
PH Y SIC AL RE VI E%' 0 VOLUME 10, NUMBER 3 1 AUGUST 1974

Umtarity and crossing in Reggeon-particle amplitndes*

P. Hoyer~
State University of ¹wYork, Stony Brook, Ne~ York 11790

T. L. Trueman
Brookhaven National Laboratory, Upton, ¹wYork 11973

(Received 19 March 1974)

We discuss the single Regge limit of the process a+ b —c+d+e, in which the five-point amplitude is

proportional to the Reggeon-particle amplitude a+A- c+d. The partial-wave expansion in the cd system

is given in the general case when all external particles have spin. Using this expansion we show that
unitarity requires the phase of the Reggeon-particle amplitude to be the same as the phase of the

amplitude for c+d —c+d in the elastic region. This implies relations between observable density matrix
elements. We discuss the predictions for several physical reactions. We investigate the question of
crossing for Reggeon-particle amplitudes by deriving the connection between the s-channel and t-channel
helicity amplitudes. The helicity crossing matrix turns out to be the ordinary spin rotation matrix, the

Reggeon being treated as a particle of continuous spin a„.

I. INTRODUCTION dx, -&.„x,-x (~~)

Consider the high-energy limit of the reaction
a+5-c+d+e shown in Fig. 1. Just as in the re-
action a+5-c+d, it is expected that the contribu-
tion of a single Regge pole R to the amplitude fac-
torizes into a part depending on the variables at
the right vertex and a part depending on those at
the left vertex. It is useful for many purposes
to take the factor from the left vertex and to
treat it by methods familiar from ordinary 2-2
processes, that is, to consider it as a (Reggeon)
9 +a -c +d amplitude.

As is well known, the procedure for extracting
this amplitude is a little more complicated than

just suggested. %'hereas, for the process a+ 5

-c+d, when s„=(P,+P,)'- ~ the scattering am-
plitude goes as

(cos8,) '"~ 'p. ,(s,—,)p„(s,—,),

with s„—=(P, —P;)', for the process a+& —c+d+e
the amplitude does not go as

(cos8g) p~(s~ )f~~g(equi s-~ e~c) i

with s~=(P, +P„)', s~ =(P, -P;)'. Rather, the
amplitude retains in general a dependence on a
fifth variable s~, or s„; alternatively, it depends
on the Toiler angle or a similar azimuthal vari-
able (see, e.g. , Ref. 1). Thus the amplitude in
this $imit continues to depend on a variable which
connects the right and left vertices. Another
way of seeing this is that in the a+b-c+d case
the Beggeon is forced to have spin component
&, —~, along p, —p-, and X, —&~ along p—, —p~ in the
t-channel c.m. system. Thus the two sides are
coupled just by a spin-rotation matrix

which factorizes in its index dependence as cos6,
In the a+5-c+d+e case there is no definite

spin along p; —(p, +p, ) and so the helicity is
summed on. It is this sum which brings in the
extra dependence. Evidently, if a helicity pro-
jection of the cd subsystem were made this prob-
lem would not arise, and we should expect a simple
factorizable behavior for each helicity state. All
the complications thus lie in the helicity sum.

In the second section of this paper we do the
helicity projection of the cd system. The Reggeon-
particle amplitude can then be naturally defined
through factorization for each helicity state of the
Beggeon. Thus the Beggeon amplitude is simply
related to the full five-point amplitude in the (phys-
ical) single Regge limit of Fig. 1. Any properties
we derive for the Reggeon amplitude (such as uni-
tarity) therefore have direct consequences for the
physical process a+ b-c +d+e.

In Sec. II we also give the partial-wave analysis
in the cd system of the five-point amplitude, and
derive the restrictions on the Reggeon-particle
amplitude due to parity. This is done in the gen-
eral case when the external particles a, . . . , e
have arbitrary spin.

The constraints that arise from two-particle
unitarity in the cd system are derived in Sec. III.
These are particularly useful when c and d are
spinless particles, or when c has spin —,

' and d is
spinless. Then the phase of the Reggeon-particle
amplitude a+R - c +d must be the same as that of
the elastic c +d —c +d amplitude. Hence the phase
is independent of the Reggeon helicity and mass
(= momentum transfer), and is the same for all
Beggeons R and particles a. Some evidence for
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FIG. l. The single-Begge limit of the reaction a + b
—c+ d+ e.

this already exists from the reaction m P- ~ m'n. '4
We also discuss the predictions for other observ-
able reactions.

In Sec. IV we further consider the extent to which
the Beggeon may be treated as a particle by in-
vestigating the behavior of the Beggeon helicity
under crossing. The analysis of Sec. II was done
in the Gottfried- Jackson frame, which corresponds
to the s-channel c.m. system of the Heggeon-par-
ticle process. We now define the Heggeon helicity
in the t-channel c.m. system, and derive the con-
nection between the two representations. It is
given by the ordinary spin-rotation matrices, the
Beggeon being treated as a particle of spin e~.
Our conclusions are given in Sec. V.

