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A method previously presented in which dispersion relations were written for the logarithm
of the scattering amplitude is extended to larger values of momentum transfer. The earlier
technique was applied to wN elastic scattering but was restricted to -t &0.24 (GeV/c)2 be-
cause of the crossing of the t-dependent threshold energy and the nucleon pole. That lim-
itation is here removed by writing the dispersion relations for the amplitude with its pole
removed, and the thus extended method is again applied to mN scattering. The amplitudes

A.,' calculated at pion lab momenta of 2, 4, 8, 12, 15, 20, and 30 GeV/c for -t =0.20, 0.25,
0.30, 0.35, 0.40 (GeV/c)2 are presented.

I. INTRODUCTION

In a previous paper' (herein referred to as I) we

applied the Hilbert transforms

1 Re E{v', t)dv'
ImF(v, t)= ——P

F v -v

to the logarithm of the pion-nucleon elastic scatter-
ing amplitude A'= (A' (

e'@,

E= tAn'=1 ~nA' ~+i Q,

to obtain a dispersion relation giving the phase of
this amplitude in terms of its magnitude
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)
(v'-v, ')'" InA'(v, t )

(v-v, ) (v+ v, )
(4)

I ln iA'(v', t ) (
dv'

7T V -VI

Here v=(s-u)/M with s, u, and t the Mandelstam
variables and M the nucleon mass. Two major
problems arise in practical applications of this
logarithmic dispersion relation (LDR). One,
shared with conventional nonforward dispersion
relations, is the presence of an unphysical region
where no information about the amplitude's mod-
ulus can be obtained directly from experiment.
The other, unique to the LDR, is that the zeros
of the amplitude are singularities of its logarithm
and therefore a knowledge of the location of these
zeros is required for the evaluation of Eq. (3).
The problem of the zeros will be discussed in Sec.
IG. Various methods for cal.culating nonforward
scattering amplitudes including the LDR approach
have recently been reviewed by Hohler and co-
morkers. '

In I the effect of the unphysical region on the
integrals in (3) was minimized by arranging the
calculation in such a way that its contribution was
very small. This was accomplished by subtract-
ing the dispersion relations at + v, near the upper
end of the partial-wave region and inserting for
F in Eq. (I) not InA' but rather

FIG, 1, Contour in the complex energy plane used in
the derivation of Eqs. {6) and {9).

2t'(v, t) at fixed t, regarded as a function of the
complex energy v, has cuts along the real axis
from thresholds at a v, to + ~, and the usual
nucleon poles at A, , on the axis between thresholds 3

These features as mell as the contour used in
deriving (3) are shown in Fig. I. In terms of t
and the masses of the pion and nucleon, p. and M
respectively, the threshold and pole locations are

p
2

g

If the subscripts + refer to m'p scattering, the
complete LDR, written here for Q with a similar
expression holding for Q„ is

V2 V2 1/2 (V+
v2-VI — 2 vo 2vo

" (v~-v, ')"'IniA' (v', t)idv'
(v'- v)(v~-vo')

V2 Vo2
-

(V&2 V 2)1 ln 1241 (V1 t ) I
dv1

+Pv(v'-V, 2)'" „(v'+v)(v~-vo')
+ —

~ I- —,, [Q (v„ t) Q, (v„ t)] --sin '1 I V Vo'-Vt. ' Vy —VA.

~ ~sin ' + sin
V2 V2 2Vo V (Vo+X ) „2vo V (Vo-X )

(v-vo) Vo —V1 -V1 + VX +(V -V1 ) {X -V1 )

0 1 1

+
Vo -V1 (V + V11) Im lnr

-v1 +voX+(vo -v1 ) (X -v1 )
2

V (v '-v ')"'(X-v )

(V-V11) -V1 —VoX (Vo V1 ) (X V1 )+
vo (v11'-v, ')' '(X+ "o)

Im ln

which is the equation used in the calculation re-
ported in I.4

In deriving (6) we made the assumption, to be
clarified in Sec. III, that A' has no real zeros
and a single complex zero located at X in the upper
half plane. This expression was used in I to cal-
culate the phases of A' for high-energy nonforward
scattering, specifically, for the four-momentum

transfer squared t and the pion lab momenta p
in the ranges -t ~ 0.20 (GeV/c)' and 0.575 ~ p
~ 20.0 GeV/c.

