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In this paper we study the t dependence of the ~~ vertex functions on the basis of par-
tial-wave dispersion relations and unitarity. The right-hand cut is approximated by the 2&

contribution and the left-hand cut by the nearest s- and &-channel poles. The electromag-
netic mu; transition form factor is calculated as a function of t in the timelike and spacelike
region and is compared with predictions of the p-dominance model and with recent exper-
imental data for e+e -~« +«0&0 near threshold. The influence of the left-hand cut
and the finite width of the p resonance is explicitly shown.

I. INTRODUCTION

The construction of electron-positron storage
rings has opened a new field in high-energy phys-
ics. Interest is centered on e'-e' interactions,
both in annihilation and in scattering processes.
In the high-energy region these reactions are ac-
companied by hadron production.

Experimental results from storage rings are al-
ready available, especially from the Orsay,
Novosibirsk, and Frascati rings. ' ' These give
an idea what pion and kaon form factors look like
in the timelike region and also yield annihilation
cross sections for multimesonic final states
(where the latter can partly be understood as
quasi-two-body states).

The description of e'e annihilation into hadronic
two-body or quasi-two-body states leads in the
one-photon approximation —which will be one of
our basic assumptions —to the definition of form
factors and transition form factors in timelike re-
gion. The kinematic structure of such reactions
has been given in detail by Kramer and Walsh. '

The best known example, from the theoretical
as well as the experimental point of view, is that

of the two-pion final state which reduces to the
description of the pion form factor. This problem
has been studied many times, and we refer, for
instance, to the calculations of Frazer and Fulco, '
Qounaris and Sakurai, Schwarz, Aubrecht, Renard,
and Bonneau and Martin. ' KK production has been
analyzed, for instance, by Renard. "

The next step in e'e annihilation is the produc-
tion of three-pion final states. The case of the
~'m 7T' channel has been analyzed by KW in a mod-
el based on p'n' production. They also discuss 4m

production by resonance formation using a, vector-
dominance model as has been done by other au-
thors. "

We shall concentrate on the production channel
In contrast with IQV and others, we

study the influence of the left-hand cut and subse-
quent finite-width corrections on the resulting
transition form factors.

Finite-width corrections in connection with ana-
lyticity have been the subject of many discussions
in the past especially in studying pion and kaon
form factors. "There exists also a dynamical
model for the reaction e'e —p'- m +u (m'm w )
due to Renard. " He assumes Breit-%'igner shapes
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for p' and the decaying (d meson. His results re-
duce to that of KW if one goes to the zero-width
Limit.

For energies at which resonance production
should dominate the annihilation cross section,
many channels are opening successively. The un-
certainty of the decay width of the several possible
resonances leads to nearly unknown coupling pa-
rameters. KW have discussed the dependence of
the annihilation cross sections on these couplings
and concluded that within an energy region from
threshold up to 2.5-oeV e'e center-of-mass ener-
gy the dominant contributions should be given by
the channels ~'cu, ~A„and p'e.

Recent experiments" at ADONE about E, favor
the Gounaris-Sakurai approximation' after K'K
pairs have been discriminated from m'm pairs in
e'e —v'v (K'K ). This means that the 2v con-
tribution in the unitarity relation is the dominant
one. It seems reasonable to us to start with this
approximation for other form factors. In this pa-
per we shall treat only the ~'co channel, which is
the best defined of all resonant configurations
among ~'n Hm' because of fairly well-known cou-
plings. In this channel one is left with one form
factor only. The p'e channel shall be the subject
of later calculations.

In the next section we start with the unitarity
relation which leads to an expression for the imag-
inary part of the helicity form factor. This is di-
rectly related to Im F, z(t). In the following sec-
tion we describe a dispersion method from which
we obtain the partial-wave helicity amplitude for
7T7l' ~ 7T+,

In Sec. IV we consider in some details the par-
tial-wave amplitude. For this we have to decide
how to handle the left-hand-cut contributions which
enter the dispersion relation. One possibility is to
describe these contributions by a constant N func-
tion or a simple pole ansatz for this function within
an N/D method. This has been done by Frazer and
Fulco, ' Gounaris and Sakurai, ' Renard, and Bon-
neau and Martin, ' for the elastic ~m and the nm- m~

partial-wave amplitude, respectively, within a
coupled analysis. Another possibility is to approx-
imate the left-hand cut by the corresponding one-
particle exchange terms. This description has
been chosen by Frazer and Fulco' and Hohler et
al."for the ~m- NN amplitude, and by Aubrecht'
for the elastic mm amplitude. We shall use the lat-
ter method and assume one-particle-exchange
dominance for the left-hand cut. This means that
the couplings of the p meson to m~ and m~ fully de-
termine the input. We believe this to be a reason-
able prescription within the energy region of in-
terest.