Il. KINEMATICS OF REGGEON -PARTICLE SCATTERING

The first objective of this section is to obtain a
useful definition of a Beggeon-particle helicity am-
plitude, which we shall call f&, z, z z„(s,„,e„-,&~-).
As discussed in the Introduction, we shall take
s„ large for fixed s~, s„-, and s~ in the ampli-
tude for the process a+ b-c +d+e, project out a
definite helicity A& for the exchanged Heggeon,
and then use factorization to extract the amplitude

f», &, z . The helicity projection is most easily
done in the Gottfried-Jackson' (GJ} frame of cd
(see Fig. 2). The polar angle 8 is determined by
s„, s,-„and s~-; the s„dependence comes in
only through the azimuthal angle Q. If me expand
the full. amplitude in a Fourier series of the form

the coefficient F will not depend on s~. Further-
I

FIG. 2. The definition of the angles t'6}, Q) in the Gott-
fried- Jackson (GJ) system.

is„, 8; ~, X„~,)= — d@'e'l"-~"-'z~»'1

satisfies

&& is~, 6, P', A„X„)

(2.2)

more, the total angular momentum of the cd sys-
tem along the s axis mill be linearly related to m.
The exact relation depends on the phase conven-
tion which we mill spell out shortly.

In the Regge limit we may imagine the cd final
state as resulting from a collision between particle
a and the Reggeon R. Since p, is along the z direc-
tion and p, +p„=0, the Beggeon's momentum is in
the negative z direction (see Fig. 3). Thus the
angular momentum along the & direction is ~,
minus the Heggeon's helicity A~. Each amplitude

will therefore have a definite Beggeon helicity.
Notice that the helicities A„A.» A„A.„are all de-
fined in the center-of-mass system for the process
a+R -c +d. Hence they are the analogs of s-chan-
nel helicities for tmo-particle processes.

We mill use the Jacob and Wick phase conven-
tion. ' Consider the cd state in the GJ frame.
Then according to Jacob and Wick

iP,X„P A )= is, 8, P, P.„X )

=Rg(P)e' c &~ is~, 6, 0, X~, X~).

(2.1}

Hence

R,(P) is„, 6; A, A„A.,) = — dQ'e'l' ' ~ &'~~ R,(P'+Q)is„, 8, 0, A„X,)e'I

so i s„, 8, A. , &„X~)has angular momentum & along
the & axis and

(2.3)

Let us now consider the amplitude in the t-chan-

nel center-of-mass system appropriate to the
Begge expansion for large s„; i.e., the be center-
of-mass system. One important feature of the
GJ frame is that the Lorentz transformation to
that t-channel c.m. system is along p„and so



10 UNITAHITY AND CROSSING IN HEGGEON-PARTICLE. . .
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FIG. 3. The Reggeon-particle process u+ 8-c+ d,
as seen in the GJ system.

of the Reggeon-particle amplitude for the process
a+A-c+d. Notice that we are using a mixed
notation with helicities A., and A., referred to the
GJ frame, ~, and g to the be rest frame. (X, and

X& are the same in both frames. ) One could de-
fine all helicities in the same frame with the aid
of the appropriate spin-rotation matrices. How-

ever, this is not necessary. See the detailed dis-
cussion at the end of this section.

The asymptotic relations needed to obtain (2.4)
Rr'e, RS S

the helicities A., and A. & are the same in both
frames' (see Fig. 4). Repeating the argument
given in the Introduction for two-body processes,
now applied to amplitudes of definite &, we con-
clude that the amplitude is proportional to the
spin- rotation matrix

2S~bSb-

[x(s ~, m, ', m, ')x(s ~-, m, ', s „)]""

where

X(x, y, z) = x'+y'+ z' —2xy —2xz —2yz

(2.6)

x kt (X -Xg) -()t -X~))@

where

fx~xq, x~&z(zeus sac& zne)
( )[(o +yz)!(o ) z) t]

T+ 8 -i &t' u(sb —) -ot

sinn [a(s~ }—v]
(2.5)

and @=0 (-,') for meson (fermion) trajectories of
signature r Equation (2..4) serves as our definition

a(s~ )d x, -z, x, - x, (!}t) ~

If we then resum the Fourier series in Q and take
the asymptotic behavior of the d functions, we
find the Hegge-pole behavior to be

~(t)EX X Q X X (SabsS~sSbeszactS~)

=P ...(s -)&(s -)(-coss,)"'&'

Rs usuR1, Rnd

(2a)!e'" ' " " ' ~'(cos &,)"d" 8
2 "[(&+p')! (& —p')! (&+p)!(& —u)!]"'

(2.7}

Perhaps we should emphasize that our arguments
leading to Eg. (2.4) are not intended to prove the
Regge behavior of the a + b -c +d + e amplitude.
To do that would require a discussion of the
Froissart-Gribov continuation for the 2-3 ampli-
tude and the multiparticle t-channel unitarity re-
lations. " Rather, they are intended to show the
relation between the Fourier coefficients in Q of
a production amplitude with Regge behavior and
the helicity of the Reggeon. From all we know
about Hegge poles, we believe the asymptotic be-
havior in sab~ for fixed scd, she~sac~

F (cos&,) '~-'P~(s~ )f„,(s„,s~, s.,—,y},

to be reasonable. If this asymptotic form is
(piecewise) continuous in P in the physical region
0 ~

Q &2w, the Fourier series converges and the
infinite helicity sum introduces none of the prob-
lems which are sometimes found in other contexts. '
Note that one does not need to assume the absence
of singularities of E in cosQ; such singularities
may well occur and at such points a pou, er series
in cosQ would necessarily diverge while the
Iou~ie~ series remains convergent. Note also
that the singular function

~ "~ [m, ' —s„-—s„-+2(-s„-)"'{-s~-)"'cosQ]",

FIG. 4. A velocity diagram showing the relation be-
tween the ab c.m. system 8, the be c.m. system (Beggeon
rest frame) T, and the Gottfried-Jackson system GJ.
The crossing angles ){b and )!{~ refer to the Lorentz
transformation from T to GJ.

which one frequently encounters in multi-Begge
formulas, is only singular outside the physical
region.