II. AN LDR FOR A' WITH THE POLE REMOVED

In the present investigation we have raised the
lower limit to P = 0.87 GeV/c, as will be explained
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in Sec. III A ii, and have extended the calculation
of the phase of A' to 0.20 & t-& 0.40 (GeV/c)'.
However, this cannot be done with the LDR in
the form (6). The difficulty that arises can be
seen by referring to Eq. (6) and Fig. 1. The pole

of A' is between the thresholds a v, for
~
t

~

sufficiently small, and Eq. (6) is derived on this
assumption. However, as

~
t

~
increases the left-

hand threshold moves to the right and the pole
moves to the left, the two crossing at

t = -0.24 (GeV/c)' .

For A,„&-v, the argument of the term

~ ~ Vy -VA,

v, (A. -v)

in (6) is & —1.
The problem caused by the crossing of the pole

and threshold can be remedied by removing the
pole from the amplitude. That is, in the derivation
of the LDH we make the replacement

A'(v, t )- (v-X)A'(v, t ) .

The subtraction procedure remains the same and
instead of the F given by Eq. (4) we insert into
Eq. (1)

(v'-v&')"'ln[(v-X)A '(v, t )]I'(v, t) =
(v- v, )(v + v, )

The new LDR analogous to (6) is

x/o („~„
P (v, t) =-arg(v-X )+ ', ', P (v„ t)- '

/t/, (v„ t)
V —VI 2VO 2VO

2 2
V -Vo

Pv(v'- v, ')'" '

" (v"-v, ')'/'lni (v'-X, )A,'(v', t) i
dv'

(v'+v)(v"-v, ')
" (v"-vP)' 'In i(v'-X )A'(v', t) idv'

(v'- v)(v"- v,')

+

v o + vX + (v&-v &)&/&(X&-v &) &/o

(
2 v o)1/o( v)

+ 2 2(
vo —vI (v+vo) -v& +voX+(vo -v, ) (X -v, )Im ln

+
V-Vo

Im ln
V& VoX (Vo vl ) (X vl )

~ Vo (vo'- v, ') (X+ vo)
(9)

The derivation follows that given elsewhere. '
While Eq. (9) has been worked out to treat the

situation where the pole crosses the threshold,
it is also valid for the pole in the gap, -v, & X& v„
and when this is the case Eqs. (6) and (9) must
agree. They can be shown to be the same by
writing the integrals which occur in (9) as

l (v"-v, ')"'I.n~(v'-X)A'(v', t) (d v'
(v' -v)(v"-v, ')

(v"-v, ')"' iniA '(v', t ) i
d v'

(v'- V)(v"-vo )

(v"-v, ')"'In( v'-X~ d v'
(v'-v)(v"-v, ') {10)

and noting that the second integral on the right is
the one which mill arise if we write a subtracted
LDR for (v-X) by itself. If this is done, more
precisely if we set A' equal to unity in (8) and put
the resulting E into (1) the equation obtained when

combined with (10) shows that (6) and (9) are the
same for -v, & X& v, . Requiring (9) to reproduce
results already found in I provided a necessary
check on the present calculation. Actually the
results obtained with (9) for t& 0.20 (GeV/c)-' are
somewhat more reliable than those presented in
I due to improvements in the computational pro-
cedure.

The presence of the factor (v-X) in the loga-
rithms in the integrands of Eq. (9) causes no con-
vergence difficulties because"

v '~A'(v, t)~&K as v-~, K constant

although it weights the integrals slightly more
toward high energies. Because (9) is quite compli-
cated, a breakdown of the contributions of the
various types of terms at several energies is
given in Table I. By using this table together with
the analogous one {Table II) in I, a comparison
between (6) and (9) can be made. In doing this it
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TABLE I. Contributions to the total phase P, of the different types of terms appearing in
Eq. (9). The terms are grouped as follows: Those depending on the {A) threshold phase

P, (v, , t), {B)location of the zero g{t), (C) subtraction-point phase P, (v(), t), (0) direct inte-
grals over lnj (v —g)A', {v, t ) j, and (E) crossed integrals over in j (v —A,, )A'~ (v, t ) j . All
entries are in degrees.

