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Rare decay modes of the kaons such as K —jLfp, K —7(vl, K-yy, K —~p, and K —~ee
are of theoretical interest since here we are observing higher-order weak and electro-
magnetic interactions. Recent advances in unified gauge theories of weak and electromag-
netic interactions allow in principle unambiguous and finite predictions for these processes.
The above processes, which are "induced" icosi =1 transitions, are a, good testing ground for
the cancellation mechanism first invented by Glashow, Iliopoulos, and Maiani (GIM) in order
to banish l&S~=1 neutral currents. The experimental suppression of Kz —pP and nonsup-
pression of Kz —pp must find a natural explanation in the GIM mechanism which makes use
of extra quark(s). The procedure we follow is the following: We deduce the effective inter-
action Lagrangian for ~+K-l+l and ~ +%- p+y in the free-quark model; then the appropri-
ate matrix elements of these operators between hadronic states are evaluated with the aid of
the principles of conserved vector current and partially conserved axial-vector current. We
focus our attention on the Weinberg-Salam model. In this model, K- jLIp is suppressed due to
a fortuitous cancellation. To explain the small KJ -Kz mass difference and nonsuppression
of K~-yy, it is found necessary to assume m6, /m+ «1, where m6 is the mass of the
proton quark and m+ the mass of the charmed quark, and ~nz &5 GeV. We present a. phe-
nomenological argument which indicates that the average mass of charmed pseudoscalar
states lies below 10 GeV. The effective interactions so constructed are then used to esti-
mate the rates of other processes. Some of the results are the following: Kz —yy is sup-
pressed;K& —7(yy proceeds at a normal rate, but K&-~ is suppressed; KJ —7(l 1 is very
much forbidden, and K+ —~ l I occurs with the branching ratio of -10 ~; K' —7('ee has the
branching ratio of -10 6, which is comparable to the presently available experimental upper
bound. The predictions of other models are briefly discussed. Relevant renormalization
procedures and computational details are discussed in appendixes.

I. INTRODUCTION

Recent developments' in the study of spontane-
ously broken gauge invariance have led to the pos-
sibility of a unified and renormalizable theory of
weak and electromagnetic interactions. Most such
theories necessitate the introduction of weakly
coupled neutral currents, and their viability de-
pends on their success in accounting for the ob-
served suppression of jssj=l, jhQj=0 semi-
leptonic decays. In nearly all models proposed
thus far, this problem is dealt with by appealing
to the Glashow-Iliopoulos-Maiani (GIN) mecha-
nism, ' which we shall briefly recall.

A criterion for renormalizability is that cou-
plings be invariant under a group of gauge trans-
formations. The charged Cabibbo currents, J„',
together with the neutral current J'„defined by

J', (~) 8'(~-y) =-'j J;(~), J.(y)] &(~. —X.)

+Schwinger terms

satisfy the algebra of SU(2). In a gauge-invariant
theory these currents must couple with equal
strength to gauge bosons. However, if J„' are the
usual Cabibbo current operators, the neutral eur-

rent defined in Eq. (1.1) contains a strangeness-
changing hadronic part as well as a leptonic part.
The gauge-invariant coupling then implies that a
decay such as KL - p, p should occur with a strength
comparable to K'- Jj, v.

In the Weinberg-Salam model, ' the remedy to
this unwanted prediction is to modify the usual
current

J'„' = (8 y„(1-y, ) (2 cos 8+ A. sin 8)

by adding a coupling

J t= J u'+(P'yu(I —ys) (Xcos8 —2 sin8),

(1.2)

where 6} is the Cabibbo angle; 6', g, and A. are the
usual quarks and 6" is a charmed quark with the
charge of the proton quark. Kith this modification
the current defined in (1.1) has no jhsj =1 com-
ponent. It is generally assumed that 6" is much
heavier than the other quarks to account for the
fact that charmed particles have not been observed.

In the Weinberg-Salam model the electromag-
netic current is included by extending the gauge
group to SU(2) xU(1); other constructions which
satisfy low-energy phenomenology have also been
proposed. For example, in the Qeorgi-Qlashow
model' the Cabibbo currents are modified by the
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introduction of new particles in such a way that
0'„ is just the electromagnetic current and no other
neutral current need be introduced. However, when
higher-order processes are considered, an analog
of the GIM mechanism must be used in all models
of this type —increasing still further the number
of quarks.

Rare decay modes of A mesons, such as K~- yp
or K~- yy, are of immense theoretical interest
because here we are dealing with the workings of
higher-order weak and electromagnetic interac-
tions; and a renormalizable theory of weak inter-
actions provides in principle unambiguous and
finite predictions for these decays. There is a
general problem associated with higher-order
transitions and it arises in the following way. The
coupling constant g for charged bosons is com-
parable in strength to the electromagnetic coupling
e. In the low-energy limit, where the boson prop-
agator reduces to rn~ ', first-order transitions
are effectively governed by the Fermi constant

For second-order processes, however, massive
virtual bosons can be exchanged and the effective
second-order coupling strength is found to be

Empirically, the strength of second-order pro-
cesses involving a change of strangeness is char-
acterized by G„'A'= G~o.(A'/m~'), where A is
typically of the order of several QeV, as for the
E~-K~ mass difference and the decay E~ —p. P.. A
mechanism is thus required to suppress the con-
tribution of order t"~a.

Consider, for example, the decays

(1.4)

cussion the two amplitudes will be of comparable
strength:

Experimentally the decay rates are related by"
1 (K~ —pp) = 2 x10 'I"(K~-yy")

= 4 x 10 '1"(K'—p v) .

As expected, the amplitude for (1.4) is suppressed
by roughly a factor n with respect to the first-
order process K'- pv. However, (1.5) is sup-
pressed in amplitude by a factor of

n -5M' Gp.

In fact a major contribution to the decay rate for
(1.5) is from the higher-order electromagnetic
process shown ln Flg. 2. The imaginary part of
the amplitude is dominated by the graph of Fig. 2
with the two photons on their mass shell; this
contribution may be calculated in terms of the on
shell KL, -yy coupling and is found to be'

The rate (1.8) is known as the "unitarity bound"
for E~- p. p, as it provides a lower limit for the
partial width:

Thus a mechanism is required which suppresses
the rate for K~- p p, to the experimentally observed
level, and which leaves the rate for K~ —yy es-
sentially unaffected. The role of the GM mech-
anism is illustrated in Fig. 3. As the product of
coupling constants [Eq. (1.3)j which enter in the
virtual transition

g sin8, g g sin8, e

Diagrams contributing to the decay amplitudes are
shown in Fig. 1. Setting g= e as is the case in
unified theories of weak and electromagnetic in-
teractions, both amplitudes are fourth order in the
coupling e. Since the Feynman integrals are con-
vergent, and since m~ is the dominant mass oc-
curring in the propagators, each graph will give
a factor m~ '. Then by virtue of the above dis-

is equal in magnitude and opposite in sign with
respect to the similar process involving the (P

IEq. (1.2)j, the graph of Fig. 3(a) will exactly can-
cel the graph of Fig. 1(a) in the limit of equal (P

and 6" masses. However, in the same limit the
graph of Fig. 3(b) will also cancel the graph of
Fig. 1(b), which is clearly not a desired result.

The problem can be posed most acutely in terms
of symmetry properties. In the %einberg-Salam
model (as modified by GIN), the quarks transform

g cos8, g

FIG. l. Important diagrams for (a) KL -pp and (b)
Al

FIG. 2. Diagram which contributes to the absorptive
part of the EI —pP amplitude.
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& geos8, g, geos8, s

g -gsin8, g g ~sin8, e

KL Q

(o) (b)

FIG. 3. Diagrams with the 8'-quark line @which suppress
the contributions of the diagrams in Fig. 1.

according to the fundamental representation of
SU(4), with components (d", 6', 31, A). In analogy
with I spin, which mixes 6' and X, or U spin,
which mixes 2 and X, there is an SU(2) subgroup
of SU(4) which mixes 6' and 6". Let us call this
group of transformations P spin. Then in the limit
of 6' and 6" degeneracy P spin is a symmetry of
the strong interactions. The electromagnetic cur-
rent is a P-spin invariant. The lowest-order ha-
dronic operator with A@ = 0 and (d8~ &0 which can
be constructed from the current of Eq. (1.3) is of
the form

sin8cos8 3I X(P6' —P'6"}+H.c.
+ charm-changing components. (1.9)

The operator (1.9) is a P-spin vector; that is, the
effective ) ~S ( &I, LQ = 0 hadronic operator has
(aP~=1. Since the photon and leptons as well as

FIG. 4. Pole diagrams for (a) EI —yy and (b) Ãz —pp.

via two-photon exchange:

8(Ks- pp) -8(K'- w') 8(w'- py) -G»a',
or via the exchange of a heavy neutral boson (Z)
which couples only to 48=0 currents:

8(K~ —gp) -8(K'- w') 8(w'- p, g) -G»'m»' .

