussed allows the
exchange of only a single Regge trajectory. To
make the model more realistic we would have to
include the contribution that the exchange of
lower-lying trajectories makes to the leading-
particle distribution, so that instead of Eq. (3.3)
we would have

2004 (t) =1 2
Ny (p, s)=21‘,2(t)(ﬂ%> ‘ ‘;((IZ) ) @
i

The behavior of the single-particle distribution
near x =1 will still be determined by the leading
trajectory but the behavior near x =0 will be more
complicated. In particular, it would be possible
to obtain the correct Mueller-Regge behavior in
the pionization region, which can nof be done in
the model with only a single trajectory.?!

It is evident from the shape of the inclusive
proton distribution at the CERN ISR® and from
analysis of the multiplicity and correlation data®?
that both diffraction and pionization components
are present in the real world. These two com-
ponents can be obtained in the context of the multi-
peripheral model by allowing the exchange of the
Pomeron as well as at least one “ordinary” tra-
jectory.

If the total cross section is asymptotically con-
stant and the Pomeron is a simple pole, its inter-
cept must be exactly one. In that case, to avoid a
violation of the Froissart bound, the Finkelstein-
Kajantie theorem?® requires that there be no more
than one Pomeron in a multiperipheral chain.
Two-component multiperipheral models of this
type have been constructed by Kajantie and
Ruuskanen® and by Jones.?® Multiperipheral dia-
grams containing no Pomeron contribute to the
pionization component. Diagrams with a Pomeron
at the end of the multiperipheral chain contribute
to single-fireball diffractive events and diagrams
with a Pomeron somewhere in the middle con-
tribute to two-fireball diffractive events (Fig. 5).

Another point of view is the “weakly recurrent
Pomeron” picture of Chew and collaborators,
who assume that there is a “bare Pomeron” with
intercept slightly less than one, which can be ex-
changed an arbitrary number of times. However,
if the intercept is very close to one, the coupling
constant must be very small. This suggests that
the amplitude can be expanded in powers of the
Pomeron coupling constant. The first-order term
would correspond to the two-component model
with only one Pomeron exchanged. Higher-order
terms do not seem to be important even at ISR
energies.

In bootstrap language, we can say that the lead-

ing particle can be produced either by the exchange
of a Pomeron or an “ordinary” trajectory. The
leading-particle distribution is thus a sum of two
terms,

Ny =Npo+ Npp, (4.2)

where N, is the leading-particle distribution
arising from the exchange of an “ordinary” tra-
jectory and Np p, from the exchange of a Pomeron.
If the leading particle is produced by Pomeron
exchange, then the remaining fireball can contain
only ordinary Regge trajectories. On the other
hand, if the leading particle is produced by the
exchange of an “ordinary” trajectory, the re-
maining fireball can contain a Pomeron and its
amplitude will have the same form as that for the
whole process. In analogy with Eq. (2.20); we
should have an equation of the form

N(pys)':NLot(p’s) +NLP(pas)
+ [ dp' Ny (p, $INGh, M)
+ _[dP'NLP(P',S)Na(l;,M'Z). (4.3)

Here N, is the distribution for a one-component
model, with just an ordinary trajectory, of the
type discussed in Sec. III. It should therefore
satisfy an equation of the form
Na(p,S)=Nm(p,s)+fdp’NLa(p’,s)Na(ﬁ,M'z).
(4.4)

We should emphasize that it is not necessarily the

(b)

QIQIQ'DIQ"UI
Y

(a)

‘Q‘Qlﬂ"ﬂlﬁ'ﬂlﬂ
o

(d)
(c)

FIG. 5. (a) A multiperipheral diagram that contains a
single Pomeron at the end of the multiperipheral chain
that describes a single-fireball event (b). A similar
diagram can of course be drawn with the Pomeron at
the other end of the chain. (c) A diagram with a Pomeron
in the middle of the multiperipheral chain that des-
cribes a two-fireball diffractive event (d).
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case that Ny, =N,,. We have seen that the be-
havior of the leading-particle distribution depends
on the behavior of the total cross section as well
as on the exchanged trajectory, and the total cross
section could have different asymptotic behavior
in the one- and two-component models. We shall
discuss the two-component bootstrap model in
detail in a subsequent paper.

