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A geometric light-quark model is described in which all quark-quark binding energies are
less than 5%. Thequark states of this model are formed entirely from a single mass quantum M,
which has the same principal quantum numbers as the kaon. M appears in a spinless config-
uration (M ~ 70 MeV), and also in a relativistically spinning configuration (M;~ 110 MeV) as
the nucleon quark S=3M; ~330 MeV. The mass ratio M;/M ~3 is a calculated quantity. The

model can be formulated with a total of ten quark-state parameters: the masses M°= 70.0
MeV, M* = 74.6 MeV, S* =330.6 MeV, and S** = 336.9 MeV; the hadronic binding energies
MM = -5.0 MeV, MM = —5.0 MeV, and M M = —9.1 MeV; a magnetic binding energy S*S*
=+1.7 MeV; a magnetic moment ug: = +9.3 nuclear magnetons (up); and a radius R, ~0.6
fermi. The spin angular momentum J= 3% of the spinor S is a calculated quantity, and the
model also includes small calculated Coulomb corrections arising from multiple internal
charges. With this formulation, the masses of all of the fundamental narrow-width hadron
resonances—n*, ®, K* K° n M, n’, 6 p, n, pun, A, Z*, 2, =7, 50 =", and Q —are
calculated to an average absolute accuracy of +0.1%, or +1 MeV, and spins, charge split-
tings, magnetic moments, and strangeness quantum numbers are reproduced. These calcu-
lated mass values are accurate enough to pinpoint the M meson as the fundamental ground-
state member of the M(953), 7’(958), 6°(963) multiplet, a result that is experimentally con-
firmed by both the production modes and the decay modes for these mesons.

I. INTRODUCTION

A light-quark model for reproducing hadron
resonances is described. This model is simple
enough that its essential numerical features have
been described in the abstract to this paper, and
yet it possesses accuracy and comprehensiveness.
The parameters of the model are physically iden-
tifiable, and in general they can be isolated and
determined either phenomenologically from the
experimental data or else from straightforward
theoretical considerations. This light-quark model
has a mathematically well-defined geometry, and
in the present paper we introduce specific geomet-
rical configurations for the individual quark states
and for the quark clusters that constitute hadron
resonances. These geometrical configurations
have several important features: (1) They account
for both hadronic binding energies and internal
Coulomb corrections in an accurate and apparently
unique manner; (2) they give spin angular mo-
menta, magnetic moments, and the volume of a
nucleon as directly calculated quantities; (3) they
facilitate the pedagogical presentation of this
somewhat unconventional approach to elementary
particle structure. It should be recalled that
Maxwell had a mechanical model for the electro-
magnetic field firmly in mind when he wrote down
his famous set of equations. Maxwell’s spinners
and idler wheels have long since disappeared,
leaving behind only the equations which express
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their operation. The present geometrical quark
model may similarly disappear, but hopefully
the systematic results which it represents will
remain.

In another paper,' denoted here as paper I, a
compilation of about 130 low-mass experimental
hadron resonances was presented, documented,
and evaluated. In the present paper we use these
data values directly, usually without further docu-
mentation. Paper I also included a phenomenolog-
ical analysis of the experimental data which re-
vealed the existence of the present set of light-
quark states. It was demonstrated in I, with the
aid of these quark states, that the broad-width
hadron resonances can be interpreted as nuclear-
physics-type rotational levels, with the narrow-
width resonances constituting the rotationless
S-state bandheads.? A comprehensive study of
these hadron rotational bands was given in I. In
the present paper, we are concerned only with the
problem of reproducing the narrow-width S-state
resonances.? The mapping problem—the task of
reproducing all of the observed resonances, and
only the observed resonances—was discussed at
some length in I; this discussion is not repeated
here. Also, the predictive power of this light-
quark model (which was formulated several years
ago) has been demonstrated in one way or another
by almost ; of the resonances in the 130-resonance
data compilation of paper I; these predictive suc-
cesses are summarized in detail in that paper.
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In Sec. II of the present paper the very-narrow-
width S-state resonances (I'<«< 5 MeV) are repro-
duced, and in Sec. III the intermediate-width S-
state resonances (I" = 10 MeV) are reproduced.
Sec. IV summarizes the experimental, phenom-
enological, and theoretical evidence that can be
used in order to determine numerical values for
the ten parameters of this light-quark model. Al-
though the masses and binding energies of this
light-quark model are quoted here to accuracies
of 0.1 MeV, this is not meant to imply that these
values are actually known to that accuracy. Our
purpose is rather to demonstrate that this very
limited set of light-quark statés (which are all
formed from the quantum M ~70 MeV) has the
intrinsic capability of accurately reproducing the
very-well-known ground-state hadron resonances,
since this capability furnishes the strongest argu-
ment for the physical reality of the basis set. Sec-
tion V contains a brief summary of the present re-
sults. Several topics are amplified and extended
in appendixes at the end of the paper.

The meson and baryon S-state resonances dis-
cussed in Secs. II and III total 53 resonances in all.
These 53 resonances are reproduced by the pres-
ent light-quark model to an average absolute mass
accuracy of better than +0.4%.

In the present paper, and also in paper I, it is
evident that we are using what is in many respects
a classical description to reproduce particles and
resonances which are thought to be highly quantum-
mechanical in nature. The reason for this semi-
classical approach is not due to any particular
desire on the part of the author to circumvent
quantum mechanics. Our one goal in these two
papers has been to provide a spectroscopic de-
scription for these particles, including mass
values, spins, charge states, and magnetic mo-
ments; and, in obtaining these spectroscopic quan-
tities, the author was literally forced into the
description that is provided here. As one example,
the use of actual rotating current distributions
to calculate particle magnetic moments may seem
(to present-day physicists) to be a highly implaus-
ible procedure, and yet these current loops give
correct answers—and in fact answers which have
not been forthcoming from any field-theory model
of which the author is aware. The model that we
end up with in the present paper is a rather curious
mixture of classical and quantum concepts. The
dynamical implications of this model clearly must
be investigated before the utility of this approach
can be accurately assessed, and these dynamical
studies may well force a revision of some of the
concepts. However, on the spectroscopic level
the model is, as far as the author can determine,
in agreement with experiment. The geometric

elementary particle model that is illustrated in
Figs. 1-28 of the present paper is offered here

not as a “solution” to the elementary particle prob-
lem, but rather as an indication of fruitful areas
for further research.

II. THE VERY-NARROW-WIDTH S-STATE
RESONANCES

These resonances include the m, K, , M, n’, 8°,
and 6~ pseudoscalar bosons, and the p, n, A, Z,
£, and  metastable fermions. In addition, two
bound-state resonances, pr and K~ p =A(1402)S,
are also included, since they fit in naturally with
the present systematics.

The fundamental mass quantum M ~70 MeV is
described in Fig. 1, and the complete set of light-
quark basis states generated as combinations of
quanta M is shown in Fig. 2. These basis states,
1=M, 3=3M, 4=4M, T=TM, and S=(3M)
are linear arrays of quanta M, denoted as
“cabers.”® Although the appearance of these quark
states as linear structures seems somewhat un-
usual, the linear arrays in fact uniquely represent
both the formalism for hadronic binding energies
and the formalism for applying Coulomb correc-
tions.

Table I summarizes the numerical values of the
ten independent quark-state parameters that are
used in the present model. In Sec. IV, many of
these parameters are deduced directly from the
experimental data. Table II lists the properties
of the 1, 3,4,7,S caber basis set, including their
strangeness characteristics, hadronic binding en-

spinning »

QUANTUM M Mo Mo M
MASS (MeV) 746 700 70.0 746
CHARGE ‘e 0 0 -e

FIG. 1. The fundamental mass quantum M~ 70 MeV.
M appears to have the same quantum numbers as the
K meson; in particular, it has isotopic spin I =3, spin
angular momentum J =0 (it also appears as the spinning
quantum M, in the spinor S), and strangeness S =+ 1.
The shape of the quantum M is that of an oblate spheroid,
with radii Ry~ 3V3 F and Ry, ~3 F, as determined
in Appendix B. As shown in Fig. 2, the quantum M
occurs in its spinless form in the basis states 1 =M,
3=3M, 4=4M, and 7= ™, and it occurs in its spinning
form in the spinor S=3M,. Although the spinless quan-
tum 4~ 70 MeV has not been observed experimentally,
the spinning quantum Mg is related phenomenologically
by the equations of special relativity to the readily ob-
served muon (see Appendix E and Fig. 28).
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FIG. 2. The cabers 1, 3, 4, 7, S. These are formed as linear arrays of quanta M. The linear arrays account in an
apparently unique manner for a number of phenomenologically required light-quark binding energy characteristics and
electromagnetic characteristics, as is summarized in Table IV. These linear arrays occur both as cabers (strangeness
= +1) and as anticabers (strangeness=-1), and hadronic binding energies exist only between caber-anticaber pairs. In
hyperon resonances, which are formed by adding spinless anticabers to an existing nucleon spinor triplet, it is the spin-
less anticabers which carry the conventional strangeness quantum numbers; the conservation of baryon number is pre-
cisely equivalent to the conservation of nucleon spinor triplets, so that the strangeness of the spinor triplet, and hence
also of the spinor S, does not enter into the bookkeeping of the associated-production process. Thus the spinor S is
assigned a strangeness quantum number of zero, although from its hadronic binding energy it is in fact “strange.”

In Sec. III, “nonstrange” forms of the cabers 3, 4, and S are also described. The mass of a caber is the sum of the
masses of the constituent subquanta M. The properties of the cabers 1, 3, 4, 7, S are summarized in Table II, and the

spinor S is discussed in detail in Appendix B.

ergies, and mass values. A notation is introduced
for the different particle-antiparticle states of
these linear arrays, as follows: sfrange cabers
(1,3,4,1,S; strangeness =+1); strange anti-
cabers (1,3,4,7,5; strangeness = 1); nonstrange
cabers (i, 4,S; strangeness =0); nonstrange anti-
cabers (3,S; strangeness =0). The “strangeness”
of the spinors S and S, which does not contribute
to the strangeness quantum numbers of Gell-Mann
and Nishijima, is discussed in the caption to Fig.
2. It is convenient to denote strange cabers and
strange anticabers simply as “cabers” and “anti-
cabers.” Nonstrange cabers and nonstrange anti-
cabers are usually lumped together under the gen-
eral heading of “nonstrange cabers; ” the distinc-
tion between these two types of nonstrange caber
is of importance only for detailed associated-pro-
duction reactions, as described in Appendix D.
Table III summarizes phenomenological rules
for reproducing hadron resonances as clusters of
cabers, with the Fermi-Yang* formulation of the
nucleon being used rather than the formulation of
Gell-Mann and Zweig.® These rules reproduce the
observed spectrum of S-state hadron resonances.
The rotational levels mentioned in Rule 7, which
are described in detail in paper I, complete the
mapping of the hadron resonance spectrum. Table
IV describes some features of these hadron reso-

nances which are uniquely accounted for by the
linear caber configurations of Fig. 2. Figure 3
shows the distinctive manner in which individual
caber-anticaber pairs bind together, and Fig. 4
shows how these caber-anticaber pairs occur in a
cluster of cabers.

Figure 5 is an energy-level diagram for the
very-narrow-width J¥ =0~ meson and kaon reso-
nances (these resonances are discussed in more
detail in Appendix A and the isospin labels are
discussed in Ref. 6). Experimentally, the widths
of these resonances appear to be much less than
5 MeV,; phenomenologically, these resonances can
be constructed entirely from spinless quanta M.
The position of the M meson™* ® in Fig. 5 as the
lowest-mass member of the M, ', 6° multiplet”™®
suggests that the M must be the fundamental
ground-state member of this multiplet (see Table
V).

Figure 6 shows the 7 mesons, and it illustrates
the manner in which parameters (1), (2), and (5)
of Table I exactly reproduce these resonances.
Figure 7 describes the caber-anticaber pairs
©=1°1° n=4*4", (M,n’, 8% =7"7", K*=T", and
K~ =17", and the mass calculations in this figure
show that parameters (1), (2), and (5) also accu-
rately reproduce these resonances. The 7°7~
mass calculation coincides with the mass of the
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TABLE I. Summary of numerical values and calculational quantities for the ten-parameter light-quark basis set. It
is important to note that several of the numerical values which are given here as free parameters can be determined
directly from the experimental data or from theoretical calculations, as is described in Sec. IV. M and M denote

nonspinning and spinning quanta M.

Quark-state masses

Parameter (1). M° M°=70.0 MeV.
Parameter (2). M",M~ =74.6 MeV.

Parameter (3). S*,57=330.6 MeV (S*=MIMIMS, S =MIM;MY).
Parameter (4). S**,877=336.9 MeV S**=MIMIM:, STT=M;MIM;).
Rule: The intrinsic masses of the spinless cabers 3=3M, 4=4M, and 7=TM are the sums of the constituent

masses M (see Table II),

Hadronic binding energies

Parameter (5). B,z =-5.0 MeV, B, =Bgz=0.

Parameter (6) Euﬂs =BEM3 =-5.0 MeV, BHMS =B‘—lﬁs =0.

Parameter (7). By g =—9.1 MeV, By y_ =By u, =0

Rule: These hadronic binding energies are very short-ranged; they operate directly between matching subquanta

in adjacent caber-anticaber pairs.

Magnetic binding energies

Parameter (8). Bsjsy=Bsis;=—1.7 MeV, Bs;s’; =+1.7 MeV, Bs’;s;* =+3.4 MeV.

Rule: These magnetic binding energies are short-ranged; the values shown here apply only to adjacent spinors in

a cluster.

Magnetic moments

Parameter (9). pugr=+9.3uy, hg-=—9.3uy, pg-—=-18.6uy .

Note: Equatorial charge distributions on the spinors S give calculated magnetic moments that are precisely a factor

of three larger than the values shown here.

Radii of the quantum M

Parameter (10). Rmax ~5V3 F.

Dependent parameter: R pmi, =3 F, [From the calculations of Appendix B, R pmin =R min S*, 3* ,Rmax).]

Coulomb effects

Coulomb self-energies: Strange cabers in general occur singly charged, and alternate charge states are formed by
adding another charge; nonstrange excitation cabers occur uncharged.

Coulomb binding energies: These are calculated classically; for definiteness, the quanta M* are assumed to have
centered point charges and the quanta M§ are assumed to have equatorial charge distributions, although these detailed
charge distributions have little effect on the (small) Coulomb corrections.

Spin angular momentum

The spin angular momentum J =3 % of the spinor S is a calculated quantity, as shown in the calculations of Appendix B.

M, which is in agreement with the systematics of
Fig. 5 and Table V. Figure 8 shows details of the
n’ multiplet; it illustrates the manner in which
the model can reproduce the n’-M mass difference,
and also the manner in which the 5~ is constructed
as a charged form of the n’. The doubly charged
caber 7~ that appears in the 5~ in Fig. 8 also ap-
pears singly as the K° in Fig. 9. Arguments which
single out the M meson as the fundamental member
of the n’ multiplet are summarized in Table V.
Figure 9 illustrates the K mesons. The caber
configurations shown here reproduce the absolute
masses of the kaons, the charge splitting of the
masses,'* the spins and total charges of the kaons,
and the strangeness values (+1 for the K* and

mixed for the K} and K3). These kaon caber con-
figurations also have significance with respect to
lifetime systematics (Appendix A) and with respect
to the equations for associated production (Ap-
pendix D). The fact that a secondary scattering,
whose effect is clearly to cause a geometrical
rearrangement, converts some K mesons into K2
mesons suggests that the difference between these
two meson states is geometrical. From the nega-
tive parity of the K2 — 777 decay and the positive
parity of the K§ - nm decay, we have a further sug-
gestion that the parity and the particle-antiparticle
nature of a mass quantum M° may depend on its
spatial orientation with respect to the resonance
structure in which it is contained.
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TABLE II. Properties of the cabers 1,3,4,7,S. These linear arrays of quanta M and M,
which constitute a complete set of light-quark basis states, are illustrated in Fig. 2. They
occur as strange cabers and anticabers and as nonstrange cabers and anticabers. Strange
caber-anticaber pairs bind hadronically with HBE ~ 4%; nonstrange cabers bind hadronically
with HBE ~ 0%; strange caber-caber and anticaber-anticaber pairs do not bind hadronically.
The mass of a caber is the sum of the constituent masses, and the “intrinsic mass” of a caber
is the mass before multiple-charge Coulomb corrections have been applied.

(2) Strangeness quantum numbers and hadronic binding energies

Strange cabers (all subquanta M) 2 1 3 4 7 S
strangeness +1 +1 +1 +1 “onb
hadronic binding energy (to anticabers) ~4%  ~4% ~4%  ~4% ~4%

Strange anticabers (all subquanta M) 2 1 3 4 7 S
strangeness -1 -1 -1 -1 “grb
hadronic binding energy (to cabers) ~4% ~4% ~4% ~4% ~4%

Nonstrange cabers (mixed subquanta M and M) ¢ 3 i S
strangeness 0 0 0
hadronic binding energy (to everything) ~0% ~0% ~0%

Nonstrange anticabers (mixed subquanta M and M) © 3 5
strangeness 0 0
hadronic binding energy (to everything) ~0% ~0%

(b) Intrinsic mass values
Caber 1 3 4 7 S

Intrinsic mass (MeV)

Uncharged 70.0 210.0 280.0 ~---¢ ... d
Singly charged 74.6 214.6 284.6 494.6 330.6
Doubly charged --- 4 ... d 2892 499.2 336.9

3 The kaon is an exception. P See Fig. 2. CSee Sec. . 9Not observed.

TABLE III. Rules for hadron resonance formation as clusters of cabers.

(1) Nonstrange pseudoscalar mesons are formed as hadronically-bound strange caber-anticaber pairs: = 11, n=44%,
o, 7,89 ="17.

(2) Strange pseudoscalar mesons are single (unbound) strange cabers or anticabers: K =7 and K =7 are the only ex-
amples.

(3) The nucleon is the hadronically bound Fermi-Yang 2 spinor triplet N =SSS. Conservation of baryon number is
precisely equivalent to the conservation of these triplets.

(4) Metastable hyperon resonances are formed by adding strange anticabers 3 and 4 to an existing SSS nucleon core:

A=SSS3, ==555%, ==55533, 2=555344,

(5) Short-lived baryon and hyperon resonances are formed by adding nonstrange cabers 3 and 4 to the metastable
“ground states” N, A, Z, and E: N3, N4 N33 N44 A3 A4 A33, A44, Z3, 4, 233 234 244, 23, :4 etc. (see Fig.
16).
(6) Short-lived meson resonances are formed by adding nonstrange excitation quanta to an S§ spinor pair: w =SS,
¢ = 3SS1r, D= 3SS33 E= 35344 etc. (see Fig. 19).