Loosely speaking then, one could argue that P spin
is an asymptotic symmetry; its validity sets in at
energies where hadronic masses are negligible
and it serves to eliminate the unwanted high-mass
8'exchange. At low energies, where weak inter-
actions are truly meak, P spin is so badly broken
that it can be disregarded.

A more rigorous argument emerges upon closer
examination of the Feynman diagrams for the
processes (1.4) and (1.5). The effect of the GIN
mechanism is to provide a subtraction for the
6'-quark propagator:

(1.10)

are P-spin scalars, the transitions (1.4} and (1.5}
are forbidden in the limit of P-spin invariance.

Ne know that P spin is badly broken in nature.
Charmed particles —if they exist —must be much
heavier than the observed hadronic states. The
question to which we address ourselves here is:
How may K~- p, p, remain strongly suppressed in
the broken symmetry case while the suppression
of KI - yy essentially disappears?

A hint to the solution may be seen by considering
low-energy phenomenology. ' Consider the pole
diagram of Fig 4(a). Bo.th the transitions K~- w'

and w -yy are allowed by P spin. Similar non-
vanishing contributions occur via g and X' ex-
change. As SU(4) is now the basic symmetry, we
must add a fourth pseudoscalar meson: X ' -P'6".
Whi1e in the SU(4) limit the contribution of the X"
necessarily cancels the others, in the physical
world it can be considered negligible:

(m»' —m» o ') ' «[m»' —(m» 0„,„)'] ' .

Then we obtain a contribution to KI -yy which is
of the correct order:

e(K,- yy) -a(K, -w') a( ywy) -G,o. .

The analogous contribution to K~- p, p is shown in

Fig. 4(b), where the w'- gp transition can occur

Since the Feynman integral was convergent before
the subtraction, the modified integral remains
convergent if we approximate one W propagator by
its zero-energy value:

(mw' —g'} '=mw

%'ith this approximation the Feynman integral will
be correct to order

(m„/mv)' «1,
where rn„ is a hadronic mass. If a process is truly
fourth-order semiweak in the sense that two heavy
bosons are exchanged, the integral will contain at
least one more boson propagator giving an addi-
tional factor m~~, so that the resultant amplitude
will be of order

(1.12)

However, if the process is second-order weak and
second-order electromagnetic, there will in gen-
eral be a graph [cf. Figs. 1(b} and 3(b)] in which
only one heavy boson is exchanged. Once the ap-
proximation (1.11) is made, the remaining integral
is independent of the boson mass; then the ampli-
tude must be proportional to

g /PBBS( 8 (XG» (1.13)
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(In the 't Hooft-Feynman gauge, ' the contributions
of unphysical Higgs scalars are negligible com-
pared to those of the vector bosons. )

As will be seen more explicitly in the following
sections, the requirements that the amplitudes for
(1.4} and (1.5} be of the correct order are respec-
tively

md -m(p
2 2

2 . 21 or mp'
mt&

In other words, P-spin symmetry breaking must
be small on the boson mass scale but very large
an a hadronic mass scale.

The main body of this paper will be devoted to
quantitative calculations within the Weinberg-
Salam model of the processes K-pp. , E-wvv,
K - yy, K- wyy, and K-wee. For this purpose we
first estimate the matrix elements for the ele-
mentary processes A, -g +l +l and A, -g + y+ y,
and canstruct phenomenological interactions for
free quarks. The matrix elements of such inter-
actions between physical hadronic states can then
be estimated, since the hadronic operators which

appear are the familiar V-A currents. The ne-
glect of strong-interaction effects may perhaps be
justified in models in which quarks are confined
in a finite region of space by any of the mecha-
nisms that have recently been suggested (e.g. ,
infrared catastrophe due to non-Abelian gauge
fields which prevents the disassociation of "color"-
neutral states into "colored" states, "or the "bag"
mechanism"), and within this confinement, quarks
are "almost free. "

Furthermore, in those theories in which the
gauge group of strong interactions commutes with
the gauge group of weak and electromagnetic in-
teractions, the A. g-gluon coupling gets transformed
away by the wave-function renormalization of
quark fields. ' [Off-shell corrections are expected
to be of order Gzm„'(my ' -my')/m„' and are not
important. ] Thus, effective two-body operators
(A+@- X+q+l l or yy), which could contribute to
K-w+ll or yy, cannot be induced by gluon ex-
change in such theories. The contribution of twa-
body operators which are present in the free-
quark model (via W ' exchange) will be discussed
in the appropriate sections. A related, but dif-
ferently motivated, estimate of higher-order weak
interactions has been discussed by Appelquist„
Hjorken, and Chanowitz. "

In Sec. II, we evaluate the amplitude for K~ - pP.
to lowest order in G~. In the Weinberg-Salam mod-
el, this amplitude is found to vanish by what ap-

pears to be a fortuitous cancellation between two
kinds of diagrams. The general matrix element
for the elementary process A. +5-l +l is propor-
tional to the quark mass difference

4W'=my '-m(I2

This quantity is estimated by comparing the ma-
trix element of the K,-K, transition in this ap-
proximation with the K~-K~ mass difference, as
the former is proportional to (hm'/mv'). The
matrix element so deduced for A. +g-f+l is then
applied to estimate the decay ra,tes for E- n+ v+ v.
A current-algebra argument is presented here
which connects the amplitudes for E-l l and
K-ml l. Present experimental limits are at a
level of 10 ~-10 ' with respect to E- wl v de cay
rates.

In Sec. III we present the analogous calculation
for K~- yy. A phenomenological discussion of
this amplitude is also given in terms of pole con-
tributions [Fig. 4(a) J. The role of I' spin is ex-
plicitly displayed and it is shown that a reasonable
estimate is obtained in the limit of very high t'
mass. The matrix elements for the elementary
processes A. +3k- y+y and A. +X-yareusedtoesti-
mate the rates for E —myy and K- mee. We com-
ment on the amplitude for Es- yy, which has the
interesting property that the leading contribution
vanishes in the free-quark model; we conclude
that this decay will be dominated by the absorp-
tive amplitude. The amplitudes for K'-Tc ee and
E~- n'ee are found to be comparatively large,
being truly of order G~o. . The presently available
limit on K'- w'ee is rather stringent; an improve-
ment of the experimental precision by an order
of magnitude will severely test oul appl oach.

Section IV contains a summary of our results
and comparison with experiment. We also dis-
cuss the predictions of other models on the rare
decay modes of K mesons.

Finally, the renormalization procedure and de-
tails of computations are outlined in appendixes.

In this paper, we shall assume that the mass of
the physical Higgs scalar particle is sufficiently
large so that its contribution to induced bS =1
transitions is negligible.

Note: In this paper we ignore completely the
effects of CI' violation. In theories of superweak
CP violation, none of the estimates of this paper
a,re affected thereby; in a recent paper, Ma" dis-
cusses some of the material contained in the pres-
ent paper.

sEMrLErroN&c DEc~vs

A. E pP and A.~-g~ mass difference

As a prelude to considering the decays X- pp, ,
we shall first discuss the elementary process
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x&(ku y[ (2I y)-]v —2py I 2( I-,y)]~j,

& =(4m'/m„' sin'8„) [I n(m v/pyg 6') —1]
(2.1)

and similarly for the electronic leptons, where
mv'sin'8~=(38 GeV)', 8c is the Cabibbo angle, and
Am2 = my ~

' -mp2 is the difference of masses

A. +g —y+ p, , in the free-quark model. There are
two classes of diagrams contributing to this pro-
cess. One is the diagram in which a pair of 8"
and 8' is exchanged between the quark and lepton
lines. The second class of diagrams is generated
by the "induced" XXZ coupling (Fig. 5). The eval-
uation of these diagrams, to the lowest order in
m~~, is outlined in Appendixes 8 and C.