The factor 1/[(o. + Xz)!(o. —&z}!]"'has been kept
explicit in order that f~ ~ ~ ~ transform like an
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ordinary helicity amplitude (see Sec. IV). How-

ever, we have absorbed the phase factor e" R '
coming from cf into the definition of f in order
that it satisfy the normal reality (time reversal)
conditions (see Sec. III). This factor is associated
with the spaceUke momentum of the Beggeon. It
is a familiar feature that may be seen in the be-
havior of the polarization vector for a spin-1 par-
ticle when continued from timelike to spacelike
momentum. ' As a result of this choice the phase
factors in parity relations are changed.

Parity conservation for the full amplitude re-
quires that

FX X X X X (Sab)scd~s be 8, Q}
(f)

=(-I)~ '& "~'r).-n, qdqbq, —

x pt'
-Xc-Xd-ke, -X a-X (b SatbScd~ Sbe ~ 8~ ~) ~

where s„A.„g, denote the spin, helicity, and in-
trinsic parity of particle a, and so on. (We omit
all "particle 2" phase factors of Jacob and Wick. )
This is seen most simply by using the reflection
operator in the x-~ plane. We have here made an
obvious change of notation, expressing s,—, and

s~, in terms of the angles 6}, Q in the GJ frame.
Then from (2.4}

p„„(s„-)f..d, )„(s„,s„-,s„-}=(-I)' '"-' "p-, ,b(s„-)g, qb( -I}"-""-'"'-'q -q, qd-

f X-ck ,d--Xa-XS ( cdi Sac t be }t

from which we infer that

fX X d, k X S(S cd s S a c &
S be }

R (
I}aa-Ra+ac-Ra+ad-Xd

1a lc 1 fdXck , -dX a-X (SScSdac& Sbe ) ' (2 8)

Notice the absence of a factor (-1}"for the
Reggeon; this is the modification to which we
referred. At the same time

p, , (s„-)=op( I)'b'" "b-"e~qp „),(sb)b.

(2 9)

Here cs is the analog of (-I)'q for the Reggeon.

i tfV
&RQR, (2.10}

where g& is the Reggeon's parity and U = 0 (-,') for
bosons (fermions).

Just as definite helicities are projected out by
the azimuthal Q integration, the definite total
angular momentum j of the cd system can be pro-
jected out by integration over the GJ polar angle
6). This forms the basis of a Jacob-Wick expan-
sion for f~ „d ~ ~s.

Equation (2.9) defines the parity of the Reggeon
by way of its contribution to two-particle pro-
cesses. Note that (-1)'=7 for bosons and (-1)' "'
=-7 for fermions, so

yb(s b d sbe 8 Q) y -y& y -~ (p 8 Q)

(-cos8 ) 'b '

~b( be ~( be }
[( 1 f f 't

( 1&/& d(co 8}d) -x x -x (8)fx x x xdb(s cd& sacs sbe }
-I

(-cos8, ) &'b-~
2.

With this definition of f',

f&eke, Xa XS(S cdi Sac 1 S be )

2j+1 i

(2.12)
The amplitudes f' are very useful for discussing
low-energy properties in the s,~ channel, just as
partial-wave amplitudes are useful in two-particle
processes. In Sec. III we shall obtain unitarity
relations for them. In the remainder of this sec-
tion we shall discuss our use of a "mixed" helicity
notation, where some helicities (X„Xd) are defined
in the GJ system and others (X„X,) in the Reggeon

2 +r 'f'
I p,kc, peed) = Q 4 ~

s cd, j; X; X Xd)
j, X

xu~ ~ „(y, 8, y}. (2.13)

The most important characteristic of ~s~, j; A.; X,Ad)

rest frame. This is a natural way of describing
the kinematic situation we are studying. It is a
straightforward generalization of the helicity nota-
tion for two-body processes.

In Eq. (2.11) it can be seen that A, and A„as well
as s„, play the role of internal variables. This
results from our mixed notation. Corresponding
to (2.12}, we have in the GJ frame
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is its transformation properties under rotations:

itis„, j; X; X„X,)= g m'„, ,(R)ls„,j; X'; Xp, &,

{2.14)

as may be easily verified from the definition (2.13).
Notice that A, and X, are unchanged by A. Now

treat Is„,j; X; X„&,) as a single-particle state in
order to define helicity states for c and d in a
frame in which p~ =p, +p„c0. Just as Jacob and
Nick do for a single-particle state, define

defined in the GJ frame. Equation (2.11) is just
a special case of this expansion, in the be center-
of-mass frame.

Because each j transforms differently under
Lorentz transformation, the full amplitude will
generally have complicated transformation prop-
erties. However, in the important case of going
from the be c.m. frame to the GJ frame, ~ and ~,
are not changed and

~x'x, , z, x,(jXcXu)= g ~x'x, , x, ~;(jX~~~}

I P~, s ~u, j; X; X~, X~) =—H(P~u) I
s ~, &; X; X~, X~}.