(7) Broad-width baryon and meson resonances (I'~ 100 MeV) are interpretable as rotational excitations, with the S-
state resonances of rules (5) and (6) serving as bandheads.? The S-state resonances of rules (1)—(4) do not have over-
lying rotational bands.

2See Ref. 4. P See Ref, 1.
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TABLE IV, Distinctive feature of light-quark hadron resonances which are uniquely accounted for by the linear caber

structures of Fig. 2.

Hadronic binding energies

(1) If the observed pseudoscalar bosons are compared to a 70-MeV mass grid, it is apparent (see Fig. 5) that (a) the
7, 1, and M, 1, 6° resonances have binding energies that are proportional to their masses, (b) the kaons appear to be

unbound.

(2) The strange anticabers 3, 4, and 7 all bind to the SSS spinor core with the same binding energy: —30 MeV (see

Figs. 3 and 4).

(3) In multiple-strangeness excitations, the first anticaber binds with —30 MeV, the second binds with —15 MeV, and

the third with ~0 MeV (see Fig. 4).

(4) The calculations of the pn and hyperon masses in Figs. 11-15 all assume that these caber clusters are coplanar;
this coplanarity implies that the cabers have essentially cylindrical (linear) geometries with respect to hadronic bind-

ing energies.

Other hadron properties

(5) The K-K* mass difference, which is 4.0 MeV instead of 4.6 MeV, implies a length for the K° of at least 2.4 F

(see Fig. 9).

(6) The calculated Coulomb corrections for the baryon and hyperon resonances of Figs. 10—15 accurately reproduce
the observed n-p, Z™-20-3*, and Z~-=0 charge splittings; this suggests that the linear displacements assumed for the

internal Coulomb charges must be approximately correct.

(7) The mechanical and electromagnetic properties of the spinor S which are derived in Appendix B are based on a

linear array of three subquanta M.

The mass calculations for the resonances of
Figs. 5-9 are summarized in Table VI. In making
these calculations, we have used a total of five
numerical parameters—the masses M° and M *,
the binding energy B,j5, and the radii R,,, and
R, for the Coulomb corrections—and we have
reproduced the masses of the nine resonances in
Table VI to an average absolute accuracy of better
than 0.5 MeV, using a 70-MeV mass quantum as
the fundamental building block. This is the strong-
est argument that we can give for the reality of
this spinless light-quark basis state (which does
not appear in the conventional quark model). In
assessing the results shown in Table VI, the ab-
sence of any counterexamples should be stressed;
all of the observed low-mass J° =0~ bosons are

included here.

Figure 10 describes the nucleons. Since these
are spinor triplets SSS in which there are two
hadronic SS bonds but no hadronic SS bond, the
triplets can occur either as linear arrays or as
clusters, depending on the electromagnetic poten-
tials; and as shown in Fig. 10, the proton appears
as a linear array and the neutron as a cluster.
These configurations reproduce the masses,
charge splitting, spins, and magnetic moments
of the nucleons, as well as the zero electric di-
pole moments with respect to the spin axes. As
discussed in paper I, these configurations repro-
duce the rms electric and magnetic radii for the
nucleons; also, if the charge distributions are
assumed to be equatorial current loops, then these

1 33 44 77
5.0 -15.0 -20.0 -35.0

s3 sS4 SK sS
15.0 15.0 15.0 27.3

FIG. 3. Hadronic binding energies between caber-anticaber pairs. The hadronic binding, which from its ~4% mag-
nitude is very short-ranged, operates directly between matching M and M subquanta in adjacent cabers. Denoting these
subquanta as M (nonspinning) and M, (spinning), the hadronic binding energies between subquanta are as follows:

MM =—5.0 MeV, MM =MM, =—5.0 MeV, M{M ;=—9.1 MeV, MM =MM =MM,=MM,=M;M;=M M;=0. As shown in the
figure, the corresponding caber-anticaber binding energies in MeV are as follows: 11=-5.0, 33=-15.0, 44=-20.0,
77=-35.0, S3=54=57=-15.0, SS=—-27.3, SS=55=0. The mass proportionality of the 11, 33, 44, and 77 binding ener-
gies and the equality of the S3, S4, and S7 binding energies are both phenomenologically required features, and they
seem to follow uniquely from the linear caber configurations shown here.
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RESONANCE A HYPERON T HYPERON
STRUCTURE $8s3 §58a
STRANGENESS -1 N
IANDAHBE  2x-15=-30 2x=-15=-30

Z HYPERON SHYPERON
$5533 585334
) -3
3x-15=-45 3x-15=-45

FIG. 4. Hadronic binding energies for clusters of spinless anticabers added to a nucleon core. Due to the very short
range of the ~ 4% hadronic binding energies, only adjacent caber-anticaber pairs in a cluster can bind hadronically.
When adding spinless anticabers to an SSS-triplet nucleon core to form a hyperon resonance, the first 3 or 4 binds with
two spinors S to give HBE=-30.0 MeV, the second 3 binds with only one spinor S to give HBE=— 15 MeV, and the third
anticaber, from its position in the excitation cluster, binds with essentially zero binding energy. As discussed in
Fig. 2, the spinless anticabers carry the strangeness quantum numbers of the hyperon resonance. Experimentally,
anticabers 3 and 4 will bind to an S5S nucleon spinor core to produce Y* resonances, but cabers 3 and 4 will not bind to
this same spinor core to produce Z * resonances. Thus the particle-antiparticle asymmetry that is inherent in the nucle-
on spinor core leads to observable consequences. In the present light-quark approach to particle structure, the Fermi-
Yang (Ref. 4) formulation of the nucleon, N =SSS, is required, rather than the Gell-Mann and Zweig (Ref. 5) formulation,

N =S8SS.

current loops can account for the behavior of elec-
tromagnetic form factors in appearing like dipoles
at low energies and like point charges (partons) at
high energies, depending on whether the incident
particle wavelength is large or small as compared
to the dimensions of the current loops. In Ap-
pendix B it is shown that these spinor triplets give
an average nucleon volume that is in agreement
with the nucleon volume obtained from optical-
model calculations for heavy nuclei.

Figure 11 shows the pn bound state. The cal-
culation given here represents the only quantitative
explanation of which the author is aware for this
pn binding energy of —83.3+1.4 MeV. In partic-
ular, potential model calculations of the pn sys-
tem have great difficulty in reproducing the narrow
width (I’ <8 MeV) of the resonance. The p»n bound
state is a remarkable experimental result in that
it gives us for the first time direct evidence that
binding energies as large as 4% exist in nature.
As was discussed in paper I, nucleon-nucleon and
nucleon-antinucleon binding energies are analo-
gous to the quark-quark binding energies that ap-
pear in the present light-quark model.

Figures 12-15 illustrate the metastable hyperon
resonances. From the observed mass intervals,
and also from the magnetic moments, it is clear
that these are formed as combinations of spinless
basis states combined with an SSS nucleon core.
From the systematics of both the meson and bar-
yon resonances, it is apparent that the spinless
excitation quanta.carry the strangeness quantum
numbers. This light-quark representation for the
hyperons, in addition to reproducing the masses
and quantum numbers, establishes a direct rela-
tionship between internal particle-antiparticle

1,=0 ll=l/2 =1
1980 (o(963.5 +1.7)r<5.9 57 (962)T<5 4
n'(958.1+0.4)I'<p.8

- M(953 £2)I'<10

o~

L |50 n(548.8)r<0.9 .

N _ ¢

o )

2 i __Ke(497.7)10
4% K¥ (493.7X0 =
- _
— -
140 29(135.0)T0 71(139.6)T0

FIG. 5. An energy-level diagram for the pseudoscalar
boson resonances, plotted with 70-MeV mass intervals.
Experimentally, all of these resonances except the &0
have been measured to be J¥= 0" levels. The position of
the M as the lowest member of the (M, n’, 6°) multiplet
suggests that it is the fundamental member of this group—

a suggestion that is borne out by the mass calculations of
Figs. 7 and 8 and the production and decay modes sum-
marized in Table V. As can be seen by the 70-MeV mass
grids, the 7, , and (M, 7', 6% resonances have small
binding energies that are proportional to the masses,
whereas the K mesons appear to be unbound. The 67,

a charged form of the 77, is discussed in Fig. 8. Experi-
mental evidence for these levels is discussed in Appendix
A. The isotopic-spin labels are discussed in Ref. 6.
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TABLE V. A summary of arguments which indicate that the M meson is the fundamental
ground-state member of the M (953), 7’ (958), 6°(963) multiplet.

(1) As shown in Fig. 5, the M is the lowest-mass member of the multiplet.
(2) The mass calculations of Fig, 7 pinpoint the M as the most strongly bound (and therefore

most symmetric) resonance.

(3) The M meson is observed in the symmetric reactions

(a) p +d—He’+M (Ref. 7),
(b) K"+p—~ K~ +p+M (Ref. 8),

which do not show the 7’ or &° resonances, whereas the 1’ has been observed in the asymme-

tric reaction

(c) K~+p—A+n’ (Ref. 8),

which does not show the M, and the 6° has been observed in the charge-exchange reaction

(d) m+p—6"+n (Ref. 9),

which shows an 7’ signal but no M signal. The symmetric reactions (a) and (b), in which the

M is created directly from kinetic collision energy, require that the M have perfect internal

particle-antiparticle symmetry, and hence a hadronic binding energy of —35 MeV (Fig. 8).
(4) The M has the symmetric one-step decay process

(e) M—7ry (~100%) (Ref. 8),

whereas the 7’ has the asymmetric two-step decay process

€ n'—~py, p—~71 (~100%) .

Appendix A contains equations for the production and decay reactions shown here. These
equations bring the symmetry characteristics of reactions (a)—(f) more sharply into focus.

symmetries and strangeness quantum numbers. It
also shows that baryon number conservation is
identical with the conservation of SSS nucleon
spinor triplets. The mapping problem as to why
just these particular hyperons are produced, and
not for example =’=S5544, is discussed in Ap-
pendix D. The Z~ (Ref. 11) and £~ (Ref. 12) mag-
netic moments are discussed in the captions of
Figs. 13 and 14, respectively. The ©~ mass
shown in the caption to Fig. 15 is from Ref. 13.
The baryon and hyperon caber cluster calcula-
tions of Figs. 10-15 are summarized in Table VII.
The one resonance included in Table VII which is
not shown in the figures is the K™p bound state
A(1402)S. We can calculate the mass of the K™p
bound state immediately by noting that this p7~
excitation is directly analogous to the p4~ excita-
tion that constitutes the Z° resonance. Thus the
A(1402) should have a mass that is just 3 x70.0
=210.0 MeV above the Z° mass. The actual mass
difference (see Figure 15) is 209.9 MeV. In Table
VII we followed the less accurate procedure of
calculating the A(1402) mass directly from the
S1S7S177 cluster of cabers. In line with these
calculations, it is interesting to note that the decay

of the A(1402) resonance is 100% into = resonances,

and not into the A(1116) resonance (which has a
spinor-flipped spinor core configuration).

The average calculated absolute mass accuracy
for the eleven resonances shown in Table VII is

+0.12%, or +1.6 MeV. In assessing the physical
content of this result, several factors should be
noted in addition to just the number of numerical
parameters contained in the model: (1) The basic
building blocks for these resonances are very
large—a spinor S ~330 MeV and two spinless
cabers 3 ~210 MeV and 4 ~280 MeV; (2) these

RESONANCE 0 -

UNBOUND MASS 144.6 1400 144.6
HADRONIC B.E. 5.0 5.0 5.0
BOUND MASS 139.6 135.0 139 &
EXPER. MASS 139.6 135.0 139.6

FIG. 6. The m mesons. The M?, M? and M* mass
values of Fig. 1 and the MM binding energy of Fig. 3 are
adjusted so as to precisely reproduce the pion mass
values. A stringent test of this phenomenology is to then
use these same parameters to reproduce the higher-mass
resonances, since any systematic errors will scale with
the resonance masses. As is shown in Figs. 7-9, the
parameters that accurately reproduce the pion masses
also accurately reproduce the masses of the higher-mass
resonances of Fig. 5. The caber pairs shown here also
reproduce the strangeness quantum number S =0 and the
spin J =0 of the pion. Phenomenologically, it seems to
be correct that every hadronic resonance must contain
at least one neutral quantum MY or MJ. If we postulate
this as a requirement for the 7 mesons, then we have
also reproduced the isotopic spin I =1 of the pion multi-
plet.
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RESONACE PI MESON ETA MESON M MESON K'MESON K MESON

STRUCTURE 1 44 77 7 7
STRANGENESS (4] 0 0 +1 -1
UNBOUND MASS 140 569 989 495 495
HADRONIC B.E. -5 -20 -35 0 0
COULOMB CORR, 0 -1 -1 0 0
BOUND MASS 135 548 953 495 495
EXPER. MASS 135 549 953 494 494

FIG. 7. The pseudoscalar bosons 7, n, M, and X *, members of the pseudoscalar nonet. As can be seen, the param-
eters that reproduced the pion masses in Fig. 6 also reproduce the masses of these resonances. Furthermore, the
mass calculation singles out the M meson as the fundamental member of the M,7n’,6° multiplet, in agreement with
the results of Figs. 5 and 8 and with the systematics shown in Table V. The Coulomb corrections used here were ob-
tained from parameter (10) in Table I: R, ~0.6 F— ez/ZRmx =~ —1 MeV, a result that is essentially independent of any
specific choice made for the internal + and — charge distributions in the subquanta M* and M~. The caber charge assign-
ments n=4%4", M=T7"7",K*=T", and K~ =7" shown here are in agreement with the rule for Coulomb self-energies given
at the bottom of Table I.

same basis states also appear in other resonances, by the requirements of reproducing spins, mag-
for example in the resonances of Table VI; (3) netic moments, charge splittings, and total

the absolute mass of each particle is a delicate charges; (4) there are no counterexamples—all
balance among three kinds of binding energy— of the observed long-lived baryon and hyperon
hadronic, magnetic, and Coulomb—and the mag- resonances are included here.

netic and Coulomb binding energies are constrained Table VIII summarizes all of the calculations of

RESONANCE M MESON ;" MESON 5" MESON
PRODUCTION PROCESS A+B "A-B+RES A+B -C+RES A+B -A+RES
UNBOUND MASS 989 989 994
HADRONIC BE -35 -30 -30
COULOMB CORR -1 -1 -1
BOUND MASS 953 958 963
EXPER. MASS 953 958 962

FIG. 8. The M(953), 7 (958), and 6~(962) mesons. The symmetric production mode A +B —A +B + M mandates that
the M, which is created directly from kinetic collision energy, must have perfect internal particle-antiparticle sym-
metry, and hence a binding energy of —35 MeV. The asymmetric production mode of the 77/, on the other hand (see
Table V), suggests a particle-antiparticle “defect,” an unmatched MM pair, which shifts the mass upwards by 5 MeV.
This asymmetry also relates to the decay modes of the M and 7 resonances, as is shown in Table V. The M (953),

7 (958), 6%963) fine structure is a direct experimental indication of the 5-MeV internal MM binding energy that was in-
voked initially to explain the pion masses of Fig. 6. The 6~ appears here naturally as a charged form of the 7/. From
the Coulomb rule at the bottom of Table I, this charged state is formed by adding a charge, so that 6~ =7""7". The 7*
caber shown here in the 6~ can also be observed singly as the K meson of Fig. 9.



10 LIGHT-QUARK HADRON SPECTROSCOPY: A GEOMETRIC... 859

RESONANCE K* MESON K~ MESON Kf_ MESON Kg MESON
STRANGENESS +1 -1 +1-1 +1-1
UNBOUND MASS 494.6 494.6 499.2 499.2
COULOMB CORR. 0 0 -0.7 -0.7
BOUND MASS 494.6 494.6 498.5 498.5
EXPER. MASS 493.7 493.7 4977 4977
KO.-K* MASS DIFFERENCE

CALC. 3.9 MeV

EXPER. 4.0 MeVv

FIG. 9. The K mesons. The configurations shown here reproduce the absolute mass values, the charged splitting of
the masses, and the strangness characteristics. The K* =7* mesons were shown in Fig. 7. The K} =7"" caber also
appears in the 6~ resonance of Fig. 8; the Kg is a more symmetric form of the 7*~ caber, and it has a 7™ decay mode
as compared to the 7mm decay mode of the K%. As is shown in Fig. 23 of Appendix A, these kaon configurations also have
phenomenological significance with respect to the lifetimes of these resonances. From the calculation of the K9-K*
mass difference, the Coulomb correction in the K% must be — 0.6 MeV (the value of — 0.7 MeV shown here is from the
radius R, =3 F given in Table I). Thus the K° charge separation must be e?/R*=-0.6 MeV—~R*=2.4 F. This large
value for R* is one of the main reasons for selecting a linear structure to represent the kaon. The conventional quark
model predicts unambiguously (Ref. 10) that the K* meson should be heavier than the K?, K% meson, so the present
light-quark systematics offers a resolution of this long-standing theoretical puzzle. The kaon configurations shown here
are K*=3*4%, Kk} =3*3"1", and K} =3"4", so that K* have strangeness +1 and K¢ and K} have mixed strangeness, as
observed experimentally. The K g regeneration process, a secondary scattering, is a geometrical rearrangement of the
K9 structure.

TABLE VI. Calculation of mass values for the very-narrow-width boson resonances. The
rules for reconstructing these resonances are given in Tables I-III, These resonances are
illustrated in Figs. 5-9.