%hen the QIM mechanism is incorporated into
the steinberg-Salam model, the W'8' contribu-
tion to the process A. +X-7+l is, in the 't Hooft-
Feynman gauge,

—cos8c sin8c e3Iy [-, (1- y, )J
. GF ~ . ~ 1

FIG. 5. Two classes of diagrams for ~+X—p. +P. The
definition and evaluation of the effective MZ vertex
(represented by a circle in the lower diagram) are given
in Appendix B.

squared of the 6' and t' quarks. In the presence
of the QLM mechanism, there is no AgZ coupling,
but such a coupling is induced in higher orders.
The effective AXZ coupling, to lowest order in n,
and in m„', is given in (A1); the contribution of
the Z exchange to the process is

—i ~ —cos 8c sin 8c sly [ -,' (1-y )] &
v2 2 5

&&( Wy. [ 2[~a (1—-y, ) J
—»n'4)

L

+l ~y. [l(l-y, )] ~) (2 2)

The total amplitude for X+2-l +/ is given there-
fore by

i T(X + 3I —L + I) = ~~ —e cos 8c sin 8c [3Iy [-,' (1-y )] & )J gy P sin' 8~ + —,
'

vy [,'- (1- y ) J v j, (2.3)

where

&I mg

(38 GeV)' mp ' (2.4)

field theory). We suggest that the dominant mech-
anism for K~ ~- p p, are the conventional ones":
KI yy pp Ks lTF yy p. p, , TheIl we expect

is the suppression factor arising from the QIM
mechanism.

In order to estimate the decay rate K~ ~- pP,
we take the matrix element of (2.3) between the
KJ ~ state and the vacuum, and use the partially
conserved axial-vector current (PCAC) principle.
In this way we obtain

T(K~- pp) =0,
(2.5)

Z'(K~- pp} = —&2 —e cos8c sin8c [&fr(Pr} ]
GF e

2 2r

xsin 6g p.y~p

where f» sin8c = 33 MeV. The T(K~ —pp) amplitude
vanishes because (P~)" py p =0. The vanishing of
this amplitude is due to the fortuitous cancellation
of the axial-vector part P, y y, p between the 8"8'
and Z contributions, (2.1) and (2.2). Even when
the effects of strong interactions are taken into
account, it is probable that these two contributions
cancel to a large extent (especially if strong inter-
actions are described by an asymptotically free

r(K, —q q) r(K, - yy)
r(K~ -

L v) r(Ki yy)- (2.6}

As we shall see in Sec. III, we expect r(K~-yy)
= 2 r(KI —yy).

To estimate the size of e we consider the K~K~
mass difference. In Appendix F, we evaluate the
effective Lagrangian for A. +g-X+5'. in our ap-
proximation and obtain

ff rp 4
'icos'8c»n'8c [~y [~a (1—y5}J&]'

v2 4m

+H.c. ,

where eo is defined in Appendix F, (F4)-(F5). In
order to estimate the magnitude of the K'K' transi-
tion amplitude, we insert the vacuum state between
two currents in all possible ways and use PCAC
(it is admittedly a dubious procedure, but it will
not mislead us as to the order of magnitude):

\

&K l
- 2„, lK'} = ~ —eo cos'8c sin'8c 4(—,

' )'

x&K'I&y y, &J0& &01&y y, &IK'&

— f~ m~ —~, cos 8~sin 8~ .F 2 2 + 2 2
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(This estimate is for a triplet-quark scheme; for
the 3-color quarks, the above equation should be
multiplied by -', .)

The EJ-K~ mass difference is given by

m, -m, =m, (1+m, -'(K l-Z.«lK'&)"
-m» (1-m» '(K'l —Z,«]K'& )'i'

mate the rates for K'- v+ v+ v. Noting that

&w' lay„(1- y, ) ~lK'& =[(P,)„f,+(P-), f-]
= W2 (w'l%y„(I- y, ) ~lK'&

= -v 2& "lx&,(1-&,) 3I IK'&,

where f, and f are the K» form factors, and

P, =P~ +P,„me find that

Thus,

(K'l - z,„, lK'&.
iT(K -w vv)=i —ecos8csin8c. G~ n

2 2r

mS-mS GZ 2 n
f» Co sin 8c cos 8c

= q, x5x'j0 " .

Experimentally the left-hand side is about 0.7
x10 ", some have

e,= 1.4 x10 ' .

(2 9)

x[0,), f, V ).f ]

x[3'�"[-,'(1- y,)] v]

= iT(K', —w'vv),

iT(K, —w'vv) =0 .

Thus, if we neglect the electron mass

(2.10)

(2.11)

Equation (2.8} is compatible [see Eqs. (F4)-(F5)]
either with mt = mq and large, and mq ' -m(p = 1

QeV, or my «mg and md =1.5 QeV. We argue in
See. III, in connection with the nonsuppression of
the K~-yy rate, that the latter is the logically
tenable alternative. In this case

I'(K'-w'vv) I"(K -w vv)
2 I'(K+ —w e v) I'(Kz —we v)

E eos6}c

mhere

(2.12)

e= colin(e, sin'8w)1=10 2 (2.9)
I"(Kz —wev) = I'(K~- w ev}+ l(Kz —w'ev}

What is the meaning of the suppression factor e'?

The expression (2.4), couched as it is in the lan-
guage of the free-quark model, is hard to interpret
in the context of a realistic model. Nevertheless,
it indicates the degree to which the QIM cancella-
tion mechanism must be effective, and suggests
that charmed meson states cannot be too massive.
We suggest that in a more realistic model (which
we shall discuss elsewhere) the suppression factor
will take the form

2 2

nlw sin w n'&c

in the limit of chiral SU(3) xSU(3) symmetry,
where m, is the average mass of the charmed
pseudoscalar mesons. If this is correct, we ex-
pect n&, to be less than, say, a few QeV. The
experimental implications of the existence of
charmed mesons have already been discussed by
QIM, Snow, and others. "

Finally„mith the suppression factor e of the
order (2.9), the weak contribution to K~- pp would
be well within the bounds implied by the experi-
mental data even if the cancellation of the axial-
vector part mere not complete.

The effective interaction derived in (AV) for the
elementary process A. +X-l +l alloms us to esti-

and the factor 2 on the right-hand side of (2.12)
comes from summing over two kinds of neutrinos.
Together with the limit on e given in (2.6), we
obtain

3 (x
2 —E cosl9 —10

and

I(K w vv)
I'(K"- all)

(2.13)

I'(K»- w'vv)

I (Kw —all)
(2.14)

I'(Kz, —w' vv)
I'(K»- w'vv)

(2.15)

The last follows from the fact that, as implied in

(2.11), the amplitude for Kz, - w vv is at most of
order G~ue'.

The results of (2.10) and (2.11) based on the
simple quark model, obtained by neglecting all
but the one-body operator deduced by looking at the
process A. +g-l +l, may appear more suspect than
those of Sec. IIA. However, in this theory, there
is a soft-pion theorem relating the K- zl E and
K'-l l amplitudes, and our results are consistent
with it.

In the case me, m~ «me, the chiral SU(2)
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xSU(2) is a good symmetry, and the entire La-
grangian commutes with the generators Q'+ Q',

of the right-handed chiral SU(2) group approxi-
mately (noncommuting pieces being of order m(r/

rn„), except for the couplings of the Z meson and
the photon to quarks. Thus, except for the Z-
meson reducible diagrams, we have the soft-pion
theorem

lim T"'(Ke ~(P) - )r'(q) v(r) v(P —q —r))
v~0

1=i T"'(K le(P) - v(r) v(P —r)), (2.16)v2j. , e

scalars to fermions, and the interactions of weak
boson fields; since we are interested in the matrix
element to lowest nonvanishing order, we may
ignore the couplings of the Z meson and the photon
to fermions, as well as any complications that
might arise from the presence of the Feynman-
DeWitt-Popov-Faddeev ghost fields). The part
of j„which does not commute with the right-handed
chiral charge Q'+Q,' is —sin'6~ j ~~, where j~& is
the electromagnetic current. Because j~&is con-
served, the effective Xvy vertex must have the
form

lim T"'(K'(p)-~'(q) v(r) v(p —q —r)) ( '(q) q: qJ(q)qqq -fq q& ('ql K'(P)

. 1=i T"'(K'(P)——v(r) v(P —r)), (2.17)f
where v and v are not in general on their mass
shells and T"' denotes the single-particle irreduc-
ible amplitude. Equation (2.16) follows from the
standard curr ent-algebra manipulation. "