(2.15)

The helicity transformation H(p~) is given by

H(p, &) =&,(y)&,(P)&. ( y)&.-(l p„l ), (2.16}

+g~ g g (j&,~~}-=(p,~, ~~j, x, ~,~~,'p. , &. ITIp x., p~~~)

are kinematically just like 2- 2 amplitudes and
can be transformed in the same way between the
s-channel c.m. system and the GJ system or
crossed to the t-channel c.m. system. Corre-
spondingly, in any frame the full amplitude is
given by

2j+1
F~z, , x, z, ( jX~4)

where, we emphasize, A. „A~, 0, and fII) are always

i.e., a boost along the ~ axis of magnitude required
to give the cd system a momentum of magnitude

I p,„l followed by a rotation through an angle P
about an axis in the x-y plane making an angle y

with the y axis. This brings the momentum of
cd to

p~=(lp~l sing cosy, Ip„Ising siny, I p~lcosp)

by a well-defined sequence of transformations.
With this definition and Eq. (2.14), the states

I p~, s~, j; X; X„X,) transform just like a single-
particle state of mass (s„)"', spin j, and helicity
X, indePendent of X, and X,. Thus the amplitudes

xd q, q, (X~)d q, i~(Xq) ~

X, and y, are shown geometrically in Fig. 4.
is the usual s-t crossing angle for e, and X, be-
comes the s-f crossing angle for b in the high-s
limit".

(sy~ +m~ —my )
[X(m ' m '

s ~-)]"''

mb +s~- —me
2 2

[X(m, ', m, ', s„-)]"'

Ill. UNITARITY

A. Derivation

Consider the unitarity relation for the five-point
amplitude" shown in Fig. 5:

Dtscce+z, x~),, ),,x~(sso~~og~~o ~ 6~ 4)

= g (s, 6, Q, X,X„I T In)(n; p„X, I TI p, X„p X,).

(3.1)

If we let s„-~, keeping s,~, s~;, 6}, and Q fixed,
all the processes a+ b -n+ e will Beggeize. Using
factorization, Eq. (3.1) then becomes a general
unitarity relation for the Beggeon amplitude a+A
-c+d, expressing its discontinuity in terms of the
processes a+A -& and n —c +d.

Ne shall only discuss the constraints of two-
particle unitarity here. Thus, we assume that
s,„ is small enough so that only the state cd itself
contributes to the sum over n in Eq. (3.1}. We
have then

2i

FIG. 5. The discontinuity relation corresponding to Eq. (3.1) in the text.
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DteccdFX X X X X (Sab& Scd, Sba—,8, Q)

dQ'(s~, 8$, x,xd( T (s~, 8'&t&', x,'A.d)

b'X'X X b ( ab& cd& ba&

(3.2)

When s„-~, we can use Eq. (2.4) to express
the five-point amplitude I in terms of the Beggeon
amplitude f. We diagonalize the relation (3.2) by
expanding f into partial waves according to (2.12).
Note that for each Beggeon helicity A&, the partial-
wave expansion of fb b, t, „(s~,s», 8} is the same
as for an ordinary helicity amplitude. Denoting
the partial-wave amplitudes of the elastic process
c+d-c'+d' by Tz. z. & z, we find

c (I' c d

Using these two assumptions with Eq. (2.4) we
obtain

fb X b b. (Sat&'Sac&See) fbcbd, tabs(Sat&Sac&S»)&

(S.o)

and so Discf= Imf and the left-hand side of Eq.
(3.3} is real.

The unitarity relation (3.3) is particularly in-
teresting in the case when there is only one term
on the right-hand side. This is so when particles
e and d are spinless, or when one is spinless and
the other has spin —,

' (provided we choose states of
definite parity to describe the ed system}. From
the reality of the left-hand side of (3.3) it then
follows that

Dlsccdf x x b x (scd&sba—)
argf'„"bs = argT" ", (3.7)

= g f't b t. b. (Scd&Sta)T). 'X b X (Scd). (3.3)
X~Xg

As in two-body collisions, the left-hand side of
Eq. (3.3) is real, because ftb b „b,„(s~,s») is
a real analytic function of s,„. This follows from
two properties which we assume the full five-
point amplitude to possess:

(i) Real analyticity. Arbitrary phases can be
chosen so that

& c Xd ba, Xa Xb (Sa b&
S at& S ba & 8& 4 )

F$ & ba X X (Sab& S cd, Sbc—,8&
—Q) (3.4)

for s», 8, ((& real. [Note that s~(s„,s~, s», 8, &tb)

=sda, (sab, s,*d, s», 8, Q). ] The change in sign of jt&

results from the behavior of helieity states under
time reversal ~.' For a single-particle helicity
state of momentum P in the 8, P direction

r~f, 8, y, ~)=&e '"'e '"'e-'"'~P-, O, O, ~)

= e "*'e '"'e'"d'T~ p, O, O, X)

idz&b f Jztt iZz &b j Jy&&~ p () () p )

= e '"'"~tP, 8, -P, A) .

Under time reversal the scattering operator T- ETV' '= T . Below thresholds in all channels,
in the Euclidean region, the matrix elements of
T' equal the matrix elements of T, and so F(ttt)
= Fa(-Q) there. Then Eq. (3.4) follows from the
Schwarz reflection principle.

(ii) Signature symmetry. For large s„, fixed
sq, 6', $,

FX X X & t ( a SSb&cd&S8,taP)

-e"" F „r„bb b (-s„,s,d, s»-, 8, y) (3.5)

if the amplitude is dominated by a Regge pole of
signature r. (Note that s„--s~ when s„--s„,
with the other variables fixed. )

where we have labeled the state cd by its angular
momentum j and parity g.