In Sec. V we summarize the results for F, (t)
and also give the annihilation cross section for
e'e —~'~. In Sec. VI we discuss the numerical
results and compare them with the pole-dominance
approximation. Finally we end with a short con-
clusion.

II. UNITARITY RELATION FOR STRUCTURE
FUNCTION S

The unitarity relation in the 2m approximation
for a vertex function corresponding to Fig. 1 reads

rm[e", &p~ p. li„(0)lo&]=—
2 2

0'
2

o' b"'(qi+q2 p~ p.)(p~—, p. —lI'lq»q. ) &, &qi, q, lq„(0)lo&,

(2.1)

(2v)'(q„q, li„(0) lo) =(q, -q, )„F,. (Q'), (2.2)

with Q = q, +q, being the four-momentum of the
virtual photon. (P» P, l

T
l q» q, ) ~ is the matrix el-

ement for the transition v(q, )+v(q, )- b(p, )+a(p, ).
We go to the rest frame of the virtual photon and

choose the center-of-mass momenta as g =q(8, 0),
p =p(8„, P„). Attaching the four-momentum P, to
the u meson with polarization vector ez (P, ) we
define the helicity amplitude for ~(q, }+~(q,}
-(u(p, , X )+w(p, ) by

where e~&, is the polarization vector of the virtual
photon and j„ is the electromagnetic current. Fur-
thermore, we have

(I fl. r)=(2v)'&&(p~, ~,.), v(p. )Islay(q, ), v(q, )&,

(P, .p
I ~. I o) (~, , q, l i„lc) (P,P iTiq, , q&)

FIG. 1. Unitarity relation for 2n intermediate state.

where t = Q' and Q„& is related to the angles be-
tween p and q.

With this and an expansion of the helicity ampli-
tude in the series of rotation functions d' (8) (see



Q. KOP P

Ref. 14) we get from (2.1) and (2.2)

Im[ e",,(~(p„x.), ~(p. ) li„(0) I
o)]

2

=-
2 ), 2~-F, (t)T'),*(t)dI, ~ (8), (2.3)

where the T«~ (t) are the I=2 ='1 partial-wave he-
licity amplitudes for the transition m' +7t - m'+{d.

The number of independent helicity amplitudes is
fixed by parity conservation. " This leads to T~ (t}

T' «-(t), so that there remains only one inde-
pendent amplitude which by (2.3) corresponds to a
single structure function F, «(t).

For F, «(t) we make the ansatz

(2««) z(z„z(,) = (2&)'&& ((o(p„z~), &'(p, ) li„(o) I o&

=is„,(,e~ e'), *(P,)P, Q'F„~«(t), (2.4)

which is justified by the Lorentz-transformation
properties of the matrix element and has been giv-
en by KW in Eq. (3.4).

On the other hand, we conclude from the trans-
formation property of the state

&, (o)lo&=~", i„(0)io&

(see Ref. 6) in the rest system of the virtual pho-
ton

(»)'d'(~„~ ) = (2&)' ( lP I, 6, ~ li ~, (0)
I
0 &

=I"(lpl, x )d', , (e),

which defines the helicity structure functions
I'(Ip I, &„)= I'(t, X ). Comparing this with (2.4) we
obtain after some kinematics

I'(t, x ) =-F(t, -x ) =-x Ipla t F, (t), (2.6)

with b„(0) real and

f (m q') = m q' 1+5—l"p

P

g(t) =, [ k(t) —k(m q') —{t—m p')(1"(m ')],
P

{3.2)

k(t) = ~ ln(q + ~ Mt ) .2q

is known as the finite-width correction and is de-
termined by F,(0) =1. The function g(t) is of sec-
ond order in (t —m~') near the p-meson pole and