Let us now consider the Z-meson reducible dia-
grams. The effective nKZ vertex is of the form

= (0'g„„—k„ir,) (P + q)' G(i), (2.18)

The proof follows from the usual Nard identity,
and is essentially identical to the one we present
in Appendix D for the effective A~y vertex. On
dimensional grounds, we have

K(P)
G(0) =O(Gre) . (2.19)

where Z)r is the weak-interaction Lagrangian (Z~
includes the couplings of gauge bosons and Higgs

On the other hand, the matrix element of the
purely left-handed current j„—(- sin'Sr j &),

which is not consented, is of the form

(q) 1' [ [(0)) ~ q('q„),"(0)[exp ifq'qz (q) qqiq) =(q ~ q), q', (i) ~ (q —q) q' {i), (2.20)

where

F,(0), F (0) =O(Gr em, ') . (2.21)

T(K(P) —v'(q) v(r) v(P - q - r))

Thus, Eqs. (2.16) and (2.1t) should hold also for
the full amplitudes, to lowest order in (f/m, ')
-(m'/m, ') Ii.e., neglecting contributions of order
(m'/mv') compared to (m, '/m~')], where m is the

typical uncharmed hadron mass.
The chiral charge Q'+Q', does commute with the

electromagnetic current, so that the soft-pion
theorem (2.16) holds actually for the full amplitude.
Let us parametrize the K~ s- n'vv amplitude by

A. ~+B~=0,

f» Gr »
s+&s =

/2 4
e cosmic sin0c ~ (2.23)

C~, s-0

where we have used the amplitudes for K~ s- vv

(off shell) deduced from (2.3). The amplitude (2.10)
is consistent with (2.22), (2.23) when the Callan-
Treiman relation" is taken into account. Note
further that if we neglect the momentum depen-
dence of the form factors, CI' invariance alone
implies

+L, +L ~L
(2.24)

D =0.

xvr„(1 r, ) v, - (2.22)

where A. , B, C, and D are, in general, invariant
functions of the momenta P, q, and r. In the soft-
pion limit we have

These constraints follow from CP invariance and
the assumptions that the neutrino is left-handed
and massless. In most models the form factor D
is identically zero and K~- vvv is strongly sup-
pressed.
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III. ELECTROMAGNETIC DECAYS

A. E~ yy: Quark model

We shall first discuss the free-quark-model
calculations in analogy to our discussion of the
leptonic decays. However, as the estimates we
obtain appear a Posteriori less reliable, we shall
show in the case of KL-yy that a similar estimate
can be obtained from low energy phenomenology.
In both cases the numbers we use should be taken
as order of magnitude estimates.

The first step in the calculation is to obtain an
effective Lagrangian for the process A. +X-y+y.
There are two classes of diagrams here. The
first consists of those diagrams which are one-
quark reducible (see Fig. 6). The XXy vertex is
discussed in Appendix D (see also Appendix 8).
For the real-photon emission the transition charge
form factor vanishes; the nonvanishing effects of
these diagrams come from the A. -g transition
magnetic moment as well as the off-shell correc-
tion due to the internal quark lines. These effects
are, however, of order e-(rhn6 '/mm, ) 1n(m„'/me ')
compared to the main term we shall consider„and
shall be ignored.

The second class of diagrams consists of one-
particle irreducible ones. As is shown explicitly
in Appendix E, the leading contribution comes
from the Feynman diagrams in which only one
heavy boson is exchanged (Fig. 7). From the point
of view of spin dependence, the graphs of Fig. 7(a)
are identical to those of Fig. 7(b), which are ob-
tained from the former by means of a Fierz-Michel
transformation,

[&y„(1-y5)(f'] [&y'(1 y5) ) ] =[-» (1-y5) ) i

x[IPy~(1 y,)(P],

is possible only because the heavy boson propa-
gator is -g„„(P'—m~2) ' in the 't Hooft-Feynman
gauge (see Appendix A). Then the effective inter-
action takes the form of a current operator

4'„=Xy„(1-y, ) x (3.1)

multiplying a closed-loop integral, where the
integrand includes the W propagator. Apart from
the 8'propagator, the integral involved is identical
to that studied by Bosenberg and Adler. " Recall
that the latter is linearly divergent, and therefore
its value depends on the choice of integration
variables and on the way in which the integration
is performed; this ambiguity is removed by re-
quiring that the result be gauge-invariant with
respect to both photons.

In our case the boson propagator makes the in-
tegral convergent and its value is unambiguous.
However, if only, say, the 6'-quark loop is con-
sidered the result is not gauge-invariant. Other
graphs must contribute gauge noninvariant terms
of order m~~ which render the total amplitude
gauge-invariant to that order. However, the gauge-
noninvariant piece of the graphs in Fig. '((a) is
independent of the quark mass, and cancels out
when the 6'- and 6"-quark diagrams are summed.
Thus for our purposes it is sufficient to consider
only the one-8'-exchange diagrams, as anticipated
in the Introduction. See Appendix E for estimates
of order of magnitude of various diagrams; the
integral is evaluated in Appendix A. To order
m~, the effective operator for the transition is
given by

(3.2)

where the anticommutativity of the quark fields is
taken into account. Note that this transformation + [(k~,p) = —

(kq, cr)]

y(k],p) y(k~, o.
3

(a)

[(k„p) = = (kq, cr)]

y(k„p)

(b)

FIC. 6. One-quark reducible diagrams for ~+95-p+p.

FIG. 7. Leading contributions to & +X y+p. To lead-
ing order in M~, the diagrams in (a) reduce to those
of (b).
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where the amplitude T~~, may be read off (A14).
To obtain the amplitude for K~- yy we must take

the matrix element of the current operator (3.1)
between K~ and the vacuum:

(0( Z'„]Sr,) =(0JZ'„' JK,)

Re F(P)

0.5-

0,4-

1=i
~2 f~(Pr4 .

Contracting (Pr)„=(k, +k, )„with T p, we obtain

(3.3) 0.2-

O. t-
I.O 2.0 5.0

P
iT(Kz, -yy) =iF „(k,) F""(k ) ~ —cos&c sin&c

where

x(i &2 f~)/I q,

mP mp. ' )
$2+ mg /

(3.4)

(3.5)

Q being the charge of the 6' quark. The function
F(P) is defined in (A12) and plotted in Fig. 8. For
P&1, F(P) converges rapidly to zero. If we as-
sume that both quark masses m(p and mq are very
heavy compared to the kaon mass, we obtain a
strong suppression of KJ -yy in contradiction with
experiment. However, in the range 0 & P &1, F(P)
is a rapidly varying function with values in the
range

——,'&F(P)& —,', for 0&P1.
If A

&
is treated as a phenomenological param-

eter as defined by Eq. (3.4), then using the ex-
perimental branching ratio

O. I

0,2-

0,5
-0 4-

0.5-

-0.6-

-07-

FIG. S. H,eE(P) vs P. E(P) is defined in {A12). The
figure is the result of a numerical integration of (A12).
Courtesy of Professor Chris Quigg.

part of the K~-yy amplitude is of order e com-
pared to the K~- yy amplitude and negligible.
[Note further that K~-yy is forbidden by U spin
in the exact SU, limit. ] The 2v contribution to the
absorptive part of the Ks-yy amplitude has been
estimated. It is"

I'(Kz - yy) = 2 x 104 sec.

) =(4.9~0.4) x10 '
NK~ - all)

we obtain the empirical determination

(3.8)
Thus me have

F(Ks —yr) IF(Kc yr) = 2- (3.8)

j~„(=0.8V ~0.04 . (3.7)

Assuming mt »m~ ~my, the free-quark model
seems to be compatible with the nonsuppression
of the process K~-yy. (Another solution, which
in fact fits the data better for Q' =+9, is mg.
= mz/2, my&mz/4. Such a low mass for my is
not really ruled out by the K~-K~ mass difference
because of the approximation made in evaluating
(2.7). However, this interpretation perhaps takes
too literally the low mass region of Fig. 8.) Note
incidentally that the expression (3.5) is valid in
the color-quark scheme as mell as in the one-
triplet model ~

To lowest order in m~ ', there is no term which
leads to the CP even state of 2y. This ls most
easily seen in Fig. 7 by noting that the VVV vertex
in question vanishes by Furry's theorem. How-
ever, phenomenologically, K~- yy can proceed
through the 2m intermediate state; me shall inter-
pret the quark-model result to mean that the real

B. E py: Phenomenologicai analysis

In this section we shall estimate the amplitude
for K~ —yy using the pole diagrams of Fig. 4(a).
We define the following set of meson states in
terms of their quark content:

v' =(iPtt' —3IX)/v 2,
g, =(P6'+3I8I -2ZZ)/&8,

g, = (F4'+ 3I 3I + XX)/W3,

q =P'6"

The isoscalar states can, of course, mix; we label
the physical states by g, X', and X,.