B. Discussion

According to (3.7) the phase of the Reggeon-
particle amplitude for a+R —c +d is equal to the
phase of the cd-cd elastic amplitude. It is not
surprising that there is a connection between the
two, in particular when the cd system is reso-
nating. " However, Eq. (3.7) shows that the phases
must be exactly equal, also for nonresonant cd
states, whenever a pure Regge pole is exchanged
(and s~ is below the first inelastic threshold). lt
is also remarkable that the phase of f'„"„„(s~,s)»
consequently does not depend on the nature of
particle a or Reggeon R, nor on their helieities
A.„A.~. The phase is furthermore independent of
the Beggeon "repass, " the momentum transfer s„-.

It is possible in many cases to measure exper-
imentally the relative phases of Beggeon ampli-
tudes By. testing the validity of Eq. (3.7) one can
then find out whether any corrections to the Regge-
pole exchange are needed. The situation here is
quite analogous to that in two-body scattering,
where the polarization has to vanish when a single
Regge pole is exchanged. Note, however, that
the relation (3.7) determines the relative phase
also between different partial waves j, and that
it must hold for all values of s,d (in the elastic
region). Furthermore, it is interesting that Eq.
(3.7) can be tested experimentally in some cases
without using polarized targets or beams (see
below).

On the other hand, if one assumes Regge-pole
exchange, the constraint (3.7) reduces significantly
the number of unknowns to be determined from
the data. This may make a Reggeon-particle am-
plitude analysis possible. We shall next discuss
briefly the processes for which such an analysis
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seems most attractive.
(a) m+R-nn (or K+R -Km). These processes

can be conveniently studied using the abundant
data on m~-mn& and r&- n'n&. In the elastic re-
gion (m„& 1 GeV) S and P waves dominate. For
a given S-wave isospin (I=O or 2) there are 3

amplitudes f'„(s~, s~—} (j, [X„~=0, 1) describing
unnatural parity (m) exchange and one natural
parity amplitude f', =+f', (&u-A, exchange). As-
suming their phases to be given by the elastic mn

amplitude, we are left with four unknown mag-
nitudes. Experimentally, six quantities can be
measured from the mm angular distribution. The
phase relation (3.7) therefore allows us to deter-
mine the magnitudes of all amplitudes, and in
addition imposes two constraints on the density
matrix. In the GJ (or helicity) frame the con-
straints are, in the standard notation,

Poo —(Pai —Pi -i) HePO
2

HePw
Rep, o Rep» Rep~ ' (3.8a}

-2g HeP10 2(PGQ Pll} 3 PlQ (3 8b)
Rep» Bepo, Rep»

where ~ is the relative angle between the S- and
P-wave amplitudes in mm - mm.

For the reaction m P -m n'n an amplitude anal-
ysis can, in fact, be done" even without assuming
the phase relation (3.7). This is because there is
no interference between v and A. exchange (when
the nucleons are unpolarized), so that only two
relative angles (n and Q -=argf o argf', ) matte—r.
Hence the number of unknowns equals the number
of observables (assuming the absence of A, ex-
change). The amplitude analysis has been done
in the p region of mm mass at several incident
momenta. ' The resulting angles Q, ~ are in agree-
ment with the prediction (3.7) (0& = 0' or 180',
small" ) for all momentum transfers covered
(~ s~ ~

& 0.5). It has also been shown' that the
positivity conditions on the density matrix re-
quire the amplitudes to be nearly phase-coherent.

(b) X+R-av. For a given (baryon) exchange
R there are four independent amplitudes f'„„„
(j, ~ X„~=0, 1). Assuming Eg. (3.7), their magni-
tudes can be calculated and two additional con-
straints obtained on the six observables describing
the mm angular distribution. If we express the
moments of the nm angular distribution in terms
of density matrix elements exactly as for the re-
action m&- nnN, the constraints assume the form
(3.8}. An example of a physical reaction for which
this kind of analysis could be done is m P-P
+ (v'v ), which should be dominated by & ex-
change. "

(c) &+R -&n. The number of amplitudes with

j ~
2 is 12. In an experiment with unpolarized

nucleons 10 quantities can be determined from the
angular distribution. Thus, even assuming the
phases to be known, the polarization of one of the
nucleons must be measured to get an overcon-
strained situation. However, it is likely that many
of the 12 amplitudes are small. An investigation
of this reaction would be interesting because the
elastic phases are accurately known from nW- n+.
Also, the isolation of a given Regge trajectory
[e.g. , p in v P —a +(m'P)] is straightforward in
many physical reactions.

IV. CROSSING FOR REGCEON HELICITY AMPLITUDES

When s~ becomes large for fixed s,-„ the pro-
cess a+R-c+0 is probably more simply discussed
in terms of Begge exchange in the crossed
(d+R-c+a) channel (see Fig. 6). In this situation
it is simpler to work directly with the analog of
t-channel amplitudes for Reggeon-particle scat-
tering rather than the s-channel amplitudes we
have used so far. These will have a simpler
t-channel partial-wave expansion, the analog of
Eq. (2.12), which can be Heggeized via a Sommer-
feld-Watson transformation. These amplitudes
correspond to those defined by Bali, Chew, and
Pignotti. '

To obtain the t-channel amplitudes one defines
the helicity of the Reggeon in terms of an expa, n-
sion in the Toiler angle &u (Hefs. 15, 1) instead
of the azimuthal angle Q used earlier. This is
well known, but we would like to give a geomet-
rical interpretation of this fact since it will be
useful in understanding the relation between the
two kinds of amplitudes. We will ignore the spins
of the external particles in this section for the
sake of simplicity; it is straightforward to in-
clude them.