V. A THREE-COMPONENT MODEL?

Our results for the behavior of g(x) in Sec. III
depended on the power-law behavior of the total
cross section, o(s)~s~¢ over the whole range of
s. This leads us to the conclusion that a
“Pomeron” with @ =a,+3€=1 is not compatible
with the model since the integrals of both f and g
would diverge at the upper limit, and neither the
normalization condition nor the energy-momentum
sum rule can be satisfied. The same conclusion
would follow if we tried to incorporate such a
“Pomeron” in a two-component model.

A closer look, however, will disclose a flaw
in the argument. The s~ ¢ behavior of the total
cross section is only the asymptotic behavior and
cannot persist at low s. In particular, o(s) must
vanish as s- 0 and the phase space for the re-
action vanishes. More to the point, as fixed s,
o(M?) does not behave like (M?)™¢ at small M2,

If we assume that the Pomeron-particle total
cross sections will behave, as a function of M2,
roughly like a particle-particle total cross section
as a function of s, the situation would be described
roughly by Fig. 6. For M? greater than some M’
(around 10 GeV?), the Pomeron-proton total cross

U(Mzﬂ

l >
0 M M?

FIG. 6. A rough sketch of how the Pomeron-particle
total cross section can be expected to look if its behavior
is similar to that of a particle-particle total cross sec-
tion. For M? >M02 the cross section can be assumed to
be approximately constant. For M? < M? the behavior of
the cross section is dominated by nonleading Regge tra-
jectories, direct-channel resonances, and phase-space
effects.

section is itself dominated by Pomeron exchange
and the total cross section is approximately con-
stant (another way of saying that the inclusive
cross section is described by the triple-Pomeron
term). If we let M* become smaller than M, the
contribution from nonleading Regge trajectories
will begin to dominate. As M? becomes smaller
still, the cross section must be described in terms
of direct-channel resonances and a triple-Regge
description of the inclusive cross section will no
longer be appropriate. Finally, as M? approaches
the proton mass, phase-space effects dominate
and the cross section must vanish as the phase
space available for the reaction vanishes. The
distinction between the two cases, M*<M,* and
M?>My?, is just the distinction between “low-mass
diffraction” and “high-mass diffraction” proposed
by Harari and Rabinovici.?’

Hence, for x in the diffraction peak and x< x,,

Xo= <1-%> (5.1)

the behavior
fx)~g(x)~(1-x)"" (5.2)

is valid. For x>x, Feynman scaling no longer
holds but it is clear that for any fixed finite s
both f(x) and g(x) remain finite as x— 1 and there-
fore both f and g are integrable. The resolution
at the CERN ISR is, of course, not good enough
to detect resonance behavior in the diffraction
peak.’® However, at NAL the difference between
high-mass diffraction and low-mass diffraction
can be detected.?® If the resolution could be
improved still further, we might expect the dif-
fraction peak to look like Fig. 7. If we assume
that the Pomeron-proton total cross section
depends only on M? and not on s, we could obtain
information from lower-energy experiments
where low-mass diffraction occupies a greater
fraction of the x plot.

If low-mass diffraction is, in fact, dominated
by direct-channel resonances, then each resonance
will decay into a small fixed number of particles.
Hence, independent of energy, low-mass dif-
fraction will contribute only to a small number of
topological cross sections, 0,, with » less than
some fixed number »n,. We can also argue that
with a Pomeron at 1, low-mass diffraction con-
tributes a constant to the total cross section.

Consider the inclusive cross section for the
particle recoiling off the fireball, integrated over
the transverse momentum, in a low-mass dif-
fraction event. It is clear from our previous
argument that with a Pomeron exactly at 1, we
have
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do
dx

|

s
FIG. 7. The behavior of the diffraction peak in the
region x =1 if our assumptions about the Pomeron-
particle total cross section are valid. The (1 -x)71 pe-
havior is valid only for x <(1 —M?%/s). For any fixed
finite s, the inclusive cross section remains finite over

the whole range of x. The nonscaling region, x >(1 —1%2/5),

is the region of low-mass diffraction.