The effective nonleptonic meak interaction trans-
forms as the first component of a U-spin vector
and the third component of a P-spin vector:

2„„„-(ZX+XX) (Pd' —P'4") .

Neglecting symmetry-breaking corrections, the
phenomenological coupling of K~ to the neutral-
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meson system must be of the form

'lT g8 'g0
~weak cK» ~2 ~8 +

~3 Qc K» p ci Pi '
i

(3.9)

The electromagnetic coupling is a scalar in both
U spin and I' spin:

—E„„E~„[A(P5' + P ' 5") + B(3I3I +X X)] .

If we assume that the amplitude for I'; - yy is de-
termined by a single quark loop, we may interpret
A and S as the squared charges of the quarks:

0s '90z..=- s F,.z,. o' ~ ~ + ~ +q.)
0'o "(m

D =Det(m»' —M')

=(m»'-m „')(m»' -m„o')(m»'-m» ')

, +4(~~ m')z m, '(2+8y+3y'),

where y=P/ik and

n. m, '/am'=(m i -m y)/(mk —m i}.
The pion pole is exactly canceled by the residue
at the q pole and we obtain

E hK
t2(K. - ~) =

3(m„-m „)(m» -m»o )
'

(3.15)

—= E„,Eo„g d; P; (3.10) K =4(2+8y+3y')n, m, '/(m» -m» }'.

It is obvious from (3.9) and (3.10) that pole con-
tribution to E~- yy is forbidden in the limit of
mass degeneracy, since Qc, d, =0. When mass
splitting is present the amplitude takes the form

dI(K~ —yy) = c, (m»' —M') ', ,d, +

(3.11)

where M2 is the 3&&3 matrix which describes the
isoscalar meson masses and their mixing:

g ~ = I'; M )) I') . (3.12)

In the Weinberg model SU(4) is broken by the
quark mass splitting; to lowest order in the sym-
metry breaking the meson masses may be de-
scribed by an effective Lagrangian of the form

2 „,= m, (Trw)'+ m, Trw'+i» Trw AMw

+PTrw TrhMm, (3.13)

ft(K~ - yy) = ti —+, , fi = Tcd. (3.14)
N 1

D 2am'

The last term is just the pion pole

where n is the 4 &4 matrix representation of the
pseudoscalar states (15-piet plus singlet) and b, M
is a traceless diagonal matrix with two independent
elements: m), -m+, m+. -m+. The matrix ele-
ments M';, in (3.12}can be extracted from (3.13).

Explicit evaluation of the amplitude (3.11) in the
general case is quite involved. If we restrict our-
selves to the case of fractionally charged quarks,
we obtain

m» '= 2(1+y)nm,

K= -2(2+8y+3y')/(1+ y).
(3.16)

The amplitude (3.15) is very sensitive to the value
of y which also determines the X', q mixing param-
eter. The value y= -0.6 corresponds to small
mixing as experimentally determined.

For comparison of the amplitude (3.15) with ex-
periment we must evaluate the effective coupling
constanth. If A„ is defined as the pion-pole con-
tribution to (3.14),

A, „=8(K~ - wo)Q(w'- yy)/(m»' -m „'),

and

, (m '-m„') W„K

=A„K. (3.17)

The transition amplitude for K~ —m' can be esti-
mated using current algebra":

While the result is finite and nonvanishing in the
SU(3) limit, it vanishes in the P-spin limit since
b, m, '- 0 does not require m~2- mx ':

D-n, m'(gnm'+bC m, ').
For the physical case of badly broken I' spin we

as sunle

2 2 2 2
mx -m~ » m~0 -m~ .

In this limit the X„X, mixing is proportional to y,
assuming small mixing we find

4m =mg -m„2 2 2 8(K~ —w) = -iM2f, 8(K»- w'w'). (3.18)

The first term is given by the relations Then using the decay rates for m- yy and K~- m'm'
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we find

l A, /A „,l
=2.3 s 0.1, (3.19)

involved, the pole amplitudes can adequately ac-
count for the observed decay rate.

where A.„,is the experimentally determined am-
plitude for K- yy.

From Etl. (3.16) it is clear that the parameter K
is very sensitive to the pseudoscalar mixing. A
value of lK l= 0.5 would reproduce the experimen-
tal amplitude. This is achieved with y-—-0.3,
which, however, gives too strong a mixing for the
X', q system. We may also argue that a pertur-
bative treatment of SU(4) breaking is meaningless,
and simply neglect the contribution of q, =X, . Us-
ing the experimentally determined masses and
mixing angle for q and X we obtain K= -1.5. If
we also neglect the g, X' mixing, the amplitude
(3.15) reduces to the X' pole with K =-$.

Considering the approximations and uncertainties
I

T(K~ —w'yy) =0,

The effective interaction of Eq. (A14) allows us
to estimate the rates for K- ~yy. Using the ma-
trix elements of the current operator (3.1),

~2("(q) l~'„ IK'(t )&
= -~2("(q) l~'„' IK'(P)&

= (»'(q) lz'„ lK'(P)&

=l(t ~)„f,(t)

+(P-q)„f (t)l

t =(0 —q)' (3 20)

we obtain

tZ (K'- »'yy) =fr(K, »'yy)— (3.21)

, Qz 2n . ~ my mt'~=-t —cos8c sinBcQ' Ev2» t t
p ~'e' —A, .„C(P+q)'f, (t)+(t —e)"f (t)l,

2

where Ap „ is defined in Appendix A. The decay
rate is proportional to the square of the diver-
gence form factor

f(t)=f, (t)+ . , f (t)

m»' —Q' cos&c singcE f, (0)
1 ~ Gp 4a

?R g

2 0.53

v 0
(3.22)

To eliminate E, we take the ratio I'(K,- »yy) j
I (K.—yy):

I'(K»- wyy) m»' f, '(0) 1
I'(K~ —yy) f»' 32w'

In these decays the momentum transfer squared
t varies from 0 to (m» -m, )'= 0.53m»'. Assum-
ing that in this range f(t)= f(0), and E(m y'/t) =E
= constant, we have

I'(K»- wyy)

Note that the estimates of (3.21) for K~ —»oyy
and K~- w yy are consistent with the soft-pion
theorems one can derive which connect the real
parts of these amplitudes to those of K~- yy and
K~- yy. The derivation of these soft-pion theorems
is analogous to that given in Sec. II 8, and is based
on the fact that the relevant part of the weak-interac-
tion Lagrangian C~ and the electromagnetic current
j~& commute with the right-handed chiral charge Q

'
+ Q'„ in the limit of the chiral SU(2) symmetry.
There is no analogous relation for K'- m'yy and
K —yy because j~~ does not commute with Q + Q', .
Nevertheless, we see no reason why the amplitude
for K' - ~'yy should be suppressed, and we ex-
pect its order of magnitude to be given correctly
by (3.21). In reality, K~- »'yy can proceed through
the Sm intermediate states by the sequence K~
-»~(»"» )-»'(yy). Again, as for Kz-yy, we inter-
pret the quark-model result to mean that the dis-
persive part of the K~- n'yy amplitude is of order
e compared to the K~ - woyy amplitude. We have
estimated the unitarity correction to K~- n yy and
found it negligible. '

=10 '. (3.23)

The above estimate does not take into account the
fact that E(t,/t) vanishes as t- 0. Depending on
t 0, the ratio of (3.23) may be much smaller, say
=10 3.