Intrinsic Binding energies Observed mass
mass (MeV) (MeV)
Boson  Caber array (MeV) Hadronic  Coulomb  Calc. Exper. Error
n* 1°1* 144.6 -5.0 139.6  139.6 0.00%
0 1070 140.0 -5.0 135.0  135.0 0.00%
n 474~ 569.2 —20.0 -1.2 548.0 548.82 —0.15%
M (e 989.2 -35.0 -1.2 953.0 953 0.00%
n’ Tt 989.2 —30.0 -1.2 958.0  958.1 -0.01%
80 (i a 989.2 —25.0 -1.2 963.0 963.5 ~0.05%
6 Falat 993.8 -30.0 -1.3 962.0 962 +0.05%
K* 7* 494.6 0 494.6  493.7 +0.18%
KK T+ 499.2 0 -0.7 498.5  497.7 +0.16%

Average percentage mass accuracy +0.07%
Average absolute mass accuracy 0.4 MeV

2 A recent measurement [D. M, Binnie ¢ a ., Phys. Rev. D 8, 2789 (1973)] gives the n mass
as 548.1+0.4 MeV,
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FIG. 10. The proton and neutron. These are both
formed as Fermi-Yang (Ref. 4) spinor clusters N =SSS.
The internal charge assignments for the nucleons follow
uniquely from the requirement of reproducing the follow-
ing experimental data: the total charges, the magnetic
moments, the spins, thé mass difference, and the zero
electric dipole moment for the neutron about its spin
axis. From their resultant electromagnetic interactions,
the proton appears with a linear SSS configuration and the
neutron with a clustered S§ configuration. The nucleon
values that are reproduced from the parameters of
Table I are the following:

Proton Neutron
Spinor configuration Sis7sy S}sysy
(linear) (clustered)
Intrinsic mass (MeV) 991.8 998.1
hadronic binding energy -54.6 -54.6
magnetic binding energy  +3.4 -1.7
Coulomb binding energy -2.2 -2.1

Calculated mass
Experimental mass
Calculated magnetic

938.4 MeV  939.7 MeV
938.4 MeV  939.6 MeV

moment +2.7%y —1.86uy
Experimental magnetic
moment +2.79%uy —-1.91uy

FIG. 11. The pn bound state. The same parameters
that reproduce the proton and neutron also reproduce the
pn bound state. The pn cluster shown here is a spin-1
configuration, as suggested by the experimental data.

Spinor configuration STSSTSiStst

Intrinsic mass (MeV) 1989.9
hadronic binding energy -191.1
magnetic binding energy +1.7
Coulomb binding energy -5.6

Calculated mass 1794.9 MeV

Experimental mass

1794.5+ 1.4 MeV

The Coulomb corrections for Figs. 10-15 are discussed
in Sec. IV and summarized in Table I

FIG. 12. The A hyperon. The A is the caber cluster
S§3, in which the anticaber 3 carries the strangeness
quantum number S=-~1. Calculated values for the A are
the following:

Caber configuration S1S7St3”
Intrinsic mass (MeV) 1206.4
hadronic binding energy —~84.6
magnetic binding energy -1.7
Coulomb binding energy -3.2
Calculated mass 1116.9 MeV
Experimental mass 1115.6 MeV
Calculated magnetic moment —0.93uy

Experimental magnetic moment (—0.67+0.06)uy

the present section. Starting with the ten numer-
ical parameters of Table I, and using them in the
manner outlined in Tables I-III, we have repro-
duced or otherwise accounted for the absolute
masses of twenty resonances to an average ac-
curacy of £0.1%, or +1.0 MeV, taking into account
the constraints of item (3) in the above paragraph
plus the requirement of reproducing the strange-
ness quantum numbers. It might be argued that
this geometric light-quark model has some built-
in parameter freedom in addition to these ten nu-
merical constants; however, it can also be argued
that ‘a number of these constants are in fact pinned
down by the experimental data, as is discussed

in Sec. IV.

It is instructive to compare the summary of
results in Table VIII with the mass calculations
that are obtained from symmetry schemes, using
the discussion of these symmetry schemes by
Feld" as a guide. The standard baryon mass
formula 3 (Mz +My) =1 (Ms +3M,), which follows
from the early Goldhaber model,' requires three
known masses to determine the fourth. Choosing
all neutral masses, this formula gives the mass
of the =° for example, to an accuracy of 1.2%.

If this same Goldhaber formalism is applied to
meson masses, it gives the equation 4M =3M,
+M,. Using the K° and 7° as input masses, the 7
mass is calculated to an accuracy of 13%. If the
ad hoc assumption is then made that the squares
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z* 30 3

FIG. 13. The £ hyperons. The = hyperons are caber
clusters 534, in which the anticaber 4 carries the
strangeness quantum number S=-1. The configurations
shown here reproduce the masses and charge splittings
correctly. The Z* magnetic moment is correctly repro-
duced. The calculated £~ magnetic moment is in dis-
agreement with a recent measurement (Ref. 11). The
magnetic moment of the Z° has not measured, but the 2 °
cluster shown here and the A cluster of Fig. 12 correctly
reproduce the @ value of the observed decay mode 0
— A +v (see Fig. 22).

=+ z0 boled

Caber configuration S{SySta’ S3S7St4™ SiSTSja”

Intrinsic mass (MeV) 1271.8 1276.4 1281.0
hadronic binding energy —84.6 —-84.6 —84.6
magnetic binding energy +5.1 +5.1 +5.1
Coulomb binding energy -1.4 -3.2 -3.3

Calculated mass (MeV) 1190.9 1193.7 1198.2

Experimental mass (MeV) 1189.4 1192.5 1197.3

Calculated charge 2.8 4.5
splitting (MeV)

Experimental charge 3.1 4.8

splitting (MeV)

Calculated magnetic +2.79%uy +2.79%y +2.7%y
moment
Experimental magnetic (+2.59 (—1.48
moment +0.46)py 0.3 uy
(Ref. 11)

of masses should be used in this equation, the g
mass is calculated to an accuracy of 6%. These
Goldhaber mass equations do not work for other
groups of meson resonances. In the SU(6) formal-
ism, the n’ meson can be added to the (7, K, n)
group, but only at the expense of introducing an
additional arbitrary mixing parameter, so that
SU(6) has no real prediction for the 7’(958) mass
|[for example, the E(1416) meson is sometimes
considered to be the singlet member of this group].
Thus, with respect to the calculation of absolute
resonance masses, the SU(6) formalism and its
various antecedents give values for only two res-
onances out of the list of resonances shown in
Table VIII—one baryon mass to an accuracy of
~1% and one meson mass to an accuracy of ~6%
(or perhaps 13%). With respect to charge split-
tings, the SU(6) formalism, with the n-p, Z7-3°,
and Z~-Z* mass differences as input parameters,
gives the £~ -Z° mass difference correctly, but
it gives the K* mass as being larger than the K°

=0 ==
—
FIG. 14. The = hyperons. The = hyperons are the

caber clusters
S

S$73,

3
in which the two anticabers 33 carry the strangeness
quantum S=-2. In order to reproduce the large charge
splitting for this hyperon resonance, we must, as in the
case of the proton and neutron, form the second charge
state by using a doubly charged spinor S°. This leads
to the prediction that the =~ and the neutron have com-
parable magnetic moments, in contrast to the SU(6) pre-
diction that the =~ and A have comparable magnetic mo-
ments. A recent experimental result (Ref. 12) is in
agreement with the present prediction. The Z° magnetic
moment is unknown.

S

=0 ==

Caber configuration 5357533730 5157S}373°
Intrinsic mass (MeV) 1416.4 1422.7
hadronic binding energy -—99.6 -99.6
magnetic binding energy -1.7 -1.7
Coulomb binding energy —3.2 -3.3
Calculated mass 1311.9 MeV 1318.1
MeV
Experimental mass 1314.9 MeV 1321.3
MeV
Calculated charge
splitting 6.2 MeV
Experimental charge
splitting 6.4 MeV
Calculated magnetic
moment —0.93uy —1.86py
Experimental magnetic
moment (—1.93
£0.75)uy
(Ref. 12)

mass. If the 7*-7° and K *-K° mass differences
are instead used as input parameters, SU(6) then
gives the wrong value for the n-p mass difference.
Thus, while the unitary symmetry schemes give
the I BY relationships (isotopic spin, baryon num-
ber, hypercharge) in a very striking manner, the
calculation of absolute masses is not one of their
main virtues. In this connection, it should be
noted that the prediction of the Q™ mass was based
on a decimet interval rule with spacings of 140
MeV. As can be observed in Figs. 16 and 19,
140-MeV resonance spacings are a very common
occurrence. Perhaps the most important point

to bring out in this discussion is one that does not
involve masses. This point is the fact that the
existence of the M, n’, 6°, 6~ resonance fine struc-



862 MALCOLM H. Mac GREGOR 10

ture seems to be in contradiction with any results
that we would expect to find on the basis of either

unitary symmetry schemes or S-matrix approaches.

The very-narrow-width resonances of the pres-
ent section are constructed entirely from strange
cabers and anticabers. In Sec. III, we consider
intermediate-width baryon and meson S-state
resonances which include nonstrange cabers. In
many respects, the systematics of the nonstrange
excitations is considerably simpler than the sys-
tematics of the present section.

III. THE INTERMEDIATE-WIDTH S-STATE
RESONANCES

In Figs. 12-15, we saw that hyperon resonances
are formed by adding strange anticabers 3 and 4
to an SSS nucleon spinor core: A =SSS3, » =S554,
%= =58533, and ©=S55344. In these hyperon ex-
citations, the anticabers 3 and 4 carry strangeness
quantum numbers S =-1, so that the excitations
have different strangeness values than the SSS nu-
cleon ground state. The anticabers 3 and 4 have
~4% binding energies with the spinors S in the
nucleon spinor core (see Figs. 3 and 4).

Figure 16 shows a different kind of baryon ex-
citation. This figure is an energy-level diagram
of the rotationless narrow-width and S-state
baryon and hyperon resonances, with each reso-
nance type grouped in a column (an “excitation
tower”) above the corresponding metastable
“ground state,” and with 70-MeV mass grids
superimposed on the ground states. As can be
seen, the resonances occur at accurate 70-MeV
intervals above these ground states, so that the
excitations are formed from 70-MeV quanta with
essentially zero binding energy. Also, the ex-
citation quanta are “nonstrange,” since the excited
states have the same strangeness quantum num-
bers as the ground states. From the observed
level spacings it can be seen, as shown in the
column at the far left in Fig. 16, that these ex-
citation quanta are formed as combinations of the
(nonstrange) cabers 3 and 4. Thus metastable
(very-narrow-width) hyperon resonances are
formed by adding strange anticabers 3 and 4 to an
SSS “ground state,” with ~4% binding energies;
and intermediate-width S-state baryon and hyperon
resonances are formed by adding nonstrange
cabers 3 and 4 to the “ground states” SSS, SSS3,
SSS4, and S5S33, with essentially zero binding
energy.

As was discussed in paper I, the 3-type and the
4-type excitations, both strange and nonstrange,
exhibit different symmetry properties. For ex-
ample, the N44 A44 and =44 excitations of Fig.
16 are dominant and easily observed S states,

in which the three anticabers 344 carry the strangeness
quantum number S=-—3. The spin of the @ has not been
measured. Since the 27-=~ mass difference is 350.9
MeV, almost precisely equal to 5x70.0 MeV, we have
assigned the ¢~ the same spinor-triplet configuration
as the Z~. In a similar pairing of resonances, the
A(1402.4) =p 7" and £°(1192.5) = p4~ resonances have a
mass difference of 209.9 MeV, almost precisely equal
to 3x70.0 MeV.

Caber configuration S§S7S1374%0

Intrinsic mass (MeV) 1772.7
hadronic binding energy -99.6
magnetic binding energy -1.7
Coulomb binding energy -3.3

Calculated mass 1668.1 MeV

Experimental mass 1672.2 MeV (Ref. 13)

whereas the N33, Aéf‘l, and 233 excitations are,
respectively, an unobserved N(1359) bandhead,

the narrow-width J=3 A(1518)D resonance (which
is not a D state), and the controversial Z(1620)S
resonance (which was identified as an S state on
the basis of the present systematics before it was
verified as such experimentally). Figure 17 shows
strange and nonstrange forms of the caber 3—3,

3, 3,3. Figure 18 ulustrates the nonstrange ex-
citation cluster 44 and also the three resonances
mentioned above, N44 A44 and 244 which are
dominant baryon and hyperon S states.

Meson resonances form the same kind of non-
strange excitations as baryons, but with two dif-
ferences: (1) The ground state for the meson ex-
citations is the very difficult to observe SS non-
strange spinor pair (which is related to the even
more difficult to observe J° =2+ S383 spinor quar-
tet that causes the interference effects in the A,
meson); (2) nonstrange meson excitation quan.ta
include, in addition to the nonstrange cabers 3 and
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TABLE VII. Reconstruction of the metastable baryon and hyperon resonances and the pn and Kp bound states ac-
cording to the rules of Tables I-III. The configurations shown here reproduce masses, spins, charge splittings,
strangeness quantum numbers, and magnetic moments. The average calculated absolute mass accuracy is +0.12%, or

+1.6 MeV.
Bindin i Final mass values
Resonance Intrinsic g energles m value
Name cluster 2 mass Hadronic Magnetic Coulomb Cale. Exper. Error SP e
» S151S} 991.8 ~54.6 +3.4 -2.2 938.4 938.3  +0.01% 0 +3
518:S} 998.1 —-54.6 -1.7 -2.1 939.7 939.6  +0.01% 0 -2
A 5187813” 1206.4 —-84.6 -1.7 -3.2 1116.9  1115.6  +0.12% -1 -1
z* 51S7si4? 1271.8 —84.6 +5.1 -1.4 1190.9  1189.4 +0.13% -1  +3
=0 $1515147 1276.4 ~84.6 +5.1 -3.2 1193.7 11925 +0.10% -1  +3
- SiSysiaT" 1281.0 ~84.6 +5.1 -3.3 1198.2 1197.3  +0.08% -1 +3
=" 5187573730 1416.4 -99.6 -1.7 -3.2 1311.9  1314.9 -0.23% -2 -1
= 5$18351373° 1422.7 -99.6 -1.7 -3.3 1318.1  1321.3 -0.24% -2 -2
Q- S1S757374%° 1772.7 -99.6 -1.7 -3.3 1668.1  1672.2 -0.25% -3 -2
pn 51S1S1S1S1ST 1989.9 -191.1 +1.7 -5.6 1794.9 17945  +0.02% 0 -5
Kb  SiSysy7” 1486.4 —84.6 +5.1 -3.2 1403.7  1402.4 +0.09% -1  +3
Charge splittings
n-p 20_x+ Do L
Calculated 1.3 MeV 2.8 MeV 4.5 MeV 6.2 MeV
Experimental 1.3 MeV 3.1 MeV 4.8 MeV 6.4 MeV
3See Figs. 10-15. D Strangeness quantum number. ¢ Approximate magnetic moment (see Tables I and VII),

4 observed in the baryon excitations, the non-
strange excitation unit 7 =1°1°, which does not
play a role in the baryon resonances. With these
three types of excitation—7, 3, 4—intermediate-
width S-state meson resonances can and do occur
essentially every 70 MeV, as is shown in Fig. 19.
An excitation symmetry scheme for mapping these
resonances was given in paper I.

Strange and nonstrange forms of the spinor
§—S,S,5,5—are shown in Fig. 20. As was ex-
explained in the caption to Fig. 2, the strange
spinors S and S occur only in nucleon spinor trip-
lets SSS and antitriplets SSS, which are invariants
in associated-production reactions. Thus these
“strange” spinors do not contribute to the conven-
tional strangeness quantum numbers. The non-
strange spinors S and § occur only pairwise and
only in meson and kaon resonances. Although the
S§ pair by itself is very difficult to observe as an
S-state resonance, it appears prominently in ro-
tational levels as the bandhead of the broad-width
o(*P,) and €(®*P,) meson resonances.”

Figures 16 and 19 contain a total of 34 inter-
mediate-width S-state resonances, including the
A(1402) resonance of Table VII. Theoretical cal-

culations for the masses of these resonances con-
sist simply of the mass values given by the 70-
MeV mass grids erected on the S5, N, A, =, and
= “ground states.” Table IX summarizes the
mass accuracies that are obtained for these reso-
nances. It is also shown in Table IX that the
probabilities for random spacings rather than 70-
MeV spacings in Figs. 16 and 19 are vanishingly
small. As with Tables VI and VII, we stress the
completeness of the resonance mappings in Figs.
16 and 19—all of the observed S-state and inter-
mediate-width resonances are included. The lin-
ear systematics of Figs. 16 and 19 have led to a
number of predictive successes. These are sum-
marized in paper I. Figure 21 shows hyperon
resonances from Fig. 16 plotted against the p(938)
“ground state.” It illustrates the ~4% binding
energies for strange excitations as compared to
the ~0% binding energies for nonstrange excitations.

IV. EXPERIMENTAL, PHENOMENOLOGICAL, AND
THEORETICAL DETERMINATIONS OF THE LIGHT -
QUARK PARAMETER VALUES

In the present section we summarize information
that can be used to determine parameter values
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TABLE VIII, A summary of hadron particle properties that are accounted for by the ten-
parameter light-quark model of Tables I-III. Twenty absolute masses and strangeness quan-
tum numbers, nineteen spins, five magnetic moments, and four charge splittings are accu-
rately reproduced. The only difficulty is with a recent measurement of the Z~ magnetic mo-
ment (Ref. 11). As discussed in the text, SU(6) gives only two of these absolute masses as
calculated values: one baryon mass (+1%) and one meson mass (x6%).

Absolute mass accuracy

Magnetic moment

Particle Percent MeV Spin Strangeness Calc. Measured de?:;Il;Zd
° 0.00% 0.0 0 0 Fig. 6

* 0.00% 0.0 0 0 Fig. 6
K* 0.18% 0.9 0 1 Fig. 9
K, K%Y  0.16% 0.8 0 mixed Fig. 9

n 0.15% 0.8 0 0 Fig. 7

M 0.00% 0.0 0 0 Fig. 8

7’ 0.01% 0.1 0 0 Fig. 8

&0 0.05% 0.5 0 0 Appendix A
6 0.05% 0.5 0 0 Fig. 8

b 0.01% 0.1 3 “o”a +2.79 +2.793 Fig. 10

0.01% 0.1 i “pra -1.86 -1.913 Fig. 10

A 0.12% 1.3 L -1 -0.93  -0.67:0.6 Fig. 12
z* 0.13% 1.5 3 -1 +2.79 +2.59+0.46 Fig. 13
=0 0.10% 1.2 1 -1 +2.79 Fig. 13
z- 0.08% 0.9 1 -1 +2.79% —1,48+0,37° Fig. 13
=0 0.23% 3.0 3 -2 -0.93 Fig. 14
E- 0.24% 3.2 1 -2 -1.86% -1.93=0.75°¢ Fig. 14
Q" 0.25% 4.1 3 -3 -1.86 Fig. 15
m 0.02% 0.4 1 0 ~4.65 Fig. 11
Kp 0.09% 1.3 i -1 +2.,73 Table VII

Average +0.09%  +1.0 MeV

2 See Table II and Fig. 2.

b The calculated value is in disagreement with a recent experiment (Ref. 11).
¢ The calculated value is in agreement with experiment and in disagreement with SU(6).

d This spin is not known experimentally.

for the ten-parameter light-quark basis set that
is listed in the abstract and described in Table I.