The problem here is almost entirely one of
kinematics. Mainly, we wish to express the en-
ergy variable s~, in terms of the angle Q or ~
and the other invariants s.b, s~, s~-, and s,—,

(or & in the GJ frame). These relations can all
be worked out algebraically, but a very pretty
picture of the relations can be obtained geomet-
rically if we work in the Reggeon's rest frame
(the be center-of-mass system). In order for the
angles involved to be real angles, it is necessary

FIG. 6. The double-Hegge limit of the reaction
a+5 c+d+e.
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to work in a region of the invariants where the
process b+e- a+c+d is physical. This involves
an analytic continuation in the four-momenta
Pa Pa y Pb Ph& Pc Pc& ~d Pd& Pff Pe '

are many paths in the invariants along which the
continuation can be made, but since we are de-
riving purely kinematical relations it cannot
matter which path is chosen.

It is simplest to do the continuation in a ref-
erence frame whose definition is unaffected by
the continuation; for example, the cd center-of-
mass frame or the d rest frame rather than the
ab center-of-mass frame. Then no complex
Lorentz transformation is needed in going to the
be c.md frame. Correspondingly, the kinematic
structure of the rnomenta in terms of the invari-
ants is very simple. For example, in the cd
c.m. frame

o s~+
2 2(S )1/2

/ 211/2 ~ [ (Wd~/ cd/ Sdd )]

so p,' & -m, when ss-, )[(s,d)"'+m, ]'. If the continua-
tion is done so that (X)1/2- -l(Z)1/2~ and the angles
are all kept fixed, then we have simply P, - -P;,
with the usual physical expression for P;:

2
o ~~ -S,„-m,
a 2(s )1/2

/ 2%1/2 [~( 9 / ddt bd }l

%e will continue all momenta in this way so that

(p, ')'/' -(p )'/', (p~'}'/'-+(p, ')'/' and all orien-
tations remain fixed.

The cd c.m. frame is appropriate for the (I) ex-
pansion, the d rest frame for the ~ expansion.
Let us imagine that the continuation in one or the
other of these frames has been done and the re-
sultant amplitude for b + e —a + c +d Lorentz-
transformed to the be c.m. frame. The angles
between the various vectors in this frame are de-
fined in Fig. 7 (8~, =8, of Sec II)..As discussed
in the Introduction, the Beggeon's spin in the di-
rection p~ is ~~ —A.„here taken to be zero. Its
helicity ~~ in the a+R c.m. frame is equal to its
spin along p; in Fig. '7: On continuing back to the
a+ b-c +4+ e physical region p;- -p, and the
Lorentz transformation to the a+R c.m. frame is
along p, . Thus the overlap between these two spin
projections is d,"~f'/ ~(8;,) as given in Sec. II. By

FIG. 7. The definition, in the be c.rn. system (Beggeon
rest frame), of the angles used in the text.

the same argument, its helicity p. & in the R+d
c.m. frame will be equal to the spin projection in
the p„direction in Fig. 7 and hence the overlap
function is d,"„'22 (s —8d;). The remaining angle

X in Fig. 7 is defined so that it corresponds to
the definition of the crossing angle for particles
when /r(s~—) goes through a physical integer or
half-integer: It is the angle between p; = -p, and

p, in the rest frame of particle R. (Note that ft
is an uncrossed particle in going from a+R -c +d
to d +A -c +a. )

The angles P and ~ are also shown in Fig. 7.
These can be seen to correspond to the definition
of P as shown in Fig. 2 and to the usual definition
of ~ which is shown in the d rest frame in Fig. 8:
(i) /j/ is the angle from p,—xp, to p,—xp„about -p;,
in the right-handed sense. The cd rest system is
reached by a Lorentz transformation along -p;
= p, +p„since the planes intersect along that line,

Q is unchanged by the transformation, remaining
the angle between p;&p, and p,—&p, with the mo-
menta evaluated in that frame. Under the continu-
ation back to a+b-c+d+e, p;--p, „and so Q is
the angle from p, xp, to pdxp, =p, xp, . (ii) &u is
the angle from pd xp2 = p, x (p, +p,—} to p, xp,—

po-pc ~

Pb

p, )

FIG. 8. The definition of the Toiler angle x in the rest
frame of particle d.
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=p, x(p, +p,—} about p, =-(p, +p;). The Lorentz
transformation to d at rest is along the intersec-
tion of the planes and leaves the definition of ~
unchanged. Under the continuation back to a+ 6
-c +d+e, ~ becomes the angle from (p, -p, )

xp, to p, x (p, —p, ) about p, —p, . This checks with

Fig. 8; i.e., ~ is the angle from pb&p, to p, xp,
about p, —p, .

A definite spin ~~ of the Reggeon along p,—is
obtained by integrating over the azimuthal angle
4 weighted by e' s~. (It is not e '""~because Q
is measured in a right-handed sense about -p;.}
A definite spin g& along p, is obtained by integrat-
ing over ~ weighted by e '"" . Vfe are thus led
to the two alternative expansions:

cos8;, = [-cos8„-cos!I + sin8„- sing cos~],

(4.2b)

sin 8;, sin6}~; sinX
sin~ sing sing

(4.2c)

As s„and s„, become large

2s~bs be

[X(s«, m, ', m, ')x(s«, m, ', s«)]""
(4.3)

2Sees
[X(s«-, m, ', m, ')X(s„,s „--,m, -")]"' '

cos8«- = -[cosx cos8;, +sin!!sin8„- cosp),

(4.2a)

which is just (2.4) again, and

(4.1a)

A choice of the branch of sin6);b must be made;
we take sin8,—,- i cos8, ,—.Equation (4.2c} then
constrains the phase of sin8~,—and sinx to be --,'m.