The effective XXy vertex evaluated in Appendix
D allows us to evaluate the rates for K- wee. By
far the largest contribution to the amplitude comes
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from the transition charge-radius term in the ef-
fective 1l.gy vertex (see Appendix D):

F(K —v'ee} 2F(K~- v 'ee)
I (K'- v'ev) F(K, - llev)

2Q 2—5 cos6)3r (3.28)

=3fy" [-', (1 -y, )] X(A'g, „—k, k„)g(r ') ~g+ ~ ~ ~,

(3.24)

e a 2

&(r )~~ =-g, cosgc singe in
671' m

[The difference of the factor 2 between (2.12) and
(3.28) is due to the difference in the lepton cou-
plings: vy" (1-y,}v for the former, ey" e for the
latter. ] Taking 5= ~21n(my /m)'= 5 (2), we find
that

(3.25} 1 (K' - v'ee) =3 x10 ' (0.5 x10 '), (3.29)

2 G
8gve 2 2 lee 2 Eve 42r mw m gal'

(3.26)

is made. In this limit the relevant diagrams re-
duce to those of Fig. 9(b}, precisely those of the
current-current theory modified by the QIM mech-
anism. Since the mass of the unknown quark ap-
pears only through a logarithm, Eg. (3.25) may be
expected to be rather stable against uncertainties
due to strong interactions.

The amplitudes for K- ~ee are

iT(K'(P)- 'v( )qee) =iT(K, (P)- v'(q')ee)

=i —5 cosgc singeGr 2n

~g 3v

x(f +q)„f,(t)ey" e,
T(K~ —v'ee) = 0, (3.27)

m gl5=gin m'

which give

(a}

FIG. 9. Leading contribution to the ~X transition
charge radius.

where m is the typical uncharmed hadron mass
scale.

The computation of Eci. (3.25) is outlined in Ap-
pendix D. Briefly, it comes about in the following
way. To lowest order in m~ ', the charge radius
comes from the diagrams shown in Fig. 9(a). Af-
ter the Fierz-Michel rearrangement of Sec. IIIA,
one sees that the sum of the 6'- and 5"-quark dia-
grams are convergent and gauge-invariant, even
after the replacement

I'K -we
=10 (0 2x10 s)

F(K, - all)

The experimental upper bound"

(3.30)

& (0.4x10 ')F(K' - all) exp

is at the verge of contradicting the prediction
(3.29).

As for the process K~ - m'ee, one-photon- and
Z-exchange diagrams are absent by CP invari-
ance; the 8"8' contribution is expected to be
strongly suppressed as for the process K~ —m'vv.

IV. CONCLUDING REMARKS

We summarize in Table I (see Hefs. 5, 6, 22-
24) the main results of the present study and com-
pare them to experiment. Owing to the extreme
experimental difficulties in carrying out the nec-
essary precision, the predictions of our treatment
of the steinberg-Salam model are well within the
presently available experimental upper bounds in
most ca.ses. A notable exception is in the rate of
K'- 7)'ee, where the experimental upper bound

appears tantalizingly close to the limit of a. rea-
sonable range of theoretical uncertainties. We
feel that the estimate (3.29) is of good standing;
deviation of the experimental rate by a decade,
say, would worry us. Measurement of this rate,
not just setting of an upper bound, is clearly
called for.

In most gauge models proposed so far, we be-
lieve that most of the results of this paper are al-
so true.

(1) In the eight-lluark version of the Georgi-
Glashow model, most of the results on semilep-
tonic decays also hold, as shown by Lee, Primack,
and Treiman, and Lee and Treiman. " For elec-
tromagnetic decays, the situation is murky. This
is due to two factors. One is that in this model
there might be an important contribution of the
physical Higgs scalar to strangeness-changing
transitions which we have not considered in this
paper. The second is that in this model the A. X
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TABLE I. The result of this investigation. The parameter ~ is the GIN suppression factor.
Depending on the relevant Feynman integrals, this parameter is either of order (~ n, m

~ /
mtt, sin 8) ln(m~ /mp' ) or order ~Dm

~ /(m~ sin I9). In this table we take e to be 10

Process
Order of magnitude Order of magnitude

of the amplitude of branching ratio
Experimental

rate or bound ~ Comments

KI pp

Kg pp

10-"

10-!.0
10 ~ (Ref. 5)

&3.1 x 10 ' (Ref, 23)

see text

vv

K' —7t'vvI
K' - 7t'vvS

G~Q e

forbidden

Gp& E'

10

10 "

&5.6 x 10 (Ref. 24)

see text

-1,4 x10 6

(4.9 ='0.4) x 10

&0.7 x 10 3

input

K~0 —7t'y y

Zo~- z'yy

10-'-10-'

&10 '

10 "-10

&3.5x10 '

&2.4 x 10 b, c

K ace
K' —7r'eeI
K' —x'ee$

strongly suppressed

10 '

10-8

&0.4 x 10 ~ (Ref. 22)

see text

'T'he 2~ contribution gives I"(K&-~)—2x104 sec '.
b Not clear in the Georgi-Glashow model.' r(K~- ~'q q)/I'(Ks- roqq) S10
d I (K~-~~)/r(KI. -~&) 10 ' «10 '.' Unless otherwise noted these numbers are taken from the Particle Data Group (Ref. 6),

transition magnetic moment is large, being of the
order of"

]m,„]~=o ] ~,)m, . s' 9,).Gp

[This is analogous to the anomalous magnetic mo-
ment of the muon in this model. It is of the order
of (Gs/v 2 )em „m(Y').] We do not know of a way
of assessing the effects of the transition moment
in the K- m transitions reliably.

(2) In the Bars-Halpern-Yoshimura model, "al-
most all of the present results should hold also.
The reason is this: Since this model incorporates
the field algebra, most integrals one encounters
are superconvergent, so much so that they re-
main so even when the replacement (3.26) is made.
The remaining integral is scaled by the typical
hadronic mass m. Thus the integral has the de-
pendence on m~ ', as a. naive counting of the num-
ber of heavy boson propagators indicates: %e ex-
pect the amplitude for K~ - p p, to be of order
GFo](m/ms)'; the amplitudes for K~ - yy of order
G~n, etc.

(3) The situation in the Lee-Prentki-Zumino
(LPZ) modei2' should be almost identical to that
in the %'einberg-Salam model.
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APPENDIX A: FREE —QUARK MATRIX ELEMENTS

]—kg v
—Sg"" k'-m ' "" (g'+g'-)v- (A2)

In this appendix, we collect the relevant matrix
elements used in the text. These are the ex-
pressions correct to lowest order in m~ -'. The
derivations a,re relegated to other appendixes.
In the following all calculations are done in the
't Hooft-Feynman ga.uge. '

(1). The effective QI}]Z vertex:

t'F-'„"(q, I ) =3I(V)y„[l(l-r,)]](P)

x ]i(g'+ g")"'cos&o sin&o(]x/Bs)

x s, [in(m]], /mq )'-I] j, (A 1)

where s, =n, m' /m 'sin'N-6 n. ms' =m]]~' mq'. -
(2). The Z-meson propagator:
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where L) is the vacuum expectation value of the
Higgs scalar field.

(3). The Z'-meson couplings to leptons:

i E'„~'((I, p) =X(q) y„[-,'(1- y)] A(p)i ~ ~ cosec
. eQ C

x (k 'g',-„-k„k„)F(k', m(f', m6 ') (A4)

where m(p and mgI are the masses of the 6'- and
6''-type quarks of charge Q, respectively, and

(A3)
E(k', a, b) = dz z(1-z) ln —„, (A5)

t) —k'-z (1-z )

and similarly for the electronic leptons.
(4). The effective yy). 51 vertex:

G= 1/2U'=g /Bml, ' is the Fermi coupling constant.
(5). The irreducible 1

it'll

vertex:

iS=S(y f-,'()-y)]4(-4iy f-,'(1-y}f +1iy (-'()-y)fsj(--,' ') —™ssS s' 4, , 1,—1].y 2 q ~~ syn gg ~(pr

The sum of the box diagram and the Z-exchange
diagram for XR- El:

G a hm—z I
——cos~g sln&g

v 2 7T m~ sin &gr

+(I3)
1

24P '

The part of (AS) relevant to K~ - yy may be
written as

i T,„= i ~ —Q' co—s6c sin&c Ky" (l-y, )X

(A 13)

&&{py"p sin'&v+ —,
' f1y" [-,'(1-y)] fyj .

(6). Two-photon modes:

(A7)

s s s

os if sintf 5( y
2wJ

(AH)

where A
p „ is the quantity defined by Bosenberg

and Adler, "except that we associate p with the
photon with momentum k, and o. with k, :

R~,„(k„k,) =[k, e s~„k",k2s-k, ~e„() „k",ks

+ (k, .k, )e„,„(k}-k,)"]4,
Ap~pA 3 p

APPENDIX 8: THE EFFECTIVE ygZ VERTEX

In lowest order the effective XKZ vertex is
generated by the diagrams shown in Fig. 10(a)-

1 1-x
Xy

A~ = -16'' dx dy
2xyk, k, -mp'

(A 10)—(~t' —~t")
The expressions (A9), (A10) are valid for real
photons.