A. The mass quantum M°=70.0 MeV

Since the mass quantum M has not been observed
experimentally, indirect methods must be used to
ascertain its mass values. Table X lists eight
determinations of the M° mass, based on prop-
erties of meson, kaon, hyperon, and lepton res-
onances. The first determination, M°(1033.6)

- 5°(963.5), is the energy difference between two
narrow meson peaks noted by the same experimen-
tal group® in the same type of experiment—7"p

- X°n, with the n’ peak available as a reference
mass in both experiments. The second through
fourth determinations are based on mass differ-
ences between well-established hyperon reso-
nances. The fifth determination is based on the
meson energy levels of Fig. 19, and it involves

the SS ground-state mass, which is discussed in
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FIG. 16. Intermediate-width S-state baryon and hyperon resonances, arranged as “excitation towers” above the
metastable N, A, £, and E “ground states” (the three bracketed nucleon excitations are unseen bandheads that are
identified by overlying rotational levels). As indicated in the column at the left, these excitations are formed as com-
binations of uncharged nonstrange cabers 3 and 4, which cluster with essentially zero binding energy. The mixed exci-
tation 34 is weak, and the excitation 333 is inhibited because of competition with the transition 333— $$ (see Appendix
C). Figure 21 shows hyperon resonances from the present figure plotted against a nucleon “ground state.” The = (1952)

and =(2019) resonances are from Rossi 73 in RPP74 (Ref. 25).

Table XI.

The sixth determination, the absolute mass of
the K*, is of considerable phenomenological in-
terest in that it gives a direct evaluation of the
assumption that the quanta M° occur in linear
cabers (in this case the caber 7*) with essentially
zero hadronic binding energy. From the value
M°=69.9 MeV obtained from the K* in Table X,
we can set an upper limit on the intracaber bind-
ing energy of 0.1 MeV (in the present paper we
neglect this binding energy).

The seventh and eighth determinations of the
mass M°, the values obtained from the muon and
from the electron, are shown mainly for their
heuristic significance. The muon result is ob-
tained from Appendix E. The electron result, a
scaling of masses as a power of a=e?/fic, is
phenomenologically of interest when it is com-
bined with the fact (Appendix A) that the lifetimes
of the metastable particles also show a scaling
in a (over a span of nine decades in a).

Since the attempt in the present paper is to ob-
tain the simplest possible representation of the

hadronic basis set, the value M°=70.0 MeV was
selected as the consensus value from Table X
and used as parameter (1) in Table I. If we break
down the eight M° determinations of Table X into
types, we obtain

CABER 3 3 3 3
STRANGENESS " 0 0 )
HADRONIC B E 4, -0 0 4

FIG. 17. Strange and nonstrange forms of the caber 3.
Phenomenologically, the relationship between strange-
ness quantum numbers and binding energies that is es-
tablished here is one of the most important results of the
present systematics: strange quanta have HBE ~4%, and
nonstrange quanta have HBE~ 0%. These caber proper-
ties are summarized in Table II. In Sec. IV it is demon-
strated experimentally that strange and nonstrange basis
states have the same intrinsic masses.
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EXCITATION a4 N44

CALC.MASS (MeV) 8x70=560
OBS. RESONANCE 77(560)DIP

939+560=1499
N(1508)S

\44 -44
1116+560=1676
\(1673)S

113 Lol

L(1756)S

FIG. 18. The nonstrange caber pair i4 , Which appears with zero hadronic binding energy. Evidence for direct 44
=560 MeV resonance effects in meson amplitudes is weak (Ref. 16), but the N44, Ad4, and 244 resonances are dominant
and easily observed baryon and hyperon S states. The mass values shown here indicate that the zero-binding-energy

approximation for these excitations is accurate.

~ 69.95 MeV,

- 69.9 MeV,

(1) and (5) = mesons - 70.1 MeV and 69.8 MeV

(2)-(4) = hyperons - 70.0, 70.2, and 69.7 MeV - 70.0 MeV,
(6) = the kaon -

(7) and (8) = leptons - 70.4 MeV and 70.0 MeV

Thus the quantum M° appears with essentially the
same mass value in all types of resonant structure.
We have not quoted experimental uncertainties in
these determinations, because our goal is not to
obtain a “best value” for M°, but rather a repre-
sentative value that is applicable to all types of
particle.

B. The mass quantum M* =74.6 MeV

The mass difference M*—M° is set equal to the
mass difference 7*—-7°. At present we have no
way of calculating this Coulomb self-energy, but
the fact that it is almost exactly equal to nine
electron masses is probably not accidental, and
it suggests that a simple (geometric) explanation
may exist.

C. The mass quantum S* =330.6 MeV

Mass values for the spinning quark state S* can
be obtained from single quark phenomenology;
from quark-pair,'” quark-triplet, and quark-quar-
tet'” 2% experimental data, and from the special-
relativistic equations of Appendix B. These deter-
minations are summarized in Table XI. Single
spinors (quarks) S* have not been observed, but
we can deduce a spinor mass from the assumed™
quark magnetic moments and quark interaction
ranges (R ~%/mc). These arguments were given
in Table VIII of paper I, and they indicate an av-
erage nucleon quark mass of about 330 MeV.

The spinor-pair mass determination is based
on the 658-MeV S*S~ ground state of the meson
excitation tower of Fig. 19 (the mass value of
about 658 MeV is obtained from Fig. 8 of Ref. 17).
Since this spinor pair is seen only in /=0 ampli-

- 70.2 MeV.

r

tudes, it has spin J=1 (from the /,J rule quoted
in Fig. 20). Hence it has a magnetic binding en-
ergy of — 1.7 MeV and a Coulomb binding energy
of - 1.4 MeV. Thus the corrected mass of the
S*S~ pair is about 661 MeV, which gives an S*
spinor mass of about 330.5 MeV.

The spinor-triplet determination is shown in
Table XI, where the proton and pn masses, with
small Coulomb corrections applied, are used to
deduce the SS binding energy, and then to unbind
the proton. The value obtained from this deter-
mination, S*=330.6 MeV, was used as parameter
(3) in Table I.

The spinor-quartet mass determination is ob-
tained by studying the position of the A, dip, which
(from the present viewpoint) is an interference
effect caused by the J* =2%5,5,5,S5, state. Al-
though a deeply split A, meson seems to be ruled
out experimentally, a small interference effect
still persists in a number of uncontroverted ex-
periments, and always at the same location.??
Table XI gives a summary of these experiments, 6723
and it shows estimated electromagnetic correc-
tions applied to the spinor-quartet masses. The
average S* spinor mass obtained from the A, ex-
periments is 329.3 MeV. The close agreement
of all of these mass determinations of the spinor
S*is, in the author’s opinion, a strong argument
for the reality of the A, interference effect.

An interesting determination of the mass S*
comes from the equations of special relativity as
applied to rotating systems (Appendix B). Equa-
tion (B1) in Appendix B establishes the mass rela-
tionship Mg+=Mg:(M;+, Rpaxs Bmin)- Thus only three
of these four parameters are independent. In
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FIG. 19. A meson excitation tower based on the $5(658)
nonstrange spinor pair “ground state.” Unlike the spin-
less meson resonances of Fig. 5, many of these reso-
nances are known to be spin-1 resonances. Dominant
excitations are w =88m, ¢ =388, D =38333, and E
=38844. The ¢ meson is shown here in its 7rr decay
mode. The isotopic-spin headings are discussed in
Ref. 6. The obscure I =3 k(725) kaon resonance fits
naturally into this excitation tower (the excitation $$1
is strange, since the quantum 1=M is strange). A
number of predictive successes have emerged from this
meson excitation tower, which was first published in
1970. These predictive successes are summarized in
paper I. The ¢ resonance shown here is discussed in
Appendix C.

Table I we have selected R, as the dependent
variable. With respect to Eq. (B1), it is impor-
tant to note that all four of the parameters M.,
M,:, R, and R, have several independent de-
terminations for their values: M. is determined

SPINOK s s

S $
STRANGENESS 1 0 0 -1
HADRONIC B E ~a, ~0 ~0 4.
ANGULAR MOM th i +h in

FIG. 20. Strange and nonstrange forms of the spinor S.
Figures 17 and 20 show analogous characteristics for
the spinless caber 3 and the spinor S. The fundamental
spinor-pair production and decay transition 333+ SS
is discussed in Appendix C. This transition gives an
explanantion for the quantization of spin angular momen-
tum, and it leads to a fundamental spin and isotopic-spin
selection rule: SS spinor pairs occur either as J=1,
I'=0oras J=0, I =1 configurations. Spinors S occur
in hadron resonances in a very distinctive manner,
namely as SSS apd SSS spinor triplets in baryon reso-
nances and as $5 and SSSS pairs and quartets in meson
resonances. From their 4% hadronic binding energies,
the spinors S and S are “strange,” but from the invariant
nature of SSS triplets, this strangeness is an invariant
(and therefore ignorable) in associated-production re-
actions. Thus we formally assign to the spinors S and §
a strangeness S=0. As is shown in Sec. IV, strange
and nonstrange spinors have the same intrinsic masses,
and as is shown in Appendix B, the spin angular mo-
mentum J =47 is a calculated quantity.

from Table XI, M,: is determined from the phe-
nomenology of the spinless mass quanta (Tables

I and X), R,,, is accurately determined by the
spin angular momentum and probably also by the
magnetic moment (Appendix B), and R, is de-
termined from both the K°-K* mass-splitting cal-
culation of Fig. 9 and the nucleon volume as ob-
tained from optical-model calculations (Appendix
B). The fact that one set of values for these four
parameters satisfies Eq. (B1) and also all of these
other phenomenological requirements is one of the
most important tests of the present geometric
light-quark model.

As in the case of Table X, our purpose in Table
XI has been to demonstrate the universality of the
spinor S rather than to obtain a “best value” for
the mass of the spinor S*. In particular, we can
see from the results of Table XI that the spinors
S,S and S, S have the same intrinsic masses once
the binding-energy effects have been disentangled.

D. The mass quantum S** =336.9 MeV

Special relativity (Appendix B) shows that a
spherical mass quantum which is initially at rest
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TABLE IX. Summary of intermediate-width baryon and meson S-state resonances that contain nonstrange excitation
quanta. These states are formed in accordance with rules (5) and (6) of Table III, and they are plotted in Figs. 16 and

19.

Excitation rule. Intermediate-width S-state baryon resonances are formed by adding nonstrange quanta 3 and 4 to the
basic “ground states” N (939), A(1116), Z(1193), and E(1321); intermediate-width S-state meson resonances are formed
by adding non-strange quanta 7, 3, and 4 to the basic “ground state” SS(658).

Observed rvesonances.

Baryon—19 resonances (shown in Fig, 16);
Meson—16 resonances (shown in Fig, 19).

Average calculated mass accuvacy (comparison of experimental masses with the 70- MeV mass grids shown in Figs.

16 and 19).

Baryon—19 resonances, =7.5 MeV or +0.47%;
Meson—16 resonances, +6.5 MeV or +0.57%.

Over-all calculated S-state mass accuracy (the 54 resonances listed in Tables VI, VII, and IX): +0.38%.
Probabilities for random spacings (the probabilities that the resonance levels of Figs. 16 and 19 actually represcnt

random spacings instead of 70-MeV interval spacings).

Baryon—(7.5/17.5)% ~1x1077;
Meson—(6.5/17.5)16 ~1x 1077,

becomes half again as massive when it is set into
relativistic rotation (with its equator near the
velocity of light). If this same mass ratio holds
for Coulomb self-energies, then we would expect
the 4.6-MeV charge splitting of spinless quanta to
become a 6.9-MeV charge splitting for spinors S
(at least as an order-of-magnitude estimate).
However, in the doubly charged spinor S** the
induced magnetic field from the two rotating cur-
rents will lower this value somewhat. Empirically,
an S$**-S* charge splitting of 6.3 MeV reproduces
both the n-p mass difference and the = ~-=° mass
difference (see Table VII).

E. The binding energy MM=-5.0 MeV

This binding energy was selected to be used in
conjunction with the mass values M°="70.0 MeV
and M *=74.6 MeV in reproducing the pion
masses of Fig. 6. Experimental evidence for this
5-MeV MM binding energy is provided by the
M(953), 1'(958), 8°(963) fine structure shown in
Figs. 5 and 8 and in Table V.

F. The binding energy MM,=~5.0 MeV

We would expect the MM, binding energy to be
intermediate between the MM =~ 5.0 MeV and
M M,=-9.1 MeV values. Empirically, MM,=MM,
=~ 5.0 MeV gives accurate mass values (Table
VII).

G. The binding energy M M _=-9.1 MeV

The pn binding energy is —83.3+0.14 MeV. Of
this amount, — 1.3 MeV is attributable to magnetic
and Coulomb effects. Thus — 82.0 MeV represents
hadronic binding energy. If we assume that the

pr bound state includes three extranucleon SS pairs
(Fig. 11), then each SS pair has a hadronic binding
energy (HBE) of —27.3 MeV, and each M M, sub-
pair has HBE =-9.1 MeV.

H. The magnetic binding energy S*S*=*1.7 MeV

This spinor-pair binding energy is deduced from
the reaction £°— A +7, as is described in Fig. 22.
If we estimate magnetic binding energies on the
basis of the observed magnetic moments, they are
an order of magnitude smaller than the value of
+1.7 MeV deduced in Fig. 22. Thus this large
phenomenological value must arise from the sin-
gular nature of adjacent current loops. Hence
we have the result that only adjacent (singly
charged) spinors will bind with a magnetic binding
energy of +1.7 MeV; magnetic binding energies
for nonadjacent spinors can be disregarded at the
level of accuracy in the present calculations.

I. The magnetic moment u =+0.93 nuclear magneton (u,. )

Magnetic-moment calculations in the present
paper lead to a difficulty, but it is an intriguing
difficulty. In the conventional quark model, ** the
quark is assumed to have an “intrinsic” magnetic
moment (per unit charge) of 2.79 nuclear mag-
netons. In the present model, if the spinor S con-
tains a charge that is free to move, it will be
forced to the equator by the action of the magnetic
field. At the equator, which is the radius R,
=13 F, this rotating charge produces a calcu-
lated magnetic moment u =7R . *i=2.79 nuclear
magnetons (Appendix B)—the same value that is
assumed for (integrally charged) quarks. However,
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this value for u gives magnetic moments for the
p, n, A, ¥, and =7, as calculated here, that are
all too large by a factor of three. Since an equa-
torial charge distribution represents the largest
possible magnetic moment, it is easy to modify
this charge distribution so as to obtain smaller
magnetic moments. But with no phenomenolog-
ically significant basis for making the required
alteration in the charge distribution, this difficulty
has been handled by introducing an intrinsic spinor
magnetic moment u =2.79/3 =0.93u, as parameter
(9) of the model, which suppresses the unwanted
factor of three. It is not clear whether the dif-
ficulty with the magnetic-moment calculation
arises from the values for the individual spinor
magnetic moments or from the manner in which
quark projection operators should be handled. This
problem is left here as an unresolved difficulty
with the present model. In the Coulomb calcula-
tions described below, spinning charged quanta
are assumed to have equatorial current loops,

for the reasons suggested here.

J. The radius R, =35+/3 F

The radius R, of the quantum M is determined
from the two requirements of reproducing the spin
angular momentum J =3 # and the magnetic mo-
ment p=2.79u, [see the comments inSec.IVI above]
of the spinor S. These two independent require-
ments both lead (if the factor-of-three difficulty
with the magnetic moment is suppressed) to es-
sentially the same value for R, , Ryn~3V3 F,
as is calculated in detail in Appendix B.

The dependent vadius R, ~+% F. The value of
Rpin™ 5 F of the quantum M is obtained (see Ap-
pendix B) by inserting the values M¢:=330.6 MeV,
M,+=214.6 MeV, and R,,,, =35V 3 F into Eq. (B1)
and carrying out a numerical (computer) inte-
gration of this equation. The value for R, can
also be determined both from the K°-K* mass
difference (Fig. 9), and from optical-model de-
terminations of the volume of the nucleon (Ap-
pendix B).

Coulomb self-enervgies. In spinless mass quanta,
the self-energy of a unit electric charge is taken
to be +4.6 MeV, the 7*-7° mass difference; in
spinning mass quanta, this value is roughly half
again as large. The number of electric charges
contained in a spinor S can in many cases be de-
duced by the total charge, spin, and magnetic
moment of the resonance in which it is contained
(as, for example, in the case of the nucleons of
Fig. 10). The assignment of internal charges to
spinless quanta is somewhat more arbitrary, but
the simple caber charge rule stated in the para-
graph on Coulomb self-energies in Table I gives

1212 = 0
—2(1756) -1

1
n 1708 o 0 708

35 828 r(1682) -1 36
A(1673) -1 Q(1672) -3 —

1638
10 0
32 ]-?1’]—-&!620) -1
=(1606) -2

51568 0

36
=(1532) -2
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8 0
26
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between strangeness quantum
numbers and binding energies
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FIG. 21. An experimental relationship between
strangeness quantum numbers and binding energies. The
narrow-width and S-state hyperon resonances are shown
plotted against a 70-MeV mass grid based on the funda-
mental nonstrange p (938) proton ground state. As can be
seen in Fig. 21, the strangeness —1 levels are shifted
downward by ~ 30 MeV and the strangeness -2 and
strangeness — 3 levels are shifted downward by ~40 MeV
with respect to the 70-MeV mass grid. These results
are in contrast to Fig. 16, in which excitations that are
plotted against 70-MeV mass grids based on ground
states of the same strangeness as the excited levels
show no downward shifts. Figures 16 and 21 illustrate
the binding-energy rule of Table II in the text: Non-
strange excitations (Fig. 16) have HBE= 0%; strange
excitations (Fig. 21) have HBE=~4%. We also note in
Fig. 21 that the A(1402) resonance appears as a simple
K~p bound state.

accurately calculated mass values.