p
(0eVA) [{GeV/f. )~ j A B

1,88

8.00

0.0

0.2

0 4

0.0

Q.2

0.4

0.0

0.2

Q 4

0.0
—1.2

0.0
-Q.5

0.0
-0 1

0,0
0.6
0.0
0.2
0.0
0.0

0.0
1.0
0.0
04
0.0
0.1

—85.0
-81.7
-86.3
—83.4
-70.2
-79.5

58.3
56.8
59.2
57.6
51.4
59.6

152.6
149.9
153.4
150.4
141.6
160.2

105.6
94 4

127.1
123.7
140.6
167.4

99.6
88.6

107.5
104,0
104.6
131,3

96.0
85.0
95.2
91.7
82.9

109.6

—7.3
47.7
20.9
35.4
49.2
—6.2

18.3
—2.2

0.7
3 4

—38.9

95.7
106.5
77.9
77.9
59.0
37.5

63.0
58.6
56.2
57 ~ 5
45.0
57.7

—55.3
-52.4
—48.6
-49 2
—38.9
-46.6

-246. 7

-239.7
2 17 ~ 1

—217.8
-180.2
-197.6

118

109

103

118

106

103

should be remembered that the sin ' terms of (8)
are incorporated in the integrals and threshold
terms of (9).

III. INPUT AND RESULT

A. Input

To evaluate (9) numerically we must use the
subtraction-point phases P, (v„ t ), the location of
the zero or zeros of the amplitude, and the nu-
merical values of (A', (v, t) ( for all energies from
threshold to infinity. As in I the subtraction point
was taken at p = 1.278 GeV/c and the phases there
were obtained by reconstruction from the partial-
wave results. ' The other pieces of input require
somewhat more discussion.

i Locatio. n of the zero It is known t. hat A'(v, t)
has only one zero for t =0, ' and it is reasonable
to assume that this situation persists for those
small values of t for which the LDR is to be used.
This single zero will in general depend on t,
however, and in I its location in the complex plane
was determined by the requirement that the LDR
correctly reproduce the phases of A' in the res-
onance region, v «2.0 GeV. The phase in this
region was reconstructed from existing partial-
wave analyses. '

In the present calculation we have again assumed
a single t -dependent zero X, + ig„and the values

()t„)(,) which were found to give best agreement
with the phases all across the partial-wave region
were (0.05, 0.45), (0.05, 0.50), (0.04, 0.50),
(-0.15, 0.90), and (-0.20, 1.0) for t-
=0.20, 0.25, 0.30, 0.35, and 0.40 (GeV/'c)', re-
spectively. As in I the agreement obtained was
better for Q, where the difference between the
I DH and partial-wave phases was less than 5%
at all energies. For (IF) the difference reached
9/p for -t = 0.30, 0.40 (GeV/c)' and p =0.874,
1.053 GeV/c, respectively. This may in part be
due to uncertainty in the w P data. We will return
to the zeros of the amplitude in Sec. IV.

ii Modulus . of A'(v, t). In the main, the pro-
cedures followed here were as before and I should
be consulted for details. For resonance energies,
v ~2 GeV, the moduli were reconstructed from
partial-wave results. ' Near the forward direction
in the diffraction region, 2& v ~ 24 GeV, the dif-
ferential cross section involves only'. ' and is
observed to fall off exponentially with t:

at+br-d0 do r+

where 8'= s'I'. Therefore,
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less than 4%. Again the largest contribution is
to Q, .

where a and b are weakly energy-dependent. As
in I we fitted the m p {2-24 GeV) and the n'P
(2-16 GeV) cross-section data8 to the form (11),
and values of A'(v, 0), a(v}, and b(v) were obtained.

At very high energies, v & 24 GeV, few angular
data are available and some assumptions must be
made about the amplitude in this range. %'e have
supposed Eg. (11) to be valid at these high ener-
gies. For p& 8 GeV/c g and 5 are observed to be
nearly constant, and their average values are
used. Above 25 GeV the contribution of the real
part of A'(v, 0) is less than 2Q, and we have there-
fore approximated A' by its imaginary part. ' This
was obtained through the optical theorem from
Carter's fit to the total cross section. 'o

The unphysical region, v, & v& p, , is an interval
of energy just above threshold for which cos6)&-1
when t&0. It increases in size as -t becomes
larger. In this region the scattering is not a
physically realizable process and the input for
~A'

~
cannot be obtained from experiment. Com-

pared with the = 20 GeV/c range over which ~A'
~

is known the unphysical interval is relatively
small, starting at zero and running up to P =0.293,
0.450 GeV/c for t=0.2, 0-.4 (GeV/c)', respective-
ly. However, it is quite troublesome because
there is no reliable way to determine the amplitude
there. The approach developed in I and followed
again here is to subtract the LDR in such a way
that the contribution of the unphysical region is
minimized. The actual input

~
A '

~
is then ob-

tained by the Lehmann procedure" for the analytic
continuation of the partial-wave expansion al-
though the values of v and t are outside the range
for which this method has been proven to converge.