The form factor A, (s), s =2k, k„may be sim-
plified:

M(I

x k ~st
(P

(p
)4

X

+ sy'

(p
gI

A, (s) = -16m' — I -I'

where

' dx x(1-x)
E(p) = +(3 z—ln 1—

x I3

and has the asymptotic behavior

(e)

FIG. 10. Diagrams contributing to the effective ~XZ
vertex.
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10(c). The off-diagonal mass matrix element
Z(P) and the irreducible A. KZ vertex I'„'(q, P) are
depicted in Fig. 10(d) and Fig. 10(e), respectively.
The crosses in Fig. 10 represent the contribu-
tions of counterterms.

The renormalization counterterms arise in the
following way. We renormalize the left-chiral
fermion fields according to

and similarly for the right-handed fermion fields,

and renormalize coupling constants and gauge
bosons according to

Z7
+u gZ ZL, 3

Z
gu g Z ZI 7/2

I 3

w' =w'z '~'
If|7 P 3

B =B Z' '~'
Mp p 3

and choose the renormalization constants by suit-
ably chosen conventions. We define the Weinberg
angle in terms of renormalized constants:

cos6gr =gj(g + g } .

The relevant counterterms in Figs. 10(d) and 10(e)
then take the form

% [2(I-y~}](iy 6-(g'+ g")"'[--,'-(Q-I) sin'6v]y. Z}Xcos6c sin6c(Z~-Z~),

to lowest order; the term Z~-Zi is convergent,
and its finite part may be so adjusted as to cancel
the A. -K transition on mass shell.

Straightforward evaluation of diagrams, Figs.
10(a)-10(c), is not difficult and has been per-
formed. When X(P) and K(q) are on the mass shell,
the use of the Ward-Takahashi identity connecting
l„and Z simplifies the calculation considerably:

(q p}"I"'(q p)--I~(q)~-~'~(p)1

+ i(--) (g'+ g")'"~'&, (q, P) = o, (82)

where I', is the irreducible K XQ, vertex (see Fig.
11). This follows from the Ward-Takahashi
identities for proper vertices" in the one-loop
approximation, where the effects of the Feynman-
DeWitt-Faddeev-Popov ghost fields may be
neglected. Alternatively it may be derived by the
current-algebra technique applied to the source
current of the Z meson. In (82) the matrix T is

Qp) &(q)

& =([-—,-(Q-1)sin'6 ] L (Q-1)cos—'8 R}
~ ( g2 p g/2)1/2

(BS)

iu„(q)R'x'a~(p)=a (q) iI"' '+~y„r iZ(p)—mn

2+iz(q) i y„T lug(p)-mg

= ia„(q) r„»~(p)
x $x-[--,'- (Q- I)sin'8v] a} . (85)

To order g', g-e, and to lowest order in
(m„'/m~'), the vertices I'i„~ and Z have the kine-
matical structure

r~„'&(q

Z(p) =y'pLa+ bL+ cR

when one assumes m(p -—m =mz«m(p . The effec-
tive XKZ vertex is then

On the other hand, we learn from the Ward identity
(82) that I", is of the form

—:2(g'-+ g")"-«,=(C-P) ~L

x ]x+ [-,'+ (Q-1}sin'6 ]a}, (86}

FIG. 11. The ~~ vertex.

so that to evaluate the effective vertexiE „one
needs only to extract the terms in I; proportional
to (q-p)'y[-, (l-y, )]. In one-loop approximation,
I; receives contributions from diagrams in Fig.
11 and
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t

&,(q, P) —= —,'g' cos&a sin&c 2(q-P) y[-,'(l-y, )]

6f

(2w)' ~'-m' r'-m '
—(mg-md ~) (B

The above expression is valid as q-P-0. Thus
if (q-P)'«my' or my", we have

E ~~~ =g'(g-'+ g")'~' cos&a sin&a% y„2[(1—y )] X

1 4m ~g
(B8)

where m~ is the larger of mt and mt .
Note further that the counterterms exhibited in

(Bl) do not contribute to the effective vertex on
the mass shell in (85). This is as it should be,
since the counterterms in (Bl) can be completely
eliminated from the Lagrangian if the strong inter-
actions preserve the weak-interaction symmetry.

Equation (88) refers to on-shell n and X. The off-
shell corrections are of the order P'/mI-, where

P is the off-shell momentum.

APPENDIX C: BOX DIAGRAMS FOR THE

PROCESS X+X I+i'

In the %'einberg-Salam model there are two
diagrams each (see Fig. 12) for X+ R- Iu+ p and
X+%- v+ v. The second diagrams are generated
from the first by replacing the {P-quark line by
the 6". The computation involved is very similar
to that of Lee, Primack, and Treiman" for the
Georgi-Glashow model. The contributions of the
diagrams in which one or both of the 8'lines are
replaced by the unphysical Higgs scalars may be
safely neglected, since such diagrams are down

by at least one power of (m~/m~)-'.
In the limit of neglecting external momenta

compared to the internal one we have

fS(A+2-.p+p)

d4y 2

(2m)' ' ' r y-me
'. 2ly'[-'. (l-y, )] y [-.'(l-y, )]~ {i y. [l(l-y, )] y i }, , -( .- '),a ~ 5 ~ + p

XS(A, + X~ v+ v)

~y, h(l-y, )] y.~ . . —(me-ma )

(C2)

where we have neglected the muon mass. The
Dirac algebra can be simplified by

y'y Z =g" ~ +g' ~'-g"& -«' '&'&8

'W, W Wp=-6&&5&',

and

{y'y" y'[-.'(l-y, )]}{y.y. y, [-.'(l-y, )1}
= 4{y"[-.'(1-.,)]}{y.[-.'(l-y, )1}

4'y" y [l(l-y, )]}{y,y. y. [l(l-y, )1}
= «{y"[!(l-y,)]}{y.[!(l-y,)]}.

The resulting expressions are

, {21y" [l(l-y, )]~}{Ty.ll(l-y)1 1}
Pl gf

xdf 1
(x+ 1)' x+y

y =my'-/m~', and y'=my '/m~'

APPENDIX D: THE EFFECTIVE ~+y VERTEX

where a is defined in (B4). The usual Ward identity
states

(q -P)"1'p" (q, P) =e(Q —1) [~(q) - ~(P) 1 (»)

If we write the irreducible A, 3l y vertex as
1"~~'(q, p), the effective A. Jl y vertex E~&'(q, P) de-
fined similarly to E~„'(q,p), i.e., by the sum of
three diagrams [Figs. 10(a)-10(c)1, where the Z
line is replaced by the photon line, is

E~g~= I'~g' —e(Q- 1) y„ f.a,

{(P,(P') ~r

I IG. i2. Irreducible ~Nil vertex.
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The proper vertex may be expanded in powers of
external momenta. The structures of (D3) and

(B4) restrict it to be of the form

I'~g'(P —- k, P + - k) = e(Q —1)y „La

+ Lc 2~
'k 2(lt2 '+ m g) 3/21 g

+ y '(k g „,—k, k 2)+ (2r )„,g I

(b)

/ X / X /
+ 0 ~ ~ (D3)

where higher-order terms in external momenta
are neglected. Thus the effective photon vertex
F. '„~' of (Dl) consists of two terms —the transition
magnetic-moment term gg ~„and the transition
charge-radius term + (r') ~~. We shall compute
them in turn. The diagrams contributing to I'„&

are shown in Fig. 13.
The computation of the transition magnetic mo-

ment proceeds very similarly to that of the weak
contribution to the muon anomalous moment in
the Weinberg-Salam model. Figures 13(a) and
13(b) are nonexistent for the muon anomalous mo-
ment, since the neutrino is electrically neutral.
Figure 13(a) contributes to the transition magnet-
ic moment (in the 't Hooft-Feynman gauge):

3R&'(= —eQ ~r 2 (m~+m„)'-' 1+ y,2 Bm' PPl ) + 'PZ~

b nz~ m~2n, cos~csin~c
Ozg Pl gf

and Fig. 13(b) does not. Figures 13(e) and 13(f) do
not contribute to the transition magnetic moment,
and the contributions of Figs. 13(c) and 13(d) are
of the order of

&m
m~x

) =0 e 2 ~ mm+ mr 2 cos~csin8c
Bm v2 pz g

without the logarithmic factor 1n(mr2/m e,2).
In the 't Hooft-Feynman gauge, the leading con-

tribution to the transition charge radius comes
from Fig. 13(a). This could have been guessed at
by a dispersion-theoretic argument and an esti-
mate of coupling strengths. To lowest order in
1/m~2, the W exchange may be replaced by a
V-4 four-fermion interaction. In this limit we
have

(i eQ) —r cos ocsin8c[31 y,(l —y, ) A]
(-~& )

FIG. 13. Diagrams for the &Ay vertex I && .