I, (t) is the usual energy-dependent width

=-t' Im„D(t). (3 4)

From this there results the following once-sub-
tracted dispersion relation:

t '(t) —t '~ (t)

q, =q(m, '}, q = lql (3.3)

in terms of the physical p width I p I
p

The starting point for the determination of the
I=J=1 partial-wave amplitude t '= t",„„is the
approximated unitarity relation Imt '= -(q'jV t )b*„t'.
On the right-hand cut (R) b„', by definition has the
same phase as the D function. Therefore
Im~[D(t)t '(t)] = 0 and we can write down an inte-
gral representation for D(t)t '(t) using

Im, [D(t )t ' (t)] =-Im, [D(t)t "(t)]

and finally from (2.3)
2

Imr(t, ~„)= — ~ F, (t)T',"(t). (2. '1 )

1 (t —t, ) dt 't ' (t ')ImD(t ')
D(t) w, (t ' t,)(t ' t)— —

(3 5}

III. PARTIAL-WAVE DISPERSION RELATION

f(mp )
m, ' —t+g {t) im, I,(t)—' (3.1}

Next we shall develop a dispersion relation
which gives the I =J=1 partial wave for n~- ~{d in
terms of the Gounaris-Sakurai D function, normal-
ized to D(0) =1.

The Gounaris-Sakurai model leads to a general-
ized effective range approximation for the I=J
=1 71m phase shift which defines the corresponding
elastic ««v scattering amplitude b„„(t) One obtains.
the following representation for the pion form fac-
tor (using hereafter m, =- g = 1):

The index L characterizes the left-hand-cut con-
tributions and we have dropped the index R in front
of D(t ') because there exists only a right-hand dis-
continuity for this function. We have chosen a
once-subtracted form because T], (t) does not con-
verge rapidly enough; it is related to t'(t) by Eq.
(4.6) below.

IV. PARTIAL-WAVE AMPLITUDES FOR n+m~m+w

According to (3.5) the helicity partial-wave am-
plitudes are defined —up to the constant a—by their
left-hand-cut contributions. As mentioned in Sec.
I, we require these contributions to be given by
the pole terms only, which we describe in all chan-
nels by p-meson exchange. We assume that the
exchange of higher mesons like p' and g can be
neglected.

From parity conservation the general form of
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the helicity amplitude is given by

Tl, (t, 8) =to„,p apl, *(p,}q',q2pp,'A(s, t, u), (4.1)

with the single (totally symmetric) invariant func-
tion A(s, t, u). Choosing a system in which the
c.m. momentum q is pointed in the z direction and

p, =p is characterized by the angle 8, we get from
(4.1)

(t, tl) = Ip I lq I
~t A(s, t, u)«,', (e},

where we have used d,', (8) =(2) '~2 sin8. Partial-
wave projection leads for J =1 to

~ poie, a 4'ig2Vl'-t"
P

(4 5)

The Q~{Z) are Legendre functions of second kind
with argument

t +2m p
—peal —3

4
I p I lq I

In order to remove kinematic singularities and
threshold factors from T~ (t) define

where we have defined

(t) =-,' dcosed „(g}A(s,t, u) .

(4.2)

1 1

I p I 1ql ~t

With the projection {4.5) this leads to

t l, pole, 1.(t) 4 I. Qo(Z) Q2(Z)]
T glg2

(4 6)

(4 7a)

The pole approximation to the invariant amplitude
reads

"''(t) =ye g.
1

P

(4.7b)

A""(s t u) ' = A "' + A "'

1 1 1
gl 2, 2 2 t 2

where the representation (447a} is only valid in
4 ~t ~(m —1)' and (m„+1)' ~t ~~. Between
these p' becomes negative and we have to replace

(4.3)

where the left-hand contribution A. p "' is given by
the first two terms only and we have defined

gg —gPOft+ ft
-

q g2 -gPOftOttt

2ggg 2 1t'"" ~(t) = ' ' (Z '+1)arctan ——Z
lp I lql

where

(4.7c)