Coulomb binding enevgies. Coulomb binding en-
ergies are calculated classically, using the caber
dimensions and configurations described in Figs.
1-15. For definiteness in assigning charge dis-
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TABLE X, Experimental and phenomenological determinations of the fundamental mass
value M°=70.0 MeV. Eight determinations are shown: two meson, one kaon, three hyperon,

and two lepton; these all yield essentially the same mass value.

(1) M°(1033.6) — 6°(963.5) =M° —M"=70.1 MeV
(2) A’(1402.4) — 2°(1192.5) = 3M° —~M°=70.0 MeV
(3) Q7(1672.2) - =7 (1321.3) =5M" —M*=70.2 MeV
(4) A%1673) — A%(1115.6) =8M° —M*=69.7 MeV
(5) D°(1286) —SS(658) =9M° —~M°=69.8 MeV
(6) K*(493.7)=6M% +M*; M* =M°+4.6 MeV—M"=69.9 MeV
(7) muon: M, (105.66) =5 M° —M*=70.4 MeV
(8) electron: M, (0.5110)/a =M"° —~M"=70.0 MeV

Appendix A
See Fig. 15
See Fig. 15
Fig. 16
Fig. 19
Fig. 9
Appendix E
a=efic

TABLE XI. Determinations of the mass of the spinor S*. Mass values are obtained from (1) single spinors (electro-
magnetlc properties of quarks), (2) Ss spinor pairs [the spin-1 77(658) dip], (3) SSS spinor triplets (the nucleon and the

pn bound state), (4) $8Ss spinor quartets (the spin-2 A4, dip). All of these determinations give essentially the same

mass value for the spinors S* and s* (as discussed in the text). In addition, special relativity (5) gives the spinor mass

as a calculated quantity.

(1) Single spinor S (quark). A number of quark-model arguments which are summarized in Table VII of paper I indi-

cate that the average mass of a nucleon quark is just about 330 MeV.
(2) Spinor pair SS.
mm(658) dip? +3 e.m. corr, b -g61 MeV/2—-S* =330.5 MeV.
(3) Spinor triplet SSS.
(a) pn binding energy = —83.3 MeV +1.3 e.m. corr. b~ HBE =-82.0 MeV,
(b) HBE =~82.0 MeV/3— HBE =—-27.3 MeV per SS pair (Fig. 3),

(c) STS™S* =p (938.3) +2x27.3-1.2 e.m, corr. b —~991.7 MeV (unbound proton),

(d) S* +S~ +S8*=991,7 MeV—991.7/3 =330.6 MeV per spinor S$*,

(4) Spinor quartet SSSs (location of the “A, effect”).
(a) Location of the A, dip:

Experiment Location Electromagnetic corr. Corrected location
Kienzle © 1310+2 MeV (SSSS) — +7 MeV 1317+2 MeV
BCsS 4.2 1307 MeV (SSSS)° —+10 MeV 1317 MeV
BDNPT © ~1310 MeV (SSSS) —+7 MeV ~1317 MeV
Barnham f ~1310 MeV (5SSS)* — +7 MeV ~1317 MeV
Bloodworth 8 ~1305 MeV (SSSS) - +7 MeV ~1312 MeV

(b) Location of an A, peak:

Crennell ® 13112 MeV (SSSS)? — +10 MeV 1321 +2 MeV

(c) Average location of the “A, effect” ~1317 MeV:
1317 MeV/4—S* =329.3 MeV.

(5) Special relativity. Equation (B1) in Appendix B gives the mass S* as a function of the rest mass 3* and the eccen-

tricity € =(Rmax =R min)/R min. Choosing the values 3* =214.6 MeV, Rmax =5V3 F, and R i, =3

numerical (computer) integration of Eq. (B1) gives a mass S* =330 MeV.

Summary of S* mass determinations,

(1) S (quark) —$* =330 MeV;

(2) SS —S* =330.5 MeV;

(3) SSS —-@* =330.6 MeV [used as parameter (3) in Table IJ;
(4) SSSS —S* =329.3 MeV;

(5) Special relativity —S* ~330 MeV.

F and carrying out a

2 See Fig. 8 in Ref. 17, € Reference 20,
b See text. f Reference 21.
¢ Reference 18, € Reference 22,

dReference 19. h Reference 23.
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REACTION z°

A + v
SPINOR FLIP
STRUCTURE sTs;si4 sts; 8% 3
MAG.MOMENT u~+3 -1
ENERGY (MeV) 11925 1156 769

FIG. 22. An empirical determination of the SS spinor-pair magnetic interaction energy from the decay 20—~ A+y. The
=0 and A hyperons shown in the figure have identical Coulomb energies. Hence the electromagnetic energy difference of

6.9 MeV indicated in the figure is due to magnetic effects.

The Z° has +3 magnetic pairs (t*+~4*), and the A has —1

magnetic pair (+*+~+*), where +1 pair denotes a repulsive interaction that contributes positively to the potential energy.
Thus the 6.9 MeV of magnetic energy is attributed to the difference (+3)— (—1) =+4 magnetic pairs, which gives a mag-

netic pairing energy of 1.7 MeV per pair.

tributions within a quantum M, an equatorial charge
distribution is assumed for spinning quanta and a
centered point charge for spinless quanta. The
difference between these two charge distributions
is not large for Coulomb corrections as carried
out in the present paper. For example, if we con-
sider adjacent charged quanta M * or M {, the
point-point Coulomb interaction is e®/2R ,, =~ 1.2
MeV for R, =3V3 F; the point-loop interaction
is 1.3 MeV, and the loop-loop interaction is taken
to be 1.4 MeV (the point-loop correction is dou-
bled).

Spin angular momentum. As shown in Appendix
B, the spin angular momentum J =37 of the spinor
S is a directly calculated quantity. The equations
of special relativity as applied to rotating systems
are used to calculate a relativistic moment of
inertia /, and hence an angular momentum J =/ w,
for the spinor S.

Pavity. The parity rules of the present light-
quark model are not the same as those of the con-
ventional quark models.*’® From the negative-
parity configurations 11=7, 44=p, T7=7', 7 =K,
and 7=K, we see that hadronically bound caber-
anticaber pairs and single strange cabers have
negative parities. If we assign positive parities
to nonstrange SS spinor pairs and to nonstrange
excitation quanta 3 and 4, and negative parity to
resonances w = SSn, ¢ = 3SS1r, D= 33553 E= 21215‘:93
and A, dip= $S8S are all correctly reproduced. In
the case of rotational resonances, the rotating
bandheads appear with effectively positive parities
(see paper I), which accounts for the predominance
of broad-width J* =17 and J* =2* experimental
resonances. In the case of the € and $* reso-
nances,’ the parity follows from the J quantum
number and not from the L quantum number.

V. SUMMARY

At the beginning of this paper, it was stated that
it is possible to devise a light-quark model for
hadrons in which all quark-quark binding energies
are less than 5%. It was further asserted that a
formulation of this light-quark model can be de-
fined which contains approximately ten numerical
parameter values, which yields calculated mass
values accurate to about one part in a thousand
for all of the observed pseudoscalar meson reso-
nances and metastable baryon resonances, and
which reproduces the principal quantum numbers
of these resonances. The aim of the present paper
has been to demonstrate the following: (a) These
claims are mathematically correct; (b) this light-
quark model, although somewhat unconventional,
is simple and straightforward in its phenomeno-
logical properties; (c) many of the numerical
parameter values of the model can in fact be de-
termined from the experimental data; (d) most
of the parameters of the model have multiple con-
straints which exceed the available degrees of
freedom, and the parameters are able to simul-
taneously satisfy these constraints; (e) the model
seems capable of handling all of the different as-
pects of hadron spectroscopy.

In the present paper we have considered only
the S-state meson and baryon resonances—the
very-narrow-width S states of Sec. II, which are
formed from strange cabers and anticabers, and
the intermediate-width S states of Sec. III, which
contain nonstrange cabers. As was described in
paper I, many of the intermediate-width S-state
resonances have associated rotational bands, and
these rotational bands complete the mapping of the
hadron resonance spectrum.

Although we have provided few references to the
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experimental data, paper I contains a complete
documentation of all of the data, including in par-
ticular discussions of resonances for which the
author has different interpretations than those
given in the Review of Particle Properties,
RPP73.%

The author would like to end this paper with the
following friendly challenge to the reader: (1) Re-
produce some of the mass calculations of Tables
VI and VII to see that they really do work as ad-
vertised; (2) try changing any of the essential
features of Tables I-III and see if the mass accur-
acy that is summarized in Table VIII can still be
maintained. When these changes are attempted,
it is soon discovered that at the accuracy level of
one part in a thousand the experimental data are
remarkably restrictive, especially when the con-
straints imposed by the requirements of repro-

ducing spins, magnetic moments, charge splittings,

and strangeness quantum numbers are also taken
into consideration.

NOTE ADDEC IN PROOF

Subsequent to the publication of paper I (Ref. 1),
a new Review of Particle Properties, RPP74 (Ref.
25), has appeared. Thus it is of some interest to
summarize new experimental information from
RPP74 which bears on the systematic results dis-
cussed in paper I.

In the N and A resonances, a new comprehensive
phase-shift analysis, Ayed 74, is included. Some
preliminary results from this analysis were con-
tained in paper I as Ref. 78. From Ayed 74 in
RPP74, we have the following pertinent results:
(1) The split Roper resonance is shown and dis-
cussed; (2) a narrow width is indicated for the
N(1520)S resonance, as expected from the sys-
tematics of paper I; (3) evidence for the N(2133)G ,
resonance, listed in Table XX of paper I with a
C rating, is described as “quite good” in RPPT74;
(4) some confirmation is given for the A(2174)G,,
resonance, first reported by Von Schlippe 72,
which fills out the dominant A rotational band of
Table XIX in paper I. Rey ef al.?® also give evi-
dence for a negative-parity (G-wave?) resonance
A(2196). Higher-energy S, P, and D levels con-
tinue to appear in the N and A amplitudes, showing
that the systematics of Tables XVIII-XX in paper
I extend to higher energies than are included there.

In the A and Z resonances, Hart 73 report
A(1672)S,, I'19 +2, which gives the narrow width
expected for this S-state resonance, and they also
report A(1684)D,, I'86 +9, which gives the broad
width expected for this rotational level (compare
these widths to the values shown in Table XVII of
paper I). Cline 73 furnish additional evidence

for the narrow Z(1472) resonance observed by

Pan 70. Jones 74 report £(1760)S,, I'92, which has
the mass expected from the results of paper I
(Table XVI), but which has a broader width than
we would expect for this S state.

In the = resonances, Rossi 73 report =(1821)I'12,
which furnished much-needed confirmation for a
narrow = resonance at this energy (see Footnote
c of Table VII in paper I). Rossi 73 also report
£(1952)I'38 and =(2019)I"33, which are included in
the present paper in Fig. 16, and which accurately
match the 70-MeV level spacings marked in Fig.
16.

In Table XXX of paper I, rotational systematics
were given for some observed energy levels in
very light nuclei. Included in Table XXX was some
rather uncertain evidence for a rotational level
in He® at an energy of about 23 MeV. A recent
phase-shift analysis by Arvieux,?” indicates a
broad He® P-wave phase shift resonance at the
somewhat lower energy of 14 MeV. This value
corresponds to E,,, =7 MeV for He® in Table XXX,
and it shifts the He® points shown in Figs. 11 and
12 of paper I so that they are actually in some-
what better agreement with the rotational system-
atics of the other resonances. With respect to the
He® and Li® levels listed in Table XXX of paper I,
recent studies (see below) indicate that the ground
states for these resonances are rotational levels,
so that the excited state energies shown in Table
XXX cannot be identified directly as rotational
energies; hence He® and Li® should be deleted from
the systematics of Table XXX and Figs. 11 and 12
in paper I.

The present model can be readily extended to
encompass atomic nuclei. If the strong (4%)
hadronic force does not operate in collections of
nucleons, then the nuclear force must be electro-
magnetic, and its attractive component is neces-
sarily magnetic. From this result, from the nu-
cleon quark geometries shown in Figs. 10 and 11,
and from the observed pairing interactions in
atomic nuclei, it seems clear that nucleons cluster
side by side in atomic nuclei, in the form of two-
dimensional “Ising” layers, with each layer having
a thickness of 2 F (the height of the nucleons shown
in Figs. 10 and 11). This leads to a “laminar
cluster model” for nuclei, with a large nucleus
containing a number of Ising layers, and with each
Ising layer composed of a-particle “clusters”
and other light-nucleus “clusters.” As one con-
sequence of this formalism, the prolate U?® nu-
cleus, which has an experimentally determined
length of 18 F, contains nine Ising layers, and the
assumption of low-energy fission at a central
Ising interface (where Coulomb repulsion is the
strongest) gives an immediate quantitative ex-
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planation for the observed asymmetry in low-
energy U?® fission, with the large and small fis-
sion fragments containing five and four Ising
layers, respectively.

The author would like to take this opportunity
to make the following corrections to paper I:
Page 1275, bottom of first column: “isotropic
spin 7=0” should read ‘“isotopic spin 7=0"; page
1281: “AYED (Ref. 46)” should read “AYED (Ref.
78);” page 1289, Table XXII, (4): “[see Egs. (27)
and (28)]” should read “[see Eq. (35) and the ac-
companying discussion];” page 1309, Table XXXV,
F: “SSS=N” should read “SSS=N;” page 1313,
caption to Fig. 21: “The experimental lifetimes
are from Ref. 1” should read “The experimental
lifetimes are from Ref. 25;” page 1326, Ref. 127:
“(see Fig. 19)” should read “(see Fig. 18).”
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APPENDIX A: SOME PROPERTIES OF THE
PSEUDOSCALAR MESONS

Properties of the pseudoscalar mesons were
discussed in Sec. II, shown in Figs. 5-9, and cal-
culated in Table VI. In the present section, we
expand briefly on some of the special features of
these resonances.

The appearance of the neutral-meson fine struc-
ture M(953), 1’(958), 5°(963) is very important
because of its theoretical implications: This fine
structure is perhaps the most direct evidence we
have for the existence of an underlying light-quark
substructure in these hadron resonances. Thus
it is important to review the experimental evidence
for this splitting of the pseudoscalar meson masses.
In the 8° experiment,® both the n’ and &° peaks
were observed, and the 8°-n’ mass difference was
established as 5.4+1.4 MeV. The n’-M mass dif-
ference is more difficult to determine, because
the symmetric experiments which show the M
cannot show the n’, and the asymmetric experi-
ments which show the 5’ do not show the M (Table
V). However, there are, nevertheless, two fairly
accurate measurements of the M that give us this
mass difference. In one M experiment,” p +d —He®
+M, the 7°, 7, and w peaks were available as en-
ergy calibration points. Thus the position of the
M peak could be accurately pinpointed and was
found to be 953.4%; . MeV. The mass of the n’
is known from a number of recent experiments®*
to be 958.1+0.4 MeV. Thus the masses of these
two resonances are clearly separated. In a second
M experiment,® both the K™ +p~K~ +p+M and K~

+p = A +7n’ channels were measured, thus per-
mitting a common calibration for the experimental
energies. The 7’ and M masses measured in this
experiment were as follows.

Final states containing

All final states a yray
n’ 955.7+2.0 MeV 956 +2 MeV
M 951 +4 MeV 953 +2 MeV

While these results do not establish the n’-M
interval spacing as being precisely 5 MeV, they
do indicate, when they are combined with the
experiment of Maglich et al.” and with the many
1’ experiments,?* a definite mass displacement
between the n’ and M resonances.

In addition to the mass differences just discussed,
the n’ and M mesons can be differentiated both on
the basis of their different production modes and
on the basis of their different decay modes, as is
summarized in Table V. It is instructive to write
down equations for these reactions. In writing
these equations, it is useful, especially with re-
spect to strangeness properties, to represent the
interaction quanta as combinations of the symmet-
ric excitation 7= MM (Fig. 6) and the asymmet-
ric excitation 3=3 or 3 or 3 or 3 (Fig. 17); the ka-
ons, for example, then appear asK=37r7andK= §nn,
andthenasn=44= 337 (this caber substructure is
suggested in Figs. 2 and 3). As additional notation,
the basic spinor core configurations are p =S}S;S},
7=5153S}, and A =S}S7S}, and the square [ ] and
curly { | brackets represent destruction and crea-
tion operators, respectively. With these conven-
tions, Eqgs. (b) and (c) in Table V become

(o) K™ +p—~K~{33733}p

~K +TT+p

~K~+M+p, 33733=TT=M
and
(¢) K™ +p~3nn{3n-3n}p

~ A3 + 773737

~A+n', wr3n3n=TT=n" .

The symmetry of the reaction (b) requires per-
fectly matched internal particle-antiparticle sym-
metry for the newly created M meson, whereas
the scrambled excitation that forms the n’ meson
evidently contains one unmatched internal pair
(these results are illustrated schematically in
Fig. 8).

The symmetry characteristics of the M and 7’
mesons also carry over to the decay modes. The
M has the direct one-step annihilation process
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(from Table V)
(e) M=TT~[37][3n]am+y,

whereas the 7’ has the sequential two-step decay
(also from Table V)

(f) n’=177-~[37]333 -8 +ty=p+y,
S8~ 333 ~[3n] + 77

where S$ in a rotational mode is the p mesonzf
(see paper I), and where the transition 333 —SS
is discussed in Appendix C. In analogy to the
decay modes (e) and (f), we note that the w meson
has the decay mode

w =$.§7r-3337r-[31r] 33 ~7mm .

The 67(962) meson has been a difficult level to
pin down experimentally. From its production
mode, 7~ +p -6~ +p, it is an n’-type resonance,
and we expect to see it appearing 4.5 MeV above
the n’ (Fig. 8 and Table VI), or possibly above the
6° peak. Although subsequent missing-mass ex-
periments have not repeated the original CERN*
observation of this peak, Defoix ef al.?® have ob-
served it in the decay modes D° - 6" 7~ and D° -6~ 17,
with a mass that is 320 MeV below the mass of the
D° meson (see Fig. 19), and with a width I" =30
MeV that is consistent with their resolution of
30 MeV and hence, when unfolded, is much nar-
rower than 30 MeV. Also, Atherton e al.3° have
observed this narrow peak and have identified its
spin-parity as J* =0".

One other resonance that is of interest here is
the M°(1033.6) peak shown in Table X. This peak

and the 5°(963.5) peak were measured by the same
group® *! in the same type of experiment, 7~ +p

- X°+n, with a time-of-flight neutron energy de-
termination, and with the n’ peak available as a
reference mass in each case (the M° and §° mass
values quoted here are adjusted to match the mass
used here for the n’). The difference in mass
between the M° and &° peaks, as noted in Table X,
is 70.1 MeV, which suggests the structure
M°(1033.6)=7*8".