%i = (1=x)"1o(M?) . (5.3)
X

The region of validity for low-mass diffraction is
(1-M2/s)<x<1. (5.4)

The integral of the inclusive cross section over
any region of phase space gives the product of the
contribution of that region to the total cross sec-
tion and the average multiplicity in that region.
From energy-momentum conservation, we know
that there can be only one particle with x>3.
Hence, integrating do/dx over the low-mass dif-
fraction region will give the total cross section
for low-mass diffraction, o; (actually, we should
multiply by 2 since we will get an additional, equal
contribution to low-mass diffraction from the
region near x=-1). Using Eq. (5.3) and the fact
that M?=s(1-x), and that in this region dx/x= dx,
we have

o= J:-Moz/s (1-x)"'o[s(1-x)] dx

M02 sz
= 2y
l o(M?) 35, (5.5)

which is independent of s and finite as long as
o(M?*)~ 0 as M?-0.

In high-mass diffraction, on the other hand, the
fireball is described by a multiperipheral model,
so the multiplicity in the fireball behaves like
(n(M?))~InM?. Since M?=s(1-x), at any fixed x
for the recoiling particle, (n(x))~1lns. Hence,
integrating over x to get the total multiplicity for

high-mass diffraction, we get (»n) ~1Ins.

We must thus look at the two components as
seen by Le Bellac®® and Van Hove?? in a slightly
different way. The component that consists of
fixed, low-multiplicity topological cross sections,
0, (n<ngy), and hence has fixed multiplicity,

(n)~ constant, is low-mass diffraction. The
short-range-correlation component with (%) ~1ns
is the sum of both the pionization component and
the high-mass diffraction components. It is the
interference of the low-mass diffraction with the
sum of the other two components that produces
the behavior f,~1n%s.

The bootstrap model, even with high-mass dif-
fraction, is still a short-range-correlation model,
although we would expect the correlation length
to be larger than in a pure pionization model. We
would therefore expect the correlation function,
C(x, 0), between the leading particle at x at the
end of the multiperipheral chain and a particle at
x=0 in the center of the chain to vanish in the
scaling limit. On the other hand, when the lead-
ing particle is in the low-mass diffraction region,
x=1, we expect all the decay products of the low-
mass fireball to have large negative longitudinal
momenta in the c.m. frame and we would expect
no particles at x=0. Therefore we would expect
C(x, 0) to become negative in the low-mass dif-
fraction region.

The correlation function C(x, 0) between the
leading proton and a particle in the x= 0 region
(6 =90°) has been measured by Albrow ef al.?!
Their data are consistent with C(x, 0) =0 for
0.55 <x<0.9, as we would expect. For x>0.9,
C(x, 0) falls off sharply, giving a large negative
correlation, which is also in qualitative agree-
ment with our expectations. It also seems to be
the case that this falloff is less sharp at higher
energies where low-mass diffraction makes up a
smaller fraction of the total diffractive cross
section.

VI. DISCUSSION

We have clarified the relationship between multi
peripheral models and bootstrap models by show-
ing explicitly that any model that satisfies Egs.
(2.4) and (2.5) also satisfies the bootstrap integral
equation. Since f can be any function of its argu-
ments, provided that it vanishes at large momen-
tum transfer, a large class of models is included.
We have had to assume that off-shell effects and
the contribution from cross terms can be neglect-
ed, but such assumptions are usually made to
make models of this type tractable. One can say
that it is an alternative statement of the bootstrap
hypothesis to say that if you cut the top line off of
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a multiperipheral diagram, the remainder is still
a multiperipheral diagram.