Integrals of the type that enter Eqs. (6) and (9)
are strongly influenced by that portion of the
range of integration lying closest to the point at
which the principal value is taken. Therefore,
the influence of the unphysical region tends to be
greatest at lowest energies. Because of the un-
certainty in ~A'~ for unphysical energies, we have
adopted the practice, both in this cal, culation and
in I, of regarding the results of our methods as
unreliable when the unphysical region contributes
more than 5@ to the total phase. In I, where the
largest momentum transfer is t=0.20 (G-eV/c}',
the unphysical region contributed 5% (w') at
p =0.575 GeV/c and decreased steadily thereafter.
The lower limit of validity in the present calcula-
tion has been raised to p= 0.87 GeV/c, corre-
sponding to an increase in tto 0.40 (GeV/c)', -
and with this new lower limit the contribution of
the unphysical region to the total phase is always

B. Results

With the procedures and input just discussed,
the LDR {9)for Q, can now be evaluated. As in I,
we are interested in finding these phases at ener-
gies above the partial-wave region and have
carried out the calculation for 0 « t«0.-4 (GeV/c)'
at intervals of 0.05 (GeV/c)' for each of the mo-
menta P=2.0, 4.0, 8.0, 12.0, 15.0, 20.0, and
30.0 GeV/c. The main results are for the mo-
mentum range 2.0 «p «12.0 GeV/c; above this
the phases are much more dependent on the
assumptions made about the asymptotic region.
All results, including some for the partial-wave
region, are given in Table II. They vary slowly
with energy, and interpolations within the momen-
tum intervals can be made with reasonable
confidence. Because of an improvement in compu-
tational procedure, we have recalculated some
of the phases for 0 « t«0.2 -(GeV/c)' which were
originally presented in I. They differ only slightly
from the earlier results. Finally, Table I lists
the contributions to the total phase P, of the
various types of terms entering Eq. (9}.

IV. CONCLUSIONS

This is the second in a projected sequence of
three papers in which we attempt to make practical
application of the logarithmic dispersion relation
(8). The LDR is intrinsically attractive because
it requires as input amplitude moduli and these
are often more available at high energies than
other forms of the amplitude. With these moduli
we aim to calculate the phases at nonforward
angles for energies lying above the partial-wave
region. Because input, moduli, and subtraction-
point phases change as experiments are refined
and new ones performed, we do not wish to overly
stress the particular numerical values we have
found, but rather to emphasize the LDR approach
generally. The calculation can be redone as better
input becomes available.

Several difficulties arise in attempts to utilize
the LDR. Two of these are major and were dealt
with in I. They are the presence of a t-dependent
unphysical region and the necessity of knowing the
location of the zeros of the amplitude. A less
serious difficulty, treated in the present investi-
gation, arises because the locations of the nucleon
pole and the threshold are t -dependent and move
toward one another with increasing

~
t (, crossing

at t= 0.24 (GeV/c)' for-vN scattering. This
problem has been remedied by using an LDR writ-
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TABLE II. The phases P, (v, t) of the amplitudes A', (v, t) as given by Eq. (9) using the
zeros g(t). At each p and t the upper number is III+ and the lower is p, both in degrees.

P
(GeV (GeV/c) j 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

1.05

1.88 112
98

109
100

123
84

107
105

113
103

110
104

127
94

ill
109

130
105

117
109

113
112

ill
114

133
118

113
116

111
118

125
116

112
120

ill
123

134
139

111
124

110
127

138 139
160 165

131 133
134 147

109 106
120 121

108 105
124 125

4.0

8.0

12.0

20.0

30.0

108
100

103
98

102
97

105
103

104
100

95
100

109
104

103
101

102
100

104
104

109
108

103
105

102
103

103
106

103
102

93
102

103
107

102
105

102
108

102
104

110
113

103
109

101
107

102
108

100
104

91
105

110
116

102
ill
101
109

101
110

99
105

89
106

110
117

101
111

100
111

98
106

114
109

107
103

107
104

97
100

113
107

110
103

108
101

108
102

ten for the amplitude multiplied by a factor which
removes the pole. %'ith this new LDR the calcu-
lation has been extended to t= 0.4 (GeV/-c)'. The
subtraction procedure introduced in I continues
to be effective in limiting the contribution of the
unphysical region to the total phase. For example,
the contribution of the unphysical region was less
than 0.5% for P& 4.0 GeV/c and the 0 & t~ 0.20-
(GeV/c)' range considered in I and does not ex-
ceed 2.5% for 2&P& 20 GeV/c in the present cal-
culation although the unphysical region is now
much larger. Although the pole-removal pro-
cedure tends to shift the weighting of the calcu-
lation somewhat toward the high-energy side, this
effect is not large. With the original LDR Eq. (8)
the contribution of the asymptotic region was 15%
of the total phase at P =2.07 GeV/c, whereas here
it is 19/0 at the roughly comparable momentum
1.88 GeV/c.