As one final topic in connection with the pseudo-
scalar meson resonances, it is interesting to
observe that the particle configurations shown
in Figs. 6 and 9 also have phenomenological sig-
nificance with respect to the lifetimes of these
particles.®® The metastable mesons and hyperons
(T~107'° to 107® sec) show accurate 2:1 and 4:2:1
ratios in the lifetimes, and also an over-all scal-
ing as powers of a=e?/hc (see paper I). Figure
23 shows the manner in which these factor-of-two
lifetime ratios can be accounted for in terms of
the caber structures of Figs. 6 and 9, which were
deduced originally on the basis of the masses,
strangeness characteristics, and decay modes of
these resonances.

APPENDIX B: THE GEOMETRY OF THE SPINOR S

In this appendix we summarize the phenomeno-
logical considerations which serve to fix the geom-
etry of the spinor S. In Fig. 2 the light-quark
cabers, including the spinor S, are all shown as
linear arrays of quanta M or M,. The two reasons

K* MESON

RESONANCE 7" MESON K @ MESON K§ MESON
LIFETIME (SEC)  1.24x108 2.60x 108 5.17x10°8 0.86x10-10
LIFETIME RATIO 1.0 42 1.0%e
DECAY TRIGGERS 4 1 a

FIG. 23. Lifetime systematics of the K*, 7%, K}, and K% mesons. As shown in this figure, the K*, ¢, K lifetimes
form an accurate 1:2:4 lifetime triplet, and the Ks° can be grouped into a similar triplet shifted by one power of a= e?/%c.
Statistically, these accurate 1:2:4 lifetime ratios can be explained by assuming that 4:2:1 subquanta M are available to
independently annihilate and trigger the decays (the author is aware of no other explanation for these lifetime ratios).
Possible sets of decay triggers are indicated by the arrows. The anomalously long lifetimes of the resonances are re-
lated to the fact that the decays are triggered by the annihilation of single quanta M or M, since resonances that contain

matching internal MM pairs have much shorter lifetimes.
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for assigning this configuration to the spinor S
are that it systematizes spinor binding energies
in an apparently unique manner (see Figs. 3 and 4),
and it leads to a formalism for Coulomb correc-
tions which also seems to be unique (see Table
v).

The spinor S and the spinless quantum 3 are
related mathematically by the equations of special
relativity as applied to rotating systems. For an
individual mass quantum M, or for three quanta
M in an aligned array (the caber 3), the relativis-
tic mass increase m/m, and the relativistic mo-
ment of inertia / about the spin axis are given
by the following equations, which were derived
and discussed in Appendix B of paper I:

_3 f’f/zde(1+esin6)2(l+Zesin9)sin900529
m=3m, | [1-sin6(1 +esin0)2/(1 +e)’]” 2

(B1)

and

1/2 (1 +esind)?(1 +2€ sin)sin®g cos?6
[=3meR4 o d [1-sin?6(1 +e singP A1 +€)?]'/*

(B2)

where m, is the rest mass of the spinning quanta,
where the rotation is at or near the full relativistic
limit

W=C¢/Rmux » (B3)
and where the radii of the spinning quanta are

R, =R, =axial radius,
R=R,(1+e€sind), (B4)

Rg =R, =equatorial radius =R,(1 +¢) ,
with
€=(Rg—R4)/Ry - (B5)

€ is a deformation parameter that characterizes
the oblateness of the spinning spheroid, and 6 is
the angle of the radius vector with respect to the
axis of symmetry (which is also the spin axis).
For a spherical geometry (e=0), Eqgs. (B1) and
(B2) become simply

iy (B6)

m=

wjw

and

I=3mR?=

wle

moR® . (B7)
From (B1), it can be seen that
m=mlmy, €) , (B8)

a result that was used to classify the parameter
R.i» as a dependent variable in Table I. From the
equation

J=Iw=Ic/R (B9)

the angular momentum J of the spinor S can be
obtained as a directly calculated quantity. Also,
for a unit equatorial charge distribution, the cal-
culated magnetic moment of the spinor S is

max ?

H= "Rmaxzi
= TR, (e/c) (w/2m)
=5 eR e - (B10)

The value chosen for R is

Ryax <h/mc~3/3 F, (B11)

where m=Mg¢+ =330.6 MeV, so that R, reflects
the Compton wavelength of the spinor S. If we
specialize these results to a spherical geometry,
Egs. (B3), (B7), (B9), and (B11) give

J=Iw=3mRc=3h (B12)

as the calculated spin angular momentum. In the
more general case of an oblate spheroidal geom-
etry, we must use Eq. (B9) together with a numer-
ical integration of Eq. (B2). Inserting Eq. (B11)
into Eq. (B10) gives

w=eh/2mc (B13)

as a calculated magnetic moment.

The functions V(e), u(e€), I(€), and m(my, €) that
were used to fix the geometry of the spinor S are
shown in Fig. 24, plotted as functions of €. The
volume V(e) relates to the volume of a nucleon,
which is obtained from the optical-model radius
for heavy nuclei:

Rnucleus=1'25 Al/s F ’

Vnucleon = Vaucleus /A

= (47)(1.25) (B14)

=8.2 F3 .

w(e), the calculated magnetic moment, should be
matched to the intrinsic quark magnetic moment
u=2.19 uy."* I(€), the moment of inertia, is
used in the calculation of the spin angular mo-
mentum; in adjusting the parameters of the spinor
S, the values for the spinning mass and for R,
and R_, were constrained so as to maintain J =37
exactly for all values of €. The spinning mass

m (m°, €) should match the mass of a spinor as
given in Table XI. For the case where €=0 (a
spherical geometry), the volume V is too large,
the magnetic moment p is also too large, and the
spinning mass is too small. As the value for €

is increased in the positive direction, the volume
V decreases, the magnetic moment p also de-
creases, and the spinning mass increases. Hence
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the deformation of the quantum M away from a
spherical geometry and into an oblate spheroidal
geometry changes all of these quantities in the
right direction. The values of € for which each
of the quantities V, u, and m reaches its proper
value are somewhat different from one another;
these values are summarized in Table XII. How-
ever, the essential point here is that the use of
an oblate spheroidal geometry for the quantum

M is phenomenologically justified. Guided by the
values for € shown in Table XII, we have chosen
the value at the bottom of the table, a value which
gives R,../Rn»n=V3. The functional dependence
of the quantities V, u, and m on € is slowly vary-
ing (note the restricted ranges of the ordinates

in Fig. 24), and the present simplified discussion
should not be expected to yield precisely the same
value of € for each of these quantities.

APPENDIX C: THE FUNDAMENTAL TRANSITION
333 SS

Equation (B6) in Appendix B suggests that the
transition 333 — SS is essentially isoergic. This
transition actually seems to occur, in both direc-
tions, in hadron interactions, and it is in fact a
cornerstone of the present light-quark phenomeno-
logy. The experimental indications for this transi-
tion were discussed in paper I, where an excitation
symmetry scheme for generating meson reso-
nances was presented. The main reason for dis-
cussing this transition here is to show how the
caber geometries of the present model furnish a
mechanical description of the transition process
from spinless quanta to spinning quanta and back
again.

Clear-cut evidence for the transition

15 I T ] l I I T I
Volume of a nucleon in T
cubic Fermis
12— 2
> V=72 RE RA
@ t— Average volume of a nucleon —
(optical model calculations) i
6 Magnetic moment in nuclear magnetons for o —
2.82 singly-charged spinor S ~ 2. -
2.80 Mproton r= 7rRE ! —
1 2.78 ]
2.76}The radius RE is adjusted to —
2. 74}—maintain J = "{ h exactly —
N 0.52 Moment of inertia about the spin axis
o
s 0.51— —
o Numerical integration of Eq. (B2)
0.50
Relativistic mass increase
1.
33 Numerical integration of Eq.(B1)
o 1.52 .
E RE = equatorial radius
s 1.51 RA = axial radius |
e i N N N N B B

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Deformation parameter € = (RE - RA)’/RA

FIG. 24. Calculated quantities for relativistically
spinning spheroid as a function of the deformation param-
eter € =(Rp—R,) /R ,, where Rgand R , are the equa-
torial and axial radii, respectively, of the spheriod. The
quantities M/M  and I/MR g* are obtained by numerical
integration of Eqgs. (B1l) and (B2) in the text. The calcu-
lated variation of the magnetic moment yu is obtained by
shrinking Ry slightly as I/MR g? increases with in-
creasing € in order to maintain J =% exactly (an equa-
torial charge distribution is assumed). The volume
calculation is based on the assumption that the volume
occupied by a nucleon (N =SSS) is V=9x2Rgzx2Rgx 2R ,
=T72R EzR 4; this volume should match the average nucleon
volume V=8 F3, which is obtained from optical-model
calculations for heavy nuclei (see the text).

TABLE XII. Summary of determinations of the deformation parameter € for the mass quan-
tum M, as it appears in the spinor S [€e=(Ry—R 4)/R ,, where Ry and R , are the equatorial
and axial radii of the oblate spheroids shown in Fig, 2]. Each value quoted for € in the table
is the value which gives the correct calculation for the quantity in question (see Fig. 24). Al-
though the magnetic-moment calculation, volume calculation, and mass calculation all indicate
somewhat different choices for €, a phenomenologically significant improvement is obtained
in each case by using an oblate spheroidal geometry instead of a spherical geometry. The val-
ue selected for € in the present paper is the average of the three determinations shown here,

Calculated value

Required
Quantity to be calculated Sphere Oblate spheroid value for €
Angular momentum (held fixed) (J=3k) (J =4F)
Magnetic moment 2 p=2.84uy U=2.T9uy €~ 0.4
Volume of the nucleon® V=16 F? V=8 F €~0.7
Spinning relativistic mass © M =321.9 MeV M =330.6 MeV e~1

Consensus value for €: € ~v3 =1

2 Based on a singly charged spinor S with an equatorial charge distribution,
b The experimental volume is from optical-model calculations.
¢ Based on Eq. (B1) with a rest mass of 214.6 MeV,
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333~3,[3]3, =SS (c1)

is furnished by the n’ decay mode of Eq. (f) in
Appendix A. The n’ is composed entirely of spin-
less quanta (Fig. 8), whereas the p meson, as
outlined in considerable detail in Ref. 25 and in
paper I, is the S$ spinor pair in a 25*'L,='P, ro-
tational mode. Figure 25 illustrates the transition
(C1), and it shows how the details of the transition
can be used to deduce the (J, /) spin and isotopic-
spin rule given at the bottom of the figure. In the
transition 333 -SS, conservation of energy leads
directly to the quantization of spin angular mo-
mentum: in order to absorb all of the annihilation
energy, the spinors S must spin at the full rela-
tivistic limit of Eq. (B3), with their equators at or
near the velocity of light.

Clear-cut evidence for the inverse transition

8§ ~3{3}3 (C2)

is provided by the decay ¢ —KK. The narrow-
width (I'=4 MeV) spin-1 ¢ meson must contain
an SS spinor pair, whereas the final-state kaons
do not contain spinors. Furthermore, since the
Q value for the reaction is only about 30 MeV, no
quanta M can be annihilated in the decay process.
Thus the transition

¢ =3557~33337~TT=KEK (C3)

is mandated. This transition is illustrated in Fig.
26.

There is an interesting point to bring out in con-
nection with the ¢ ~KK decay mode shown in Fig.
26. From the systematics of the meson resonances
shown in Fig. 19, we would expect the ¢ meson

to appear at a mass of about 1008 MeV and with
a width I ~15 MeV. However, the ¢ meson is
quoted in RPP73 (Ref. 24) with a mass and width
¢(1019.6)I'4.2. An examination of the ¢-meson
experiments® reveals that these ¢ parameters
are obtained only from the ¢ —KK decay mode.
In ¢ —KK decay, we have the unusual situation
of a spin-1 resonance that decays with a very
small @ value into two spinless final-state par-
ticles. In order to carry off the spin angular mo-
mentum of the ¢, the two kaons must be noncol-
linearly emitted, with a separation distance 7
given by the angular momentum equation

[1(1+2)])V2h=F x P . (C4)

From the @ value of about 30 MeV in the ¢ —KK
decay, each kaon has a kinetic energy of about

15 MeV, and hence a linear momentum P of about
123 MeV/c. Inserting this value for P into Eq.
(C4) gives

vk =23 F, (C5)

a result that is independent of any assumptions
about light-quark structure. Since the spinor S
has a diameter D=2R_, ~ 1.2 F, the separation
distance Ry, ~2.3 F indicates that the kaons are
emitted from the periphery of the SS pair. The
result of folding this ¢ — KK kinematic constraint
in with the natural resonance parameters of the
¢ meson is to shift a natural ¢(~1008)I" ~15 reso-
nance (as suggested by Fig. 19) upwards in energy
by an amount AE ~3 I" and to narrow the width of
the resonance.

If the above hypothesis is correct, then the ¢
meson as observed in its ¢ - 7*7”7° decay mode

vV A

A A

EXCITATION 333 —_— s§ s$ — s
SPINOR FLIP

SPIN 5,0 $,°0 $,70 S

1ISOTOPIC SPIN 1=0,1/2, 0R 1 1=0 ONLY

SEQUENCE STEP 1 STEP 2

FIG. 25. The fundamental spinor production process 333—8$. This reaction arises from the special relativistic re-
sult (Appendix B) that relativistically spinning spheres, with their equators near the velocity of light, are half again as
massive as they were at rest. In this figure, we start with the basic excitation cluster 333. One 3 annihilates, and the
tangential forces from the annihilation set the other two 3’s spinning in opposite directions. In order to conserve energy,
they must spin at the full relativistic limit, which leads automatically to the quantization of spin angular momentum, with
each spinning 3 having spin angular momentum J =3%. The spinning 3’s constitute the nonstrange spinor pair $5(658)
(Fig. 19), with total angular momentum J=5,=0. This is step 1 of Fig. 25. If the 83 spinor pair is in the charge-
symmetric isotopic-spin mode I =0 S+ $ <), it can and does couple to external angular momenta via a photon exchange so
as to have a spinor-flip transition and appear with J=S,=1. This is step 2 of Fig. 25. This two-step process leads to
the important spin—isotopic-spin rule for $$ spinor pairs: $S spinor pairs appear either as J=1, I =0oras J=0, I=1
configurations. (Note that the Xy pairs described here are actually $s pairs; this distinction between the spinors $ and
S is usually ignored in the text.)



8178 MALCOLM H. Mac GREGOR 10

HE SONANCE # MESON
STRUCTURE 3SSn
THANSITION SS »333

—_—

SPINLESS QUANTA — Ke° K¢
33337 7

33337 77

FIG. 26. The decay process ¢ ——KK. The ¢ is the narrow-width spin-1 resonance ¢ =3SS7 (its spin of 1 and its narrow
width show that it must contain a spinor pair SS). The kaon is the spinless caber 7 (see Figs. 7 and 9). Since the ¢ con-
tains five quanta M (73 =5M) plus a spinor pair SS, and the KK final state contains fourteen quanta M (K =7M), the de-
cay process SS— 333 =nine quanta M is unequivocally required. The isotopic spin I =0 and spin angular momentum J=1
of the ¢ meson constitute an example of the I =0, J=S, =1 rule of Fig. 25 for SS spinor pairs.

should appear at a lower energy and with a broader
width, since the large @ value in this latter reac-
tion removes most of the angular momentum
limitation on the final-state phase space. At the
time this analysis was first published,® no direct
measurements of the ¢ - 77~ 7° decay mode existed
from which one could determine the mass and
width of the ¢. However, several months later

a Brookhaven experiment® appeared which gave

the ¢~ 7"7"7° decay with a mass ¢(1009 +8) and
with a width of roughly 20 MeV, in agreement

with present expectations. These are the ¢ values
that are shown in Fig. 19. The ¢ —n*7"71° decay
seems identifiable with the elusive H — 7*7"7°
meson, which has been seen weakly in a number

of experiments,?* and which has isotopic spin

I=0, a mass of about 1000 MeV, and is probably a
spin-1 resonance.?*

APPENDIX D: ASSOCIATED-PRODUCTION EQUATIONS

In the present light-quark model for hadron res-
onances, all of the basis states are formed from
the single massquantum M ~70 MeV. By writing
down equations for production and decay reactions
in terms of the quantum M, it is possible to trace
these reactions through in some detail. In this
section we discuss a number of associated-pro-
duction reactions—not from the viewpoint of pro-
viding a comprehensive treatment, but rather in
the sense of sketching the manner in which the
systematics of these reactions might be worked
out.

1. Basis states and rules for associated production

Definition of strangeness. S,=first-class
strangeness—carried by spinless cabers—relevant
for both binding energies (Table II) and strange-
ness quantum numbers.

S, =second-class strangeness—carried by spinor
triplets—relevant only for binding energies (see
Table II and Figs. 2 and 20).

Excitation basis states.

7=MM S,=0 (Fig. 6)
3=3,3,%3 S,=+1,0,0, -1 (Fig. 17)
4=4,4,2 S,=+1,0,-1 (Figs. 13 and 18)
K=37m, K=3mm S,=+1,-1 (Figs. T and 27)
333 =333 S,=+1-1=0  Basic 3-triplet
333=333 S,=+1-1=0 Basic

3-antitriplet

Spinor core configurations.
(p) =S1S;S} - strangeness S, =+1 ,
(n) =S3S7S} - strangeness S,=+1,
(K) =815}S} — strangeness S, =+1 .

Spinless mass opevators. { }=creation oper-
ator—creation of quanta M. [ ]= annihilation
operator —annihilation of quanta M. { ) =trans-
formation operator —transformation of quanta M
or M into their antistates: (M) -M, (M) -M.

Rules for the mechanism of associated produc -
tion.

Rule (1) Strangeness S,=+1 (- 1) spinor cores
combine with strangeness S, =-1 (+1) spinless
cabers to form Y* resonances; strangeness S,
=+1 (- 1) spinor cores do not combine with
strangeness S, =+1 (- 1) spinless cabers to form
Z* resonances.

Rule (2) The conventional strangeness quantum
number of a resonance is the sum of the strange-
ness quantum numbers S, carried by the spinless
cabers in the resonance cluster.

Rule (3) The dominant excitations produced by
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the creation operator { } in associated production
are the same excitations which are dominant in
the meson production reactions shown in paper I.
These excitations, which are the straight con-
version of kinetic energy into hadronic matter,
are necessarily nonstrange.