The bootstrap equation can be a useful phenom-
enological tool or an interesting theoretical lab-
oratory for testing out simple ideas. As an ex-
ample of the latter use, we have presented a
simple one-dimensional model, closely related
to the Chew-Pignotti model. Our model differs
from the Chew-Pignotti model only in that we
must specify a high-momentum-transfer cutoff
function to uniquely determine the leading-particle
distribution. Once such a cutoff function is
specified, the inclusive distribution depends on a
single parameter, the effective Regge trajectory,
which depends only on the Chew-Pignotti coupling
constant. The average exchanged Regge trajec-
tory parameter affects only the asymptotic be-
havior of the total cross section.

For the simplest possible cutoff function, the
model is exactly soluble, displaying behavior
characteristic of pionization for @ <3 and of dif-
fraction for o> 3. While a different cutoff function
would change the shape of the inclusive distribu-
tion somewhat, it would not qualitatively change
the pionization-like or diffraction-like behavior.
The behavior of the model with different cutoff
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functions or when more than one Regge trajectory
is included would have to be investigated numer-
ically.

Since the real world contains both pionization
and diffraction, we have seen how the bootstrap
equations can be modified to produce a two-
component model. This leads to a set of two
coupled integral equations whose properties we
shall discuss in a subsequent paper. We have also
seen that if we take the bootstrap hypothesis
literally, it is an inescapable conclusion that we
must also distinguish between low-mass diffrac-
tion and high-mass diffraction. We must do so
because the multiperipheral model is an asymp-
totic model and can only describe the behavior of
the fireball if its mass is large. For a low-mass
fireball, the multiperipheral model is not appli-
cable. Its properties must be determined from
lower -energy experiments and inserted in the
model by hand.
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Parity-violating effects are studied in considerable detail for elastic electron-nucleon scattering. Based
on a unified Weinberg gauge model properly generalized to include nonstrange hadrons, we derive and
discuss corrections to the Rosenbluth formula, and left-right asymmetries of longitudinally polarized
electrons as well as nucleons. Any dependence of electron-nucleon scattering on the longitudinal
polarization would be evidence of parity violation. The size of such neutral-current effects in general
differs from that naively expected on purely dimensional grounds and strongly depends on the nucleon

target used.

I. INTRODUCTION

Unified gauge theories of weak and electromag-
netic interactions' yield striking predictions for
leptonic and semileptonic processes.? The main
emphasis has for obvious reasons so far been put
on neutrino-induced reactions. For electron-
induced processes the effects of the neutral weak
boson (the Z° boson) are in general of order
(G/e?)q?, where ¢? is the momentum transfer
squared and G is the weak Fermi coupling con-
stant. With the advent of the new generation of
accelerators and electron-nucleon storage rings,*
this neutral weak current could lead to observable
effects relative to the electromagnetic background.
Possibly high-precision intermediate-energy ex-
periments searching, e.g., for parity violation in
elastic electron-nucleon scattering could also
yield information on the existence of neutral weak
currents.

In this paper we delineate and discuss in con-
siderable detail effects of the Z° boson on elastic
electron-nucleon scattering. Because of the sharp
falloff of the electromagnetic form factors, this

reaction is not the best choice for studying such
effects. On the other hand, the fundamental im-
portance of elastic electron-nucleon scattering
and, parallel to it, the complete lack of under-
standing of the ¢® behavior of the form factors
warrant a detailed investigation of the effects of
weak neutral currents. We find corrections to the
Rosenbluth formula and parity -violating effects*
in longitudinal electron (or nucleon) polarization
experiments to be about one order of magnitude
smaller than present experimental accuracy,
which leaves hope that some of these effects will
be observable in the not too distant future. The
feasibility of high-energy experiments with longi-
tudinally polarized electrons and unpolarized pro-
tons at the future colliding electron-proton beam
machines (for example, EPIC and SPEAR) has
been recently discussed.®

Any dependence of electron-nucleon scattering
on the longitudinal polarization of the electrons
(or nucleons) would be direct evidence of parity
violation. Naively, these effects are expected to
be of order Gg?/e®. Detailed calculations, how-
ever, show that this simple picture generally