(All of the angles &u, g, g are less than s or greater
than v together. ) Then

F =P $ g (-cos8«)"!'« ' cos8& s~—[A, (s«— m " s &)]~'2

cos Ebs~b -[X(she , so~, md )]—

The relation between f~ and g„„is clearly that
of a crossing relation. Ne will now see that it
has the same form as crossing for particles with
spin, with the complication that the crossing ma-
trix is infinite-dimensional.

Application of the laws of spherical trigonometry
to Fig. 7 gives the relations

= -(cosy + i sinx cosg)

= -I/(cosy —i sing coerce) . (4 4)

This equation provides the desired relation be-
tween s„„Q, and ~.

Equation (4.4) is rather complicated when ex-
pressed in terms of the invariants but is quite
simple when the angle X is introduced. cosx can
be calculated from its definition in Fig. 7:

(s„——m, '+s«)(s«—-m, '+s„-)+2s« [m, '-s-«+m, ' - m, ')
[X(s«—,m, ', s,~)).(s«-, m, ', s„)]"' (4.5)

Comparison of this with the standard crossing-
angle formulas" will verify that it is the s-t
crossing angle for a particle of mass s~-. The
corresponding formula for sinX is

This is the usual relation between ~ and cos~ in
the double-Regge limit.

One further relation which can easily be worked
out from Eq. (4.2) and (4.4) is

(s«-}"' [Z(s«, m, ', m, ')]"'-'

with the phase determined to be -&m from Eq.
(4.2c). Notice that as s,~- ~, too,

(4.8)

e' ' osc(-,'y} ie+'~~' i s(ny}
(4.8a}

or

[).(s«—,s„-,m, ')]"'
cosy —i sinx cosset e' "cos(-,')() —ie ' ~' is(n-,

'
)X'

(4.8b}

m, ' —s « —s.—, + 2(-s.,-)"'(-s«)"' cos(u
'

Then from Eqs. (4.1), (4.4), and (4.8) we have
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~ I
dp

c ' 'ccc(-', (() ~ 'c' 'c(c( C) "
(( c (l(c —c ((

cos(2X)+&e ' 'sin(2X) (a+pe)!(a pz)!

or

g -g d~e &((g-~[ cosX+ s ~((
e cos(aX) —ce 'sin(zX) z (a+pz)!(a —!(z)!

2'Il' cos(~X) —i e ' sin(-, x) (a + x~)!(a x„)!"z

For integral j the rotation matrices have the integral representation"'"

(4.9b)

(j+~')!(j-m()! "' (,& &» "~& (,~( . . }, e ' 'cos(aX)+ie' 'sin(2X)

(4.10)

Recall that cosy, +icos/ sing &0, so me can make
the simple continuation satisfying the Carlson
conditions

Then E(ls. (4.9) are formally equivalent to the
ordinary crossing relations

(4.11a)

(4.111)

The extra helicity-dependent phase factors in Eq.
(4.11) are related to the phase convention chosen
in Sec. II because the Beggeon's momentum is
spacelike. Formal relations similar to this have
been Written down by%hite for his definition of
Beggeon amplitudes. '

It should be apparent from the preceding dis-
cussion that one could define Beggeon-particle
amplitudes in arbitrary reference frames and that
their Lorentz-transformation properties mould

be formally the same as those for ordinary am-
plitudes modulo factors like those in E(l. (4.11}.
In certain simple models„such as resonance dom-
inance in s~ or one-pion exchange in s,—, —the
Deck effect —the sums over either A. or p. are
finite, but in general the sums run over all inte-
gers -~ & h., g & ~. The crossing relations mill

converge under very weak assumptions on the be-
havior of I'. If I' is a continuous, periodic func-
tion of Q on 0- Q-2n', then"

~f„[- —[(a+x}!(a —x)!] ' .

By the same theorem on Fourier coefficients

Hence the crossing relations are absolutely con-
vergent.

V. CONCLUSIONS

In this paper we have studied several aspects
of four-point Reggeon-particle amplitudes. Inso-
far as Begge exchange is an important feature of
high-energy scattering, such Beggeon amplitudes
are likely to be useful for our understanding of
the scattering mechanism. This is particularly
true now, as high-statistics data are becoming
available on few-body reactions. As me have seen,
it is possible to derive many properties of the
Beggeon amplitudes using only the general features
of Regge exchange. Some of the results derived
here are no doubt already known; they have been
included for completeness of the presentation.

In our treatment we tried to emphasize the ex-
tent to which the Beggeon amplitudes resemble
ordinary scattering amplitudes. Because the
Reggeon carries a continuous spin ~&, it, in gen-
eral, can have any helicity ~&, -~& ~& & ~. In the
Reggeon rest system its spin component in the di-
rection of the external particles must, however,
be equal to the difference of the helicities of
those particles. The Reggeon helicity ~& can thus
assume only integer (or half-integer) values. This
suggests that the Beggeon helicity amplitude, de-
fined by projecting out a definite helicity of the
Reggeon, may have many properties in common
with ordinary helicity amplitudes.