Rule (4) The transformation operator { ) occurs
in conjunction with the annihilation operator [ ];
the annihilation process can be associated with a

geometrical rearrangement of the resonance struc-

ture. The transformation operator ( ) also seems
to be responsible for the K3 regeneration process
(K2 =33M~33(M) =331 =33 =K2), and it suggests
that the physical K} secondary collision which
causes the regeneration process leads to the re-
orientation of the odd quantum M in the linear K}
structure (see Fig. 9). These results both suggest
that the distinction between the particle state M°
and the antiparticle state M° is the spatial orien-
tation with respect to the resonance structure.
Rule (5) The asymmetric collision process 7 +N,
in which a strangeness S, = +1 spinor core is in-
volved, leads to the production of the excitation
sequence {333}, {333-333}, {333.333-333},
etc., but not to the production of excitations such

2. A hyperon production
An associated production reaction for the A is
7+p~1{337}(P) ~(A)3 +3mr=A +K . (D1)

This reaction is shown pictorially in Fig. 27. The
excitation 337 =44 shown in (D1) is the 1 meson.
The spinor-flip transition () - (A) is character-
istically associated with an 7=0 excitation channel,
which may account for the isotopic spin 7=0 of the
A. From rule (1) the (&) spinor core will combine
with a 3 to form a Y* resonance (the A), but it
will not combine with a 3 to form a Z* resonance.
Typical decay processes for the final states of (1)
are

A=(A)3=(A) MM~ () [ M) 7= (B) +MM=p +n

-~ () [M(M)M=(n) +MM=n+7 ,

K=3mm=MMMnn~[M|(M)Mnn=MM+n+n=n+m+7

~[3]am=n+7 .

3. Z-hyperon production
An associated production reaction for the X is
1+p~1{333}(P)=n333(p)~(p)4 +3n1=Z +K .
(D2)

The excitation 333 is the excitation which appears
in meson resonances as the p meson (333 - SS).
Since no core spinor-flip is involved in reaction
(D2), the X is produced with isotopic spin /=1.
Typical decay processes of the T are

=p+m
~ (A MMM +y=A+y .

The y-producing decay, which occurs only in the
I=0 mode, is shown in Fig. 22.

Since A =SSS3 and X =S554, the only other pos-
sible strangeness S, = -1 configuration is 5587.
This configuration actually occurs, in the form of
the A(1402) resonance (see Fig. 21 and Table VII):

K +p = (B)3nm=(p)7=A(1402)S .
The A(1402) has a single decay mode:
A(1402) = (§)7 = (P)ZMMMM ~ (p)3M[M |MM
=P +MM=2 +7 .

4. Z-hyperon production

We have seen above that the strangeness S, =~ 1
resonances occur in all possible combinations:

S$553=A, SSSd=3, S5ST=A(1402) .

The main question with regard to mapping the

T—

—= x MESON + 7 MESON+ PROTON — K°MESON + A HYPERON
SPINOR FLIP

#"MESON + PROTON

FIG. 27. A graphical display of the production process 7~ +p —K 0+ A. When the 7~ strikes the proton, kinetic energy
is transformed into hadronic matter in the form of an 7 meson. The 7 breaks apart asymmetrically, with one part
combining with the 7~ and the other part combining with the proton, so as to form a pair of resonances with strangeness
+1 and -1, respectively (which is the mechanism of associated production). This production process can be written as
the sequence 7 +p =1 +SSS— {337} SSS— SSS3 +31r= A +K, where { } is a creation operator.
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strangeness S, = -2 = resonances is to explain
why they occur only in the combination

SS8S33 =2, (D3a)
and not in the combinations
S8S34 == or SSS44=%" . (D3b)

As we show below, the =’ and =” resonance forms

]

can be ruled out on the basis of the unnatural ex-
citation processes that would be required. The
resonance configuration SSS37 has a calculated
mass £%(1315) +280 = £°(1595), and hence seems
identifiable with the =°(1606) resonance shown in
Fig. 16.

Two associated production reactions for the =
are

m+p—-1{333-333}(p) =1333333(P)~(A)33 +3mr+3mr=5+K +K , (D4)

K +p~31m{33}(p) =~ (A)33+3mm=2+K .

(D5)

In order to produce the =’ and =” hyperons, which are not observed experimentally, we would have to
have associated-production reactions of the types shown below:

7+p~1{3337-33n}(p) =3 33133n(p) ~ (A)34 +3mm+3am=5" +K +K . (D6)
n+p~n{§§§n-§§§}(ﬁ)=n33§7r3§§(f))~(/§)33 +3mn+3mn=E" +K +K . (D7)

K+p ~3nn{§37r}(ﬁ) ~(A) % +3mm=E"+K +K .

The excitations {33 37-3 37} and {33 37-333} in
(D6) and (D7), respectively, are both mixed ex-
citations, and the experience with meson reso-
nances (see the discussion in paper I) suggests
that these mixed excitations occur with very small
cross sections. Also, the excitation {3337-333}
in (D7), which contains two 333 combinations, is
not allowed by rule (5). The excitation {53'#} in
(D8) has nonzero strangeness, and hence is not
allowed by rule (3). Thus we can see that the non-
observance of the cascade resonances =’ and Z”
of Eq. (D3b) is simply explained in terms of the
requisite excitation mechanisms.

The dominant = decay mode is

= =585533 =S5S3MMM ~ SSS3[ M | (M) M =S583 +MM
=A+m.

J

(D8)

r

The decay mode
E =SSS3MMM ~SSS3M{M)M=S5S% +MM=Z% +7

is not allowed, because the transformation (i)
-M can only take place in cases where an anni-
hilation has occurred (e.g., [M] or [ 3]), or where
a secondary particle scattering has occurred

(K§ regeneration).

5. Q2 -hyperon production

One puzzle about the © hyperon is to understand
why it appears as the configuration §=555344,
but not as the configuration ' =SSS333. The Q'
seemingly should be produced in the reaction

K +p—=31n{337-33n}($) = (2)333+3nn +3m7=Q' +K +K . (DY)

A possible reaction for producing the © (but see the discussion below) is

K+p~311{333-333}(p)=371m333333(p) ~ (?)342+377+317=Q+K +K . (D10)

Since only 41 § particles have been observed, 3
the occurrence of (D10) but not (D9) might be ex-
plainable in terms of cross sections. In meson
resonances, the 33 3-333 excitation leads to the
dominant D meson, which has been observed in

pp experiments and as a prominent peak in several
missing-mass experiments. The 337-337 excita-
tion, on the other hand, leads only to the very
weak X°(1148) and X ~(1153) meson resonances of
Fig. 19 (plus some stronger overlying rotational

—

levels, as shown in paper I). However, reaction
(D10) has a difficulty. The excitation shown in
states that this form of asymmetric excitation is
not allowed. The way out of this difficulty relates
to an interesting experimental observation. Al-
though the excitation 333 -333 is not allowed,
rule (5) states that the excitation 333:333-333
is allowed. Suppose that instead of (D10), we have
the following two-step process for the production
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of the Q:

K+p~K{333-333-333}-K+NNN, (Dlla)

where NN N is a strangeness S =-2 nucleon-trip-
let type of excitation which has the decay mode

NNN-Q+K . (D11b)

There are two different experimental results which,
when taken together, suggest that the reaction
sequence (D11a) - (D11b) may actually occur: (1)
The excitation 333-333-333 leads via the transition
333-333-333 - SSSSSS to the Syracuse® NN bound
state (Fig. 11), with a mass of about 1800 MeV,

so that a nucleon triplet NNN would have a mass
of about 2700 MeV; (2) in one Q~ experiment,®®

the experimenters noted that five of the K™p

- Q K*K° events were of the type

K™p—~K*+E7(~2700 MeV),
=7(~2700) - Q™ +K° ,

which is just the sequence we have shown in (D11a)
and (D11b).

As we have outlined hyperon-excitation mecha-
nisms thus far in the present paper, the first-
class strangeness S, has been attributed solely
to spinless quanta, and hyperon excitations are
assumed to occur via the binding of strange spin-
less excitation quanta to the invariant SSS hyperon
spinor core. However, if a strange excitation

QUANTUM HADRONIC M
REST MASS ~70 MeV
SPINNING MASS 110 MeV
RADIUS (\ 3/3)x 1013 em

unit 333 can make the transition 333 ~SS (Ap-
pendix C) and then bind to the spinor core SSS,

we can have a case where the hyperon excitation
is via the binding of strange spinors to the SSS
spinor core. There are three examples which
suggest that excitation spinors with first-class
strangeness may exist: (1) The £ production mode
(D11a) and (D11b) just discussed; (2) the A(1518)D
resonance, whose anomalously low mass can be
reproduced by a strangeness S, =-1 SS spinor

pair bound to the SSS spinor core (A); (3) the

K *(892) kaon resonance, which is the configura-
tion SS7 in an L =1 rotational mode (paper I), and
in which the first-class strangeness of the reso-
nance may be carried by the SS spinor pair. How-
ever, with only three such widely spaced examples
as these, it is difficult to incorporate these re-
sults into the general systematics of the theory,

at least in its present state of development.

APPENDIX E: A MODEL FOR THE MUON

In the present paper we have defined a light-
quark geometric model which reproduces the
strongly interacting hadron resonances, and in
which absolute masses, spin angular momenta,
and magnetic moments occur as calculated quan-
tities. By a straightforward extension of these
results, we can produce a similar model for the
muon. This model is illustrated in Fig. 28.

MUON
~70 MeV
105.7 MeV

3x10-13¢cm

FIG. 28. The mass quantum M = 70 MeV as it appears in hadronic states (see Fig. 1) and as it appears in the muon
(Appendix E). The stripe in each case represents an equatorial charge distribution, where the equatorial radii are the
values quoted in the figure. The model shown here for the muon gives all of its first-order properties correctly as
calculated quantities—namely, the mass, the spin angular momentum J, and the magnetic moment 4. The angle of in-
clination with respect to the vertical z direction shown for the muon is the angle that projects J= [4(5 + 1)]V2i= (W3) %
onto J, = 4% and p=V3eh/2mc onto u, = eh/2mc, as is required quantum-mechanically, where z is the axis of quantiza-
tion. Although the equatorial charge distribution of the muon gives rise to an intrinsic electric quadrupole moment, this
angle of inclination causes the quadrupole moment to vanish identically along the z (vertical) axis, and the precessional
motion about the z axis causes the quadrupole moment to average out to zero along the x and y axes over one cycle of
precession. This result is important, since quantum mechanics does not allow an observable quadrupole moment for

the muon (but see Ref. 36).
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From Eq. (B6) in Appendix B, a relativistically
spinning sphere, with its equator moving at or
near the velocity of light, becomes half again as
massive as it was at rest. Thus a spherical 70-
MeV rest mass will become a 105-MeV spinning
sphere as observed in the laboratory frame of
reference. If the radius of the sphere is set equal
to its Compton wavelength, R=#/mc, then from
Eq. (B12) the calculated spin angular momentum
is J=3#, and from Eq. (B10) the calculated mag-
netic moment is u=e#%/2mc, where we assume
an equatorial charge distribution.

The one difficulty with this model for the muon
is that the equatorial charge distribution gives
rise to an electric quadrupole moment, which
quantum-mechanically is not allowed for a spin-3
particle. However, if the spinning muon is tipped
on its axis and given a precessional motion, there
is one angle between the spin axis and the axis of
precession for which this difficulty vanishes, and
this angle happens to be the same as the angle
that is assumed in the usual quantum-mechanical
formulation of the muon. This is the angle
6=cos™}(1/V 3). At that angle, the z component
of the electric quadrupole moment, which is pro-
portional to P,(cos6), vanishes identically; also,
the x and y components, which are proportional
to P,(cosy), where cosy =sinfcos¢, with ¢ the

angle of precession, average out to zero over one
cycle of ¢ rotation (if the sphere is stationary?3).
At this tipped angle for the spinning sphere, the
radius of the sphere must be increased by a factor
of V'3 so as to obtain the projected quantities
Jy=3h and u,=eh/2me, as required experimen-
tally. The total calculated angular momentum is
then J=[4 (3 +1)] V27 =(5 V3)A, and the total cal-
culated magnetic moment is p=vV3ek/2mc. Thus
we have obtained the quantum-mechanical value
[J(7+1)] 2y for the total spin of the muon by re-
quiring that the electric quadrupole moment of
the muon must vanish.

In Fig. 28, the 70-MeV hadronic mass quantum
M of Fig. 1 and the 70-MeV mass M, whose spin-
ning configuration represents the muon are shown
with their correct relative sizes. As can be seen,
although M and M, are both 70-MeV quanta, M,
appears in a considerably expanded geometry.
Thus, although M and M, seem undeniably related,
as for example in the dominant decay mode

T~u+v, MM-M[M]+v=M,+v,

they are geometrically quite different forms of the
basis 70-MeV mass quantum. Hence in this ha-
dronic light-quark model, we are not simply “col-
oring the quark muon.”?%’

*Work performed under the auspices of the U. S. Atomic
Energy Commission.
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QUANTUM m* Mo me M
MASS (MeV) 74.6 70.0 70.0 74.6
CHARGE te 0 0 -e

FIG. 1. The fundamental mass quantum M~ 70 MeV.
M appears to have the same quantum numbers as the
K meson; in particular, it has isotopic spin I =4, spin
angular momentum J =0 (it also appears as the spinning
quantum M in the spinor S), and strangeness S==1.
The shape of the quantum M is that of an oblate spheroid,
with radii Rp,,~3V3 F and R,;,~ % F, as determined
in Appendix B. As shown in Fig. 2, the quantum M
occurs in its spinless form in the basis states 1=M,
3=3M, 4=4M, and 7= M, and it occurs in its spinning
form in the spinor $ =3Mg. Although the spinless quan-
tum M~ 70 MeV has not been observed experimentally,
the spinning quantum M, is related phenomenologically
by the equations of special relativity to the readily ob-
served muon (see Appendix E and Fig. 28).



FIG. 10. The proton and neutron. These are both
formed as Fermi-Yang (Ref. 4) spinor clusters N =888,
The internal charge assignments for the nucleons follow
uniquely from the requirement of reproducing the follow-
ing experimental data: the total charges, the magnetic
moments, the spins, the mass difference, and the zero
electric dipole moment for the neutron about its spin
axigs. From their resultant electromagnetic interactions,
the proton appears with a linear SSS configuration and the
neutron with a clustered S§ configuration. The nucleon
values that are reproduced from the parameters of

Table I are the following:

Proton Neutron
Spinor configuration S1S7Si S1sysy
(linear) (clustered)
Intrinsic mass (MeV) 991.8 998.1
hadronic binding energy —54.6 —54.6
magnetic binding energy  +3.4 -1.7
Coulomb binding energy -2.2 -2.1
Calculated mass 938.4 MeV  939.7 MeV
Experimental mass 938.4 MeV  939.6 MeV
Calculated magnetic
moment +2.79%uy —1.86uy
Experimental magnetic
moment +2. 7%y —1.91uy



FIG. 11. The pn bound state. The same parameters
that reproduce the proton and neutron also reproduce the
pn bound state. The pn cluster shown here is a spin-1
configuration, as suggested by the experimental data.

Spinor configuration SYSSYS|SYS]
Intrinsic mass (MeV) 1989.9

hadronic binding energy -191.1

magnetic binding energy +1.7

Coulomb binding energy —-5.6
Calculated mass 1794.9 MeV
Experimental mass 1794.5+ 1.4 MeV

The Coulomb corrections for Figs. 10-15 are discussed
in Sec. IV and summarized in Table I



FIG. 12. The A hyperon. The A is the caber cluster
5§3, in which the anticaber 3 carries the strangeness
quantum number S=—1. Calculated values for the A are
the following:

Caber configuration Sisysia”
Intrinsic mass (MeV) 1206.4
hadronic binding energy —84.6
magnetic binding energy -1.17
Coulomb binding energy -3.2
Calculated mass 1116.9 MeV
Experimental mass 1115.6 MeV
Calculated magnetic moment —0.93uy

Experimental magnetic moment (= 0.67+0.06)uy
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FIG. 13. The Z hyperons. The Z hyperons are caber
clusters 534, in which the anticaber 4 carries the
strangeness quantum number S=-~1. The configurations
shown here reproduce the masses and charge splittings
correctly. The Z* magnetic moment is correctly repro-
duced. The calculated Z~ magnetic moment is in dis-
agreement with a recent measurement (Ref. 11). The
magnetic moment of the Z° has not measured, but the £°
cluster shown here and the A cluster of Fig. 12 correctly
reproduce the @ value of the observed decay mode Z°
— A +y (see Fig. 22).
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Caber configuration S}STSTA" Sys7Si4- SySysiet
Intrinsic mass (MeV) 1271.8 1276.4 1281.0
hadronic binding energy —84.6 —-84.6 —84.6
magnetic binding energy +5.1 +5.1 +5.1
Coulomb binding energy -1.4 -3.2 -3.3

Calculated mass (MeV) 1190.9 1193.7 1198.2
Experimental mass (MeV) 1189.4 1192.5 1197.3

Calculated charge 2.8 4.5
splitting (MeV)

Experimental charge 3.1 4.8
splitting (MeV)

Calculated magnetic +2.79%uy +2.T9uy  +2.79%uy
moment

Experimental magnetic (+2.59 (—1.48
moment +0.46)py 03Ty

(Ref. 11)
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FIG. 14. The = hyperons. The E hyperons are the

caber clusters
3

in which the two anticabers 33 carry the strangeness
quantum S=-2. In order to reproduce the large charge
splitting for this hyperon resonance, we must, as in the
case of the proton and neutron, form the second charge
state by using a doubly charged spinor $°. This leads
to the prediction that the =~ and the neutron have com-
parable magnetic moments, in contrast to the SU(6) pre-
diction that the =~ and A have comparable magnetic mo-
ments. A recent experimental result (Ref. 12) is in
agreement with the present prediction. The Z° magnetic
moment is unknown.