Despite the generally favorable outcome of the
present calculation, we feel that at -t=0.40
(GeV/c)' we are approaching the limits of practical
usefulness of the LDR under the assumptions we

have used. There are several reasons for this
conclusion.
i. Erratic zero behavior. The zeros of scatter-

ing amplitudes are t-dependent and are in general
unknown. However, for t=0 the mN amplitude has
only one zero and its location in the complex en-
ergy plane has been determined. ' In I it was
argued that it was reasonable to assume that for
t small there was still only a single zero, al-
though it might move in the complex energy plane
as t varied. Our operating procedure both here
and in I was to determine the location of this single
zero by the requirement that the LDR reproduce
the known partial-wave phases. For -t ~ 0.20
(GeV/c)' a smooth locus for the zero was thereby
determined; this is shown in Fig. 5 of I. However,
in the present calculation an inspection of the
zero locations given in Sec. IIIAi shows that while
this smooth behavior continues to t=0.80 (G-eV/c)',

thereafter the zero "jumps" crossing the imag-
inary axis into the left upper quarter plane. %e
do not know what causes this; perhaps the ampli-
tude has developed another zero. In any case it
strongly suggests that the assumption of a single
zero should not be used at even larger values of
-t without further study.
ii. The magnitude of B. It is clear from the

linear factor of t entering the coefficient of ~B(
in the unpolarized nN differential cross section"
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TABLE III. Contributions to the unpolarized differ-
ential cross section at p =2.07 GeV/c of the two terms
appearing in Eq. (12), do jdQ = n + P. ct.'and P refer to
the terms involving ~A'~ and ~(B ~, respectively.

(12)
—t ~ p

Interaction [(GeVjc) ] [(F) j [(F) ]

P jet do jdQ
[(F}")

that this term is negligible provided t is small.
Here, as in I, we assumed that t was small enough
so that ~A'

~
was given by Eq. (11). To test this

assumption we reconstructed ~B~ from existing
partial-wave analyses at p = 2.07 GeV/c and
compared the first and second terms of Eq. (12).
The results, given in Table III, show that while
the contribution to the cross section of its second
term does not exceed 16% for the f interval of
our two calculations, its significant increase be-
tween -t =0.20 and 0.40 (GeV/c)' suggests that
this term cannot be safely neglected for larger
values of -t.

iii. Growth of the unPhysieal region. While our
subtraction procedure is still effective in damping
out the contribution of the unphysical region, it
continues to grow relentlessly as -t increases.
Although it seems to us less pressing than the
previous two restrictions, the unphysical region
will ultimately impose a limitation on the LDR as
it will on any nonforward dispersion relation
approach.

An interesting possibility for reducing the de-
pendence of the phases on the unknown asymptotic
region was noticed after this calculation was
completed. For the range of integration in which
v'» v, the magnitudes of the two integrals in Eq.
(6}are nearly the same, the reason being that
~A'

~

- ~A+ ~
at high energies. Now the relative

sign of these two terms is even or odd according
as the number of subtractions is even or odd. In

r p
rp
7t p
7r p

0,2
0 4
0.2
0.4

0.367 0.023
0.096 0.015
0.320 0.014
0.043 0.005

6.3 0.390
15.5 0.111

0 334
11.6 0.048

the present calculation there are two subtractions,
v =+v„and the integrals add. For an odd number
the integrals would tend to cancel and the influence
of the asymptotic region therefore be decreased.
For various reasons three is probably the least
odd number of subtractions that could be used.
The resulting calculation would be somewhat more
complex than the present one.

Our next application of the LDR will be to mN

polarization, "
sin6 (A'(jB~ sin(P-g)

16ms"-' d cr/'d t

in which P is the phase of the amplitude B and 8

is the scattering angle. Aside from the total cross
section, the polarization and the unpolarized dif-
ferential cross section (12) are the most important
experimentally observed quantities in mN scatter-
ing. It is clear that the cross section involving
amplitude moduli and the polarization involving
amplitude phases are intimately connected through
analyticity. The LDR provides the connection be-
tween phase and modulus and is a powerful tool
in exploring the relationship between these two
observable s.
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