The partial-wave expansion and parity relations
of the Reggeon helicity amplitude are straightfor-
ward to derive and analogous to the usual ones.
An interesting question is the behavior of the
Beggeon helicity under crossing from the s- to
the t-channel c.m. system. This is important
because many features, such as resonances and

unitarity, are best dealt with in the s-channel
frame, whereas the high-energy Begge behavior
is commonly studied in the t-channel frame. We
found that the helicity crossing matrix of the
Reggeon is the same as for an ordinary particle,
mith the particle spin equal to n~.
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In Sec. III we showed that the Beggeon can be
treated as a particle also in deriving unitarity
relations, White' previously found that additional
terms contributed to his Beggeon-particle unitar-
ity relation. We do not have any such extra terms,
presumably because our Beggeon helicity ampli-
tude is defined differently from his, which is ob-
tained in a helicity-pole limit. Our basic partial-
wave unitarity relations are the same as his for
the five-point function.

Below the first inelastic threshold in cd -cd the
Beggeon amplitude a+A-c+d is required by
unitarity to have the same phase as the cd elastic
amplitude (when the spins s„s,=0, 0 or 0, —,'). This
relation is particularly interesting because the
Beggeon can carry many different quantum num-
bers. Also, owing to the unusual kinematics (the
Beggeon is spacelike), one can study experimen-
tally processes like N+N-n +n below the 4m

threshold. There are thus several reactions for
which the phase prediction of the Begge-pole ex-
change has direct observable effects.

We have seen that Beggeon amplitudes have many
properties in common with ordinary scattering

amplitudes. One should, however, remember that
other features, such as the analytic structure, may
be more complicated. An example of this is pro-
vided by the signature properties of Beggeon am-
plitudes. Consider the definition of the Reggeon
amplitude f~ (we take all external particles to be
scalars}

7-+e-$F a f, (s„,s,-„s„-)
P(s~ ) . (-cose )

sin%A [(e + Xz}!]"'[(o—a„)!]"'

(5.1)
Let us take (s,~~-~ and continue s~, s„along a
semicircle:

~ay say ~
& ~cd sge~~a() fUked '

The complex conjugate of the continued amplitude
can be related to the original amplitude in (5.1)
assuming signature 7' in the ac channel:

F( s,» -s~-, e~„sac~ s~ ) =7'F(s, n, e«, e«, s«, e~}.
The result is

7'T'e'""f$ (-s~+i es„—,e~)=f~ (e~+ie, s„—,s~)
2m/ g

-1 2%

[(~+&~) '(o' —ks} ']"'
(5.2)

If the Beggeon were an ordinary particle, the sec-
ond term on the right-hand side of Eq. (5.2) would
be absent. The phase of f~ for (e~(- would

R
then be given by a signature factor. The presence
of the second term in (5.2) reflects the complicated
analytic structure of f,„in s~, and precludes any
general determination of its phase,

For the purposes of the present paper the pre-
cise analytic structure of f~ was not essential.
However, the singularity structure has interesting

consequences when one wants, e.g., to derive
finite-energy sum rules for Beggeon-particle am-
plitudes. "
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In this paper we study the t dependence of the ~~ vertex functions on the basis of par-
tial-wave dispersion relations and unitarity. The right-hand cut is approximated by the 2&

contribution and the left-hand cut by the nearest s- and &-channel poles. The electromag-
netic mu; transition form factor is calculated as a function of t in the timelike and spacelike
region and is compared with predictions of the p-dominance model and with recent exper-
imental data for e+e -~« +«0&0 near threshold. The influence of the left-hand cut
and the finite width of the p resonance is explicitly shown.

I. INTRODUCTION

The construction of electron-positron storage
rings has opened a new field in high-energy phys-
ics. Interest is centered on e'-e' interactions,
both in annihilation and in scattering processes.
In the high-energy region these reactions are ac-
companied by hadron production.

Experimental results from storage rings are al-
ready available, especially from the Orsay,
Novosibirsk, and Frascati rings. ' ' These give
an idea what pion and kaon form factors look like
in the timelike region and also yield annihilation
cross sections for multimesonic final states
(where the latter can partly be understood as
quasi-two-body states).

The description of e'e annihilation into hadronic
two-body or quasi-two-body states leads in the
one-photon approximation —which will be one of
our basic assumptions —to the definition of form
factors and transition form factors in timelike re-
gion. The kinematic structure of such reactions
has been given in detail by Kramer and Walsh. '

The best known example, from the theoretical
as well as the experimental point of view, is that

of the two-pion final state which reduces to the
description of the pion form factor. This problem
has been studied many times, and we refer, for
instance, to the calculations of Frazer and Fulco, '
Qounaris and Sakurai, Schwarz, Aubrecht, Renard,
and Bonneau and Martin. ' KK production has been
analyzed, for instance, by Renard. "

The next step in e'e annihilation is the produc-
tion of three-pion final states. The case of the
~'m 7T' channel has been analyzed by KW in a mod-
el based on p'n' production. They also discuss 4m

production by resonance formation using a, vector-
dominance model as has been done by other au-
thors. "

We shall concentrate on the production channel
In contrast with IQV and others, we

study the influence of the left-hand cut and subse-
quent finite-width corrections on the resulting
transition form factors.

Finite-width corrections in connection with ana-
lyticity have been the subject of many discussions
in the past especially in studying pion and kaon
form factors. "There exists also a dynamical
model for the reaction e'e —p'- m +u (m'm w )
due to Renard. " He assumes Breit-%'igner shapes