EU

Il

Caber configuration 5357513730 535751873°
Intrinsic mass (MeV) 1416.4 1422.7
hadronic binding energy -—99.6 —-99.6
magnetic binding energy —-1.7 =11
Coulomb binding energy —3.2 -3.3
Calculated mass 1311.9 MeV 1318.1
MeV
Experimental mass 1314.9 MeV 1321.3
MeV
Calculated charge
splitting 6.2 MeV
Experimental charge
splitting 6.4 MeV
Calculated magnetic
moment —0.931y —1.86py
Experimental magnetic
moment teis (-1.93

+0.75)py
(Ref. 12)



FIG. 15. The £~ hyperon. The £ is the caber cluster
i
S 3-
5= ]
44

in which the three anticabers 344 carry the strangeness
quantum number S=—3. The spin of the & has not been
measured. Since the &7 -Z~ mass difference is 350.9
MeV, almost precisely equal to 5x70.0 MeV, we have
assigned the G~ the same spinor-triplet configuration
as the -, Ina similar pairing of resonances, the
A(1402.4) =p7~ and Z°9(1192,5) = p4~ resonances have a
mass difference of 209.9 MeV, almost precisely equal
to 3x70.0 MeV.

Caber configuration 51878737400

Intrinsic mass (MeV) 772.7
hadronic binding energy -99.6
magnetic binding energy -1.7
Coulomb binding energy -3.3

Calculated mass 1668.1 MeV

Experimental mass 1672.2 MeV (Ref. 13)



CABER 3 3 3 3
STRANGENESS + 0 0 -1
HADRONIC B.E. % ~0 ~0 ~4%

FIG. 17. Strange and nonstrange forms of the caber 3.
Phenomenologically, the relationship between strange-
ness quantum numbers and binding energies that is es-
tablished here is one of the most important results of the
present systematics: strange quanta have HBE ~4%, and
nonstrange quanta have HBE~ 0%. These caber proper-
ties are summarized in Table II. In Sec. IV it is demon-
strated experimentally that strange and nonstrange basis
states have the same intrinsic masses.
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EXCITATION a4 N4d \44 vaa
CALC.MASS (MeV) 8x70=560 939+560=1499 1116+560=1676 1193560 1753
0BS. RESONANCE #7(560)DIP N(1508)S \(1673)8 L(1756)S

FIG. 18. The nonstrange caber pair 44, which appears with zero hadronic binding energy. Evidence for direct 44
=580 MeV resonance effects in meson amplitudes is weak (Ref. 16), but the Ndd, Add, and £44 resonances are dominant
and easily observed baryon and hyperon S states. The mass values shown here indicate that the zero-binding-energy
approximation for these excitations is accurate.
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FIG. 2. The cabers 1, 3, 4, 7, S. These are formed as linear arrays of quanta M. The linear arrays account in an
apparently unique manner for a number of phenomenologically required light-quark binding energy characteristics and
electromagnetic characteristics, as is summarized in Table IV. These linear arrays occur both as cabers (strangeness
= +1) and as anticabers (strangeness=-1), and hadronic binding energies exist only between caber-anticaber pairs. In
hyperon resonances, which are formed by adding spinless anticabers to an existing nucleon spinor triplet, it is the spin-
less anticabers which carry the conventional strangeness quantum numbers; the conservation of baryon number is pre-
cisely equivalent to the conservation of nucleon spinor triplets, so that the strangeness of the spinor triplet, and hence
also of the spinor S, does not enter into the bookkeeping of the associated-production process. Thus the spinor S is
assigned a strangeness quantum number of zero, although from its hadronic binding energy it is in fact “strange.”

In Sec. III, “nonstrange” forms of the cabers 3, 4, and § are also described. The mass of a caber is the sum of the

masses of the constituent subquanta M. The properties of the cabers 1, 3, 4, 7, S are summarized in Table II, and the
spinor S is discussed in detail in Appendix B.



SPINOR s $ 3 §
STRANGENESS e 0 0 e
HADRONIC B.E. ~a% ~0 ~0 ~a%
ANGULAR MOM, th bh +h L

FIG. 20. Strange and nonstrange forms of the spinor S.
Figures 17 and 20 show analogous characteristics for
the spinless caber 3 and the spinor S. The fundamental
spinor-pair production and decay transition 333-—SS
is discussed in Appendix C. This transition gives an
explanantion for the quantization of spin angular momen-
tum, and it leads to a fundamental spin and isotopic-spin
selection rule: SS spinor pairs occur either as J=1,
I=0 oras J=0, I=1 configurations. Spinors S occur
in hadron resonances in a very distinctive manner,
namely as SSS and 555 spinor triplets in baryon reso-
nances and as $5 and SSSS pairs and quartets in meson
resonances. From their 4% hadronic binding energies,
the spinors S and S are “strange,” but from the invariant
nature of SSS triplets, this strangeness is an invariant
(and therefore ignorable) in associated-production re-
actions. Thus we formally assign to the spinors S and §
a strangeness S=0. As is shown in Sec. IV, strange
and nonstrange spinors have the same intrinsic masses,
and as is shown in Appendix B, the spin angular mo-
mentum J=3% is a calculated quantity.
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RAY
REACTION p - A + ¥
SPINOR FLIP
STRUCTURE sfs;sfa sis; st
MAG. MOMENT u~+3 p~-1
ENERGY (MeV) 11925 115.6 76.9

FIG. 22. An empirical determination of the SS spinor-pair magnetic interaction energy from the decay £°— A+y. The
Z0 and A hyperons shown in the figure have identical Coulomb energies. Hence the electromagnetic energy difference of
6.9 MeV indicated in the figure is due to magnetic effects. The Z¥ has +3 magnetic pairs (+*4+~t*), and the A has —1
magnetic pair (t*#74%), where +1 pair denotes a repulsive interaction that contributes positively to the potential energy.
Thus the 6.9 MeV of magnetic energy is attributed to the difference (+3)— (—1) = +4 magnetic pairs, which gives a mag-

netic pairing energy of 1.7 MeV per pair,
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RESONANCE K* MESON 7t MESON K MESON K MESON
LIFETIME (SEC)  124x 108 2.60x 108 5.17x10°8 0.86x10°10
LIFETIME RATIO 1.0 2.1 42 1.0xa
DECAY TRIGGERS 4 2 1 4

FIG. 23, Lifetime systematics of the K¥, n*, K}, and K} mesons. As shown in this figure, the K*, n* K} lifetimes
form an accurate 1:2:4 lifetime triplet, and the K& can be grouped into a similar triplet shifted by one power of a= e?/Jc.
Statistically, these accurate 1:2:4 lifetime ratios can be explained by assuming that 4:2:1 subquanta M are available to
independently annihilate and trigger the decays (the author is aware of no other explanation for these lifetime ratios).
Possible sets of decay triggers are indicated by the arrews. The anomalously long lifetimes of the resonances are re-

lated to the fact that the decays are triggered by the annihilation of single quanta M or M, since resonances that contain
matching internal MM pairs have much shorter lifetimes.
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EXCITATION 333 —_— s§ 5§ -
§s SPINOR FLIP 88

SPIN 5.-0 §570 5,70 Sp°1

ISOTOPIC SPIN 1=0,1/2,0R 1 1=0 ONLY

SEQUENCE STEP 1 STEP 2

FIG. 25. The fundamental spinor production process 333—3S. This reaction arises from the special relativistic re-
sult (Appendix B) that relativistically spinning spheres, with their equators near the velocity of light, are half again as
massive as they were at rest. In this figure, we start with the basic excitation cluster 333. One 3 annihilates, and the
tangential forces from the annihilation set the other two 3’s spinning in opposite directions. In order to conserve energy,
they must spin at the full relativistic limit, which leads automatically to the quantization of spin angular momentum, with
each spinning 3 having spin angular momentum J=4%%. The spinning 3’s constitute the nonstrange spinor pair 5&(658)
(Fig. 19), with total angular momentum J=5,=0. This is step 1 of Fig. 25. If the $$ spinor pair is in the charge-
symmetric isotopic-spin mode I =0 (5"‘.9 N, it can and does couple to external angular momenta via a photon exchange so
as to have a spinor-flip transition and appear with J=§,=1. Th1s is step 2 of Fig. 25. This two-step process leads to
the important spin—isotopic- spm rule for $$ spinor pairs: 5y spmor _pairs appear either as J=1, [ =0 or as J=0, I=1
gonfigurations. (Note that the 88 pairs described here are actually ss pairs; this distinction between the spinors S and
S is usually ignored in the text.)
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HESONANCE ¢ MESON —_— SPINLESS QUANTA —_— Kf KE
STRUCTURE 38Sa 33337 7 7
TRANSITION §5+333 3333n+77

FIG. 26. The decay process ¢ —KK. The ¢ is the narrow-width spin-1 resonance ¢ =3857 (its spin of 1 and its narrow
width show that it must contain a spinor pair SS). The kaon is the spinless caber 7 (see Figs. 7 and 9). Since the ¢ con-
tains five quanta M (73 =5M) plus a spinor pair SS, and the KK final state contains fourteen quanta M (K =7M), the de-
cay process SS— 333 =nine quanta M is unequivocally required. The isotopic spin I =0 and spin angular momentum J=1
of the ¢ meson constitute an example of the I =0, J=5, =1 rule of Fig. 25 for $S spinor pairs.
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7~ MESON +nMESON + PROTON —= K®MESON + A HYPERON
SPINOR FLIP

7"MESON + PROTON
FIG. 27. A graphical display of the production process 7~ +p —K"+A. When the 7~ strikes the proton, kinetic energy
is transformed into hadronic matter in the form of an 7 meson. The 7 breaks apart asymmetrically, with one part
combining with the 7~ and the other part combining with the proton, so as to form a pair of resonances with strangeness
+1 and -1, respectively (which is the mechanism of associated production). This production process can be written as
the sequence 1 +p =1 +858— {337} 555 — S553 +3nm = A+K , where { } is a creation operator.
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QUANTUM HADRONIC M MUON
REST MASS ~70 MeV ~70 MeV
SPINNING MASS _ 110 Mev 106.7 MeV
RADIUS (\'3/3)x 1013 em 3x10°13cm

FIG, 28, The mass quantum M = 70 MeV as it appears in hadronic states (see Fig. 1} and as it appears in the muon
(Appendix E). The stripe in each case represents an equatorial charge distribution, where the equatorial radii are the
values quoted in the figure. The model shown here for the muon gives all of its first-order properties correctly as
calculated quantities—namely, the mass, the spin angular momentum J, and the magnetic moment . The angle of in-
clination with respect to the vertical z direction shown for the muon is the angle that projects J= [(%+ 1)V2 k= (W3 %
onto J, = 3% and p=v3e#/2mc onto p, = ek/2me, as is required quantum-mechanically, where z is the axis of quantiza-
tion. Although the equatorial charge distribution of the muon gives rise to an intrinsic electric quadrupole moment, this
angle of inclination causes the quadrupole moment to vanish identically along the z (vertical) axis, and the precessional
motion about the 2 axis causes the quadrupole moment to average out to zero along the x and y axes over one cycle of
precession. This result is important, since quantum mechanics does not allow an observable quadrupole moment for
the muon (but see Ref. 36).



FIG. 3. Hadronic binding energies between caber-anticaber pairs. The hadronic binding, which from its ~4% mag-
nitude is very short-ranged, operates directly between matching M and M subquanta in adjacent cabers. Denoting these
subquanta as M (nonspinning) and M (spinning), the hadronic binding energies between subquanta are as follows:

MM =—5.0 MeV, MM ,=MMg =—5.0 MeV, M,M ,=—9.1 MeV, MM =MM =MM,=MMy=M,;M,=M,M,=0. As shown in the
figure, the corresponding caber-anticaber binding energies in MeV are as follows: 11=-5.0, 33=-15.0, 44=-20.0,

77=-35.0, S3=54=57=-15.0, S5=—27.3, S§=55=0. The mass proportionality of the 11, 33, 44, and 77 binding ener-

gies and the equality of the $3, 54, and ST binding energies are both phenomenologically required features, and they
seem to follow uniquely from the linear caber configurations shown here.
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RESONANCE A HYPERON T HYPERON Z HYPERON §LHYPERON
STRUCTURE 8883 5854 §8s33 $55344
STRANGENESS -1 -1 -2 -3
3ANDAHBE  2x-15=-30 2x-15=-30 3Ix-16=-45 3x-15=-45

FIG. 4. Hadronic binding energies for clusters of spinless anticabers added to a nucleon core. Due to the very short
range of the ~4% hadronic binding energies, only adjacent caber-anticaber pairs in a cluster can bind hadronically.
When adding spinless anticabers to an S5S-triplet nucleon core to form a hyperon resonance, the first 3 or 4 binds with
two spinors S to give HBE=—30.0 MeV, the second 3 binds with only one spinor S to give HBE=—- 15 MeV, and the third
anticaber, from its position in the excitation cluster, binds with essentially zero binding energy. As discussed in
Fig. 2, the spinless anticabers carry the strangeness quantum numbers of the hyperon resonance. Experimentally,
anticabers 3 and 4 will bind to an S5S nucleon spinor core to produce Y* resonances, but cabers 3 and 4 will not bind to
this same spinor core to produce Z * resonances. Thus the particle-antiparticle asymmetry that is inherent in the nucle-
on spinor core leads to observable consequences. In the present light-quark approach to particle structure, the Fermi-

Yang (Ref. 4) formulation of the nucleon, N =S8S, is required, rather than the Gell-Mann and Zweig (Ref. 5) formulation,
N =8SS.
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RESONANCE o © 3

UNBOUND MASS 144.6 140.0 144.6
HADRONIC B.E. -5.0 -5.0 5.0
BOUND MASS 139.6 135.0 139.6
EXPER. MASS 139.6 135.0 139.6

FIG. 6. The m mesons. The M?, M°, and M* mass
values of Fig. 1 and the MM binding energy of Fig. 3 are
adjusted so as to precisely reproduce the pion mass
values. A stringent test of this phenomenology is to then
use these same parameters to reproduce the higher-mass
resonances, since any systematic errors will scale with
the resonance masses. As is shown in Figs. 7-9, the
parameters that accurately reproduce the pion masses
also accurately reproduce the masses of the higher-mass
resonances of Fig. 5. The caber pairs shown here also
reproduce the strangeness quantum number S =0 and the
spin J =0 of the pion. Phenomenologically, it seems to
be correct that every hadronic resonance must contain
at least one neutral quantum MY or M?. If we postulate
this as a requirement for the ™ mesons, then we have
also reproduced the isotopic spin I =1 of the pion multi-
plet.
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RESONACE PI MESON ETA MESON M MESON K* MESON K~ MESON
STRUCTURE " a4 77 7 4
STRANGENESS 0 0 0 +1 -
UNBOUND MASS 140 569 989 495 495
HADRONIC B.E. 5 -20 -35 0 0
COULOMB CORR. 0 -1 -1 0 0
BOUND MASS 136 548 953 495 495
EXPER. MASS 135 549 953 494 494

FIG. 7. The pseudoscalar bosons T, 1, M, and X *, members of the pseudoscalar nonet. As can be seen, the param-
eters that reproduced the pion masses in Fig. 6 also reproduce the masses of these resonances. Furthermore, the
mass calculation singles out the M meson as the fundamental member of the M, n’,6° multiplet, in agreement with
the results of Figs. 5 and 8 and with the systematics shown in Table V. The Coulomb corrections used here were ob-
tained from parameter (10) in Table I: R,, =~0.6 F— ez/ZRme -1 MeV, a result that is essentially independent of any
specific choice made for the internal + and — charge distributions in the subquanta M* and M~, The caber charge assign-
ments =44, M=T"7", K*=7", and K~ =7" shown here are in agreement with the rule for Coulomb self-energies given
at the bottom of Table 1.



RESONANCE M MESON n' MESON 4" MESON
PRODUCTION PROCESS A+B -A+B+RES. A+B-C+RES. A+B -A+RES.
UNBOUND MASS 989 989 994
HADRONIC B.E. -35 -30 -30
COULOMB CORR, -1 -1 -1
BOUND MASS 953 958 963
EXPER. MASS 953 958 962

FIG. 8. The M(953), 7 (958), and 6~ (962) mesons. The symmetrie production mode A +B —A +B + M mandates that
the M, which is created directly from kinetic collision energy, must have perfect internal particle-antiparticle sym-
metry, and hence a binding energy of —35 MeV. The asymmetric production mode of the 7, on the other hand (see
Table V), suggests a particle-antiparticle “defect,” an unmatched MM pair, which shifts the mass upwards by 5 MeV.
This asymmetry also relates to the decay modes of the M and ' resonances, as is shown in Table V. The M (953),

7 (958), 6%963) fine structure is a direct experimental indication of the 5-MeV internal MM binding energy that was in-
voked initially to explain the pion masses of Fig. 6. The 6~ appears here naturally as a charged form of the 7'. From
the Coulomb rule at the bottom of Table I, this charged state is formed by adding a charge, so that 6" =7""7". The 7*
caber shown here in the 6~ can also be observed singly as the X! meson of Fig. 9.



RESONANCE K* MESON K” MESON K{ MESON K& MESON

STRANGENESS +1 -1 +1-1 +1-1
UNBOUND MASS 494.6 494.6 499.2 499.2
COULOMB CORR. 0 0 -0.7 -0.7
BOUND MASS 494.6 494.6 498.5 498.5
EXPER. MASS 4937 493.7 497.7 4977
KC-K* MASS DIFFERENCE

CALC. 3.9 MeV

EXPER. 4.0 MeV

FIG. 9. The K mesons. The configurations shown here reproduce the absolute mass values, the charged splitting of
the masses, and the strangness characteristics. The K*=7* mesons were shown in Fig. 7. The K % =7*" caber also
appears in the 6~ resonance of Fig. 8; the KJ is a more symmetric form of the 7*~ caber, and it has a 77 decay mode
ascompared to the mrr decay mode of the KJ. As is shown in Fig. 23 of Appendix A, these kaon configurations also have
phenomenological significance with respect to the lifetimes of these resonances. From the calculation of the K%-K*
mass difference, the Coulomb correction in the K° must be — 0.6 MeV (the value of —0.7 MeV shown here is from the
radius R, >} F given in Table I). Thus the K° charge separation must be e2/R*=~0.6 MeV—~R* =2.4 F. This large
value for R* is one of the main reasons for selecting a linear structure to represent the kaon. The conventional quark
model predicts unambiguously (Ref. 10) that the K* meson should be heavier than the K°, K° meson, so the present
light-quark systematics offers a resolution of this long-standing theoretical puzzle. The kaon configurations shown here
are K*=3*4", K} =3*3"1°, and K =3%4", so that K* have strangeness +1 and K} and K} have mixed strangeness, as
otgserved experimentally, The K3 regeneration process, a secondary scattering, is a geometrical rearrangement of the
K structure.