Q cos&cslllsc[Xy~(1 —y2) X](k2 k~ —k g~„)

Thus

1 m -kZl —Zx 2 dZ Z(1 —Z) ln
lt

O

G~, (r )„„=—eQ ~ cos&csinsc —,
1 m 2 —$2Z 1-Z

)
' ( )

m e2 —k Z(1 —Z)

For nz ~,'»Q'=m, '»mq',

GF W (p/, (r ) ~= —Q 6 2 3
ln 2 cosScsin~c

Bzp

Different kinds of diagrams representing the
irreducible vertex for the process A. + % -y+ y
are shown in Fig. 14. Let us first pursue the
relative magnitude of each of these diagrams.

Take for example Figure 14(a). After the usual
Feynman parametrization the relevant integrals
take the form

APPENDIX E: IRREDUCIBLE VERTEX FOR X +g ~ y + y

'V
p 2x

(3m)' (r+ ,' k) y -m —e

'z

X l —(m -m, )(r ——,k) . y me-
The integral to be evaluated is exactly the same
as for the vacuum polarization in quantum electro-
dynamics, "so that we get

(d)

FIG. 14. Some diagrams contributing to the irreducible
&R&p vertex.
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I„sy(P, k, , km) = dx, Cxmdxsdx~5(l -x, —x2 —x~-x~)
d4g stu
(2w)' [It'+f(f(, , k„P)+x,m~'+(x, +x, +x,) m']' '

where m is the mass of the internal fermion line;
s, t, andu are of the form

Sa = Si!++XAAM+ ~~2++@

X, P, and Z being linear homogeneous functions
of the Feynman parameters x„.. . , x4. The elec-
tromagnetic gauge invariance applied to the irre-
ducible vertex states that only the parts of I 8z
proportional to three powers of external momenta
carrying the Lorentz indices Q. , P, and y will
survive when all diagrams are summed (the argu-
ment here is very similar to that of Rosenberg
and Adler, except that the presence of an extra
momentum p considerably complicates the details,
which we do not feel worthy of presenting here),
so we need consider only integrals of the form

QX2 6fX3 de 5 1 XI X2 X3 XQ

1
[x m '+(1 —x )m']'

(El)
in the low-energy limit (i.e., p, k, , 0,-0). The
integral I in (El) may appear to be of order (m)(, ) ~

on dimensional grounds, but because of the diver-
gence in the x, integration of the form

xg

when rn2 is neglected, a more careful treatment

is ca11.ed for:
1I =

q dxq dxg &x3 dx4 8(1 —xg xg xg x4)

1

[ (1 ) ]2 F(xj r 2)x3) 4)

(x, + e)' «dP~r~(1-o P -r)-

x y'(0, o, p, r)
1 1 «dPd~8(1-~ P~-) F(0, ~, P, y),

(E2)

where e=(m/m)), )'. Therefore I is of the order of

(=0(,, }
Similar arguments show the diagrams of the

kinds 14(c) and 14(d) are of order m)(, -', so these
can be neglected compared to 14(a). Diagrams
such as 14(b), in which a W line is replaced by an
unphysical Higgs scalar, are down by a factor of
(m „/m)(, )' compared to the W exchange due to the
nature of the couplings involved. Thus, in view
of the mass ratio m „'/ml, '«1, the dominant con-
tribution to the gauge-invariant part of the irre-
ducible vertex comes from the diagram of Fig.
14(a).

To lowest order inm~ ', therefore, the proper
vertex for A, + % y+y is given by

2

2@e', cos(9~sin6)~ X y„2 1-y, A.

W

1 2 2

(q ), r (-.(( r)) ~ g r, p r. p g
+(-r, r, -r, r,)) -( — )

The integral involved is identical to the one dealt
with by Rosenberg and Adler„and the result stated
in Appendix A ensues.

APPENDIX F: EFFECTIVE LAGRANGIAN FOR
X+X~X+X

%'e write the operator S matrix in the form

where the relevant part of the interaction Lagran-
gian is

Z, =
p&- (Xy„[2(1—y, )](d'sin8c +8"cos8~) W"

+ I y„[a(1—y, )] (6' cos8c-6"sin 8C) W"

S=Texp 'x C,(x), (F1)
+ H.c.j .

The fourth-order term contains

(F2)

&.=+ '(,"(»rr»f» )&'d*. &'*.d'*.(&(*,)(r "I'(( —r)1'&,(*, —*.; r)r '(-*'(( —r )i) r((*.)
x~(x.)b [ (1 -r.)] is (x. -x,)~ "[-.(1 -y, )] j21(x,)
x ID„„(x,-x„m~') iD„,(x, -x„m,')-(m ~-m~, )), (F3)
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where the factor 4! in the expansion of the exponential is canceled by the number of ways (-,' 4!) the Wick
contradiction of (Zl) yields the term on the right-hand side of (F3). The integral implied in (F3) can best
be evaluated in momentum space. The relevant integral is of the form

where use of (C3) has been made, and

m d" 8 el w ~~~ t & ~~~ +

= 2(m z, -m z)~ if m ~2»m z, ' -—m q' .

In the local limit S4 may be written as

84 = —'E —60 cos 19csln Gc
Gz

4m

dx Axyq ~1-y, gg)

(F4)

where
5

~0= 2 ~ 2m~ sin 8~

(38 GeV)' '

Consequently the effective Lagrangian is

G~ n
ff ~2 4 ~0 cos e,sin Oc
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The "world" data on g'(958) in regard to the branching ratio R =(n+7t p/7t'7t g„), qz de-
noting g(549) —all neutrals, and the dipion mass spectrum in the q' —7t'~ q decay are re-
viewed. We find that 8 =0.97+ 0.08 independent of energy, exclusive of the data of Aguilar-
Benitez et aE. Under the assumption that J~ =0, the best value of the n parameter of the
linear matrix element is & =-0.08+ 0.03. Possible connections between the dipion mass
spectrum and 5()0, the J. = 4=0 phase shift, are discussed.

Many studies of the q'(958) have been made. We
comment here on the branching ratio 8
=(v'n y/v'v q~), where q„represents q(549)- all neutrals, and on the linear matrix element
of the q'(958). We base these comments on the
data presented in Refs. 1-6; some additional data
are not used. ' %e obtain the current "vrorld"
averages of 8 and of e, the parameter character-
izing the linear matrix element. %'e also comment
on possible connections with 5~, the I=J=O dipion
phase shift. Additional comments on the q'(958)
are given in Ref. 8.

BRANCHING RATIO

The data of Refs. 1-6 on the branching ratio
A =(v'v y/w'v q„) are given in Table 1 and

are shown in Fig. 1 versus the momentum of
the incident beam in the experiments. Included
is the branching ratio of the M(953) of Ref. 3.
The values of the q' branching ratio 8 from
Refs. 1, 2, and 4-6 are consistent; the weighted
average is R= 0.97~0.08 and is indicated

also in Fig. 1. The value of A for the q'(958)
from Ref. 3 is in disagreement vrith this average
value. Since there is no evidence that the
n'm y and m'm q states at 958 MeV are different, '
we must attribute the disagreement between
R and ff (Ref. 3) to some unknown systematic
effect in that experiment. The evidence that
the M(953) is not identical to q'(958) rests
in the M (v" v ) distribution of the v' v y decay
mode. The data in the p region of both the
q'(958) and M(953) data samples have the
characteristic sin'8„& distribution of q'(958)
events. ' Therefore, the evidence for an M(953)
should be obtained from the M(v" w ) mass dis-
tribution, Fig. 46(a) of Ref. 3, where events con-
taining a po(765) were excluded. The data yield
37+ 10 events outside the p band, of which about
8-15 should be attributed to the tail of the p' in
q'- p y decay. Thus, the evidence for an M(953)
is about 2 to 3 standard deviations, attributing all
the other "M" events to q'(958); then the branch-
ing ratio 8 of the q' in the "M" sample is about
0.8+ 0.2.