In the t-channel c.m. system we have

t =4(q'+1),

s =2-tl.'v t +21pl lqlcose,

u= t+1+m 2+-poWt —21pl lqlcose,

with

I It —(m. +1)']It —(m. —1)']

o t —m, '+1
P'.=

This leads to the following projections:

(4.4)

Ip I=
)
I 1(m „+1)' —t]l t —(m —1}'] I

'"

and Z = Z{ I p I ).
The dispersion relation (3.5) still contains an un-

known subtraction constant a. If we choose t,
= m p' and require t ' (t) to be dominated near the

p pole by the Born term of the direct channel, a
comparison of (3.5) with (4.7b) yields

f(mp') '

where we have used Eq. (3.1).
Incorporating the foregoing assumptions, we

get the dispersion relation

m (t-
t (t) = - -', g,g, + i{m ')t'""' (t)HeD(t)+ Pf{m,') D(t} lr

pole, I (t r)f (t r)—

(t ' —m ,')(t ' - t)
{4.8)

where P stands for the principal value.

V. TRANSITION FORM FACTOR AND
ANNIHILATION CROSS SECTION

Now we are able to give ImF, (t) in terms of
the partial wave t'(t), using Eqs. (2.6), (2.7), and

(4.6):

ImI' „,(t) = — I'
„, (t)t '*(t}.1 lql'

87t i f

Kith the known t dependence of the right-hand side
we estimate the asymptotic behavior of ImF„, (t)
which results in (tint) '. Therefore we may de-
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fine ReF, „(t) by the unsubtracted dispersion re-
lation

(5.2)

(5.3)

where a is the fine structure constant. Equation
(5.3) differs by a factor m a from the KW result,
their Eil. (3.6), because we deal with dimension-
less form factors and couplings throughout this
paper.

Finally, we are interested in the comparison of
our results with those corresponding to vector
dominance. Reducing our model to the zero-width
approximation, we get

2

(f)
gPld'll P

g m '-t' (5.4)

The annihilation cross section 0, +, „0 is, in the
one-photon approximation, related to lF„„(t)l:

which agrees with Eq. (5.2) of KW. Within the
Qounaris-Sakurai framework gp = gp, +, is re-
lated to gp„„by

r,
gp =gpfi~ 1+&

m
p

(5.5)

VI. NUMERICAL RESULTS

gp „=5.96. (6.1)

For gp „we r efer to a representation for I"
3 „

given by Goldberg and Srivastava" which is a spe-
cific version of the Qell-Mann-Sharp-%agner

Input quantities for the numerical calculations
are the couplings, mass, and width of the p meson.

The values of the couplings depend somewhat on
the method of their calculation. For gp„, we
start with a fit to the Orsay E„data by Le-
francois" which leads to m

p
=775~7.3 MeV, I'p

= 149 + 23 MeV. From these a finite-width correc-
tion 6 =0.48 is obtained. From I p, „we calculate

-15

—15

Re Fn&y

-10

0.5
I

1.0
i

(& +pl'

I

I

I

1,2 1.5

I ( t m„+ p
i" (GeV')

= t [GeV']

m,' 0.5

1.0

1.0

pole contribution---- left hand cut—-10 ——finite width

I- 1.5

--10

pole contribution

left hand cut
finite width

I
-2.5

FIG. 3. Different contributions to Im E,
pole contribution: $ gtgt/I f (m pt)D(t)l. ——- —left-hand
cut: t '& @ ' (t) [HeD(t)]/D(t). — — —finite width:
integral contribution of Eq. (4.8).

FIG. 4. Different contributions to He F „~&.
pole contribution: —,g&g2/[ f(m p )D(t)]. ————left-hand
cut: t~'~'~(t) [ReD(t)]/D(t). - — —finite width: inte-
gral contribution of Eq. (4.8).
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FIG. S. ~E'„~& ~ for t ~ 0 compared with p dominance.

model. Using I',„=8.77+0.45 MeV and gz„
from (6.1) we calculate

g, =13.42.

This coupling gives somewhat too large a value forI', o . The value E„„(0)=g~, jg~ =2.46, which
follows from (5.4), can be compared with the nu-
merical result from the finite-width method.

The results from the numerical integration of
ImE„„and HeE, ~

are shown in Fig. 2. HeE, ~(t)
is obtained from (5.2), where we have cut off the
dispersion integral at t ' = 1250m, '. The insensi-
tivity of the result to this cutoff has been checked.
Increasing it by a factor of 10 changes the results
for

~
E, z(t) ~

in the physical region only by I%%uc.

In the physical region for e'e - ~'ao, HeE„~
dominates ImE„~, say up to 3 GeV'. Above this
limit, higher intermediate states could become
important in the unitarity relation, so our results
are uncertain.

Figures 3 and 4 present the different contribu-
tions to the structure functions from the various
terms in t'(t). The main correction to the so-
called "pole term" [a/D(t)] is due to the left-hand-
cut contributions, whereas the integral term

(which is really the finite-width correction)
changes the result negligibly.

Figure 5 shows ~E„~(t)~
in the timelike region

compared with the p-pole dominance model. The
difference is noticeable only at t values near the p
mass, reflecting the structure given in Figs. 3
and 4. Extrapolating ~E„„(t)~ to t=0 we get
E, z (0) = 2.2, which shows nearly a 10% agreement
with the above-mentioned value. This agreement
seems to us quite satisfactory because the calcu-
lation of the coupling constant g~ „ that was used
is highly sensitive to the input parameters l ~ and
m, . This is pointed out by Schwarz and Au-
brecht, "where the first author presents also a
thorough discussion of the m~- ~co case.

In Fig. 6, the dependence of ~E, „(t) ~
on space-

like t values is shown. Finally, we give in Fig. 7
the annihilation cross section, again compared
with the pure pole contribution. The left-hand cut
and the finite-width corrections shift the maximum
a little towards larger t values and enhance it by
about 5%%uo, which leads to cr =10.25 nb at W=Mt
=1.14 GeV. Just above threshold for m'co produc-
tion we may compare our result with an experi-
mental point given by Cosme et al. ' They get at
W=990 MeV, o, +, ,+„,,„,=(1.1s0.5) x10 "
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~n !nb)

)i

cm'. This value for 0 is compatible within the
quoted errors with our v =0.62 xlP "cm'.

VII. CONCLUSION

1.0—

0.1—

———p - pole dominance

0.01 I

2.0 2.5

= W (GeVi
I

3g)

FIG 7 Annih'lation cross section compared with p~ ~

dominance.

%e have studied the influence of the left-hand cut
and of finite-width corrections to the complex
structure function of the y1Tco vertex and thereby to
the annihilation cross section for the reaction e'e
~7T +.0

Th t rting point for this analysis was the uni-esar
tarity relation in the 2n approximation, whic e
to a relation between ImF, «(t), the p'the ion form fac-
tor F,(t), and the transition amplitude for v««- «t~.
Both functions depend on the D function of elastic
~~ scattering and thus contain the influence of the
finite width of the p. A further assumption, the
po e approximl ximation to the left-hand-cut contribu-
tions of the transition amplitude, should work

thin not-too-far timelike regions.wl ln
isThe influence of the left-hand cut on ImF, ~

'

noticeable below the physical ~'(d threshold and al-
so changes the pole contribution in the physical re-
gion (v t & m, +m ). This leads to negative val-
ues for ImF„~, which becomes comparable to

2

The influence of the left-hand cut and the finite-
width correction on ~E, « ~

are apprec yreciabl differ-
ent from the vector-dominance model predictions
only below the m'co threshold. Therefore the cross
section has, at maximum, only a five-percent cor-
rection.

The model under consideration should be reason-



940 G. KOPP 10

able only for t values for which HeI'„~„» ImE, ~~.
Beyond this, higher intermediate states in the uni-
tarity relation are probably not negligible. Thus
we believe the underlying approximations only for
center-of-mass energies up to 2 GeV.

An open question within this framework is that of
other possible resonance configurations in the
~'m m'm' final state. According to the discussions
given by K%, the channels p'e and ~A, at least
should be studied for additional corrections. A
difficulty in including these channels is that the
relevant coupling constants are not all known.
Therefore, at this time, only the dependence of
the results on the unknown parameters can be

studied. %e propose to extend our model to the
p'~ channel subsequently.
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