certain low value. Nevertheless, it will be seen from Fig. 2(b) that for the uppermost range of u values the "spectator" contribution should clearly exceed the background "production" events.

¹⁶Another suggestion for the detection of this configuration is given in H. J. Weber, Phys. Rev. C <u>9</u>, 1771 (1974).

PHYSICAL REVIEW D

VOLUME 10, NUMBER 3

1 AUGUST 1974

Calculation of nucleon-nucleon two-pion exchange utilizing theoretical and experimental $\pi\pi$, πN , and e N information*

G. E. Bohannon and Peter Signell

Department of Physics, Michigan State University, East Lansing, Michigan 48824

(Received 18 March 1974)

The $J = 0,1,2 N \overline{N} - \pi \pi$ amplitudes are evaluated in the physical region of the two pions, $t \ge 4\mu^2$, and used in a dispersion-theoretic calculation of nucleon-nucleon two-pion exchange. Experimental input to the evaluations of the $N \overline{N} - \pi \pi$ amplitudes is via $\pi \pi$ phase shifts, πN scattering lengths, and πN phase shifts. The effect of varying the $I = J = 0 \pi \pi$ phase shift within its present uncertainty is investigated. Experimentally determined nucleon electromagnetic form factors are used in the evaluation of the $J = 1 N \overline{N} - \pi \pi$ amplitude. After adding π and ω exchange to the two-pion-exchange amplitude, the theoretical phase shifts are compared with phase-shift-analysis results. The calculated ${}^{1}S_{0}$ potential is also shown and compared with the phenomenological one of Hamada and Johnston.

I. INTRODUCTION

The dispersion-theoretic treatment of two-pion exchange has been used by several authors¹⁻⁵ in a recent wave of attempts to evaluate the intermediate-range nuclear force. In this approach the two-pion-exchange $NN \rightarrow NN$ amplitude is obtained⁶ from a fixed-energy dispersion relation. Unitarity and crossing determine the absorptive part as a bilinear product of the $N\overline{N} \rightarrow \pi\pi$ amplitudes $A^{(\pm)}, B^{(\pm)}$ in the low-energy physical region of the two pions. Thus, full exploitation of this approach requires a knowledge of the $N\overline{N} \rightarrow \pi\pi$ amplitudes at energies far below physical threshold. In 1970 Nielsen, Petersen, and Pietarinen⁷ (NPP) attempted to evaluate the necessary s-, p-, and *d*-wave $N\overline{N} \rightarrow \pi\pi$ amplitudes by analytic continuation from the pion-nucleon physical scattering regions. The resulting s-wave $N\overline{N} \rightarrow \pi\pi$ amplitude was used by Chemtob and Riska² to calculate nucleon-nucleon phase shifts, giving qualitative agreement with phase-shift analysis. In later work¹ this $N\overline{N} \rightarrow \pi\pi$ s-wave amplitude was used to calculate two-pion-exchange NN potentials.

Unitarity of the $N\overline{N} \rightarrow \pi\pi$ partial-wave amplitudes implies⁸ that their phases are those of $\pi\pi$ scattering, modulo π , for the same angular momenta. In fact, NPP had hoped to learn about the $\pi\pi$ phases through use of this relation. Since that time, however, the $\pi\pi$ s-wave phase shift has been well established experimentally⁹⁻¹²: It shows a strong discrepancy with the NPP result. New results for the *s*- and *p*-wave $N\overline{N} \rightarrow \pi\pi$ partial-wave amplitudes using the $\pi\pi$ phase shifts as *input* have now been given by Nielsen and Oades¹³ and by Epstein and McKellar.⁴ Surprisingly, the nuclear force calculated from these newer and supposedly more realistic $N\overline{N} \rightarrow \pi\pi$ *s*-wave amplitudes seemed to be in poorer agreement with nucleon-nucleon phase- shift analysis and with phenomenological *NN* potentials.^{4,5}

These circumstances seemed to indicate to us that a very careful evaluation of all input to the two-pion-exchange calculation was needed. In the calculations presented here the nucleon-pole (Born) contributions to $B^{(\pm)}$ have been included exactly, while $A^{(\pm)}$ and the non-Born part of $B^{(\pm)}$ were represented by partial-wave expansions truncated after d waves. By including the d waves we found it unnecessary to rely upon a narrowwidth baryon-resonance model for the $J \ge 2$ partial waves as was the case in several previous NN calculations. We have evaluated the s-, p-, and *d*-wave $N\overline{N} \rightarrow \pi\pi$ amplitudes, while enforcing unitarity, with special attention to the effect of uncertainties in the $\pi\pi$ phase-shift input. Subtraction constants required in our dispersion relations were determined using new pion-nucleon scattering lengths and phase shifts as well as fixed-t dispersion relation results.¹⁴ In addition,

in evaluating the *p*-wave amplitudes, we have used experimental information on the nucleon electromagnetic form factors.

II. THE PHASES OF THE $N\overline{N} \rightarrow \pi\pi$ AMPLITUDES

The singularities of the $N\bar{N} \rightarrow \pi\pi$ helicity amplitudes⁸ f_{\pm}^{J} are along the right-hand cut beginning at $t=4\mu^2$ and the left-hand cut at $t=4\mu^2-\mu^4/m^2$. The helicity amplitudes are determined on the left-hand cut for $t > -26\mu^2$ from continuation of πN amplitudes.⁸ An extensive table of the resulting s-, p-, and d-wave amplitudes in this left-hand cut region was given by Nielsen.¹⁴

For $4\mu^2 \le t \le 16\mu^2$, on the right-hand cut, unitarity requires⁸ that

$$\operatorname{Im} f_{\pm}^{J}(t) = f_{\pm}^{J*}(t) e^{i \delta_{f}^{J}} \sin \delta_{J}^{I}, \qquad (1)$$

where $\delta_J^I(t)$ is the appropriate $\pi\pi$ scattering phase shift. The upper limit, $t = 16\mu^2$, is set by the opening of the 4π channel, but Eq. (1) will continue to be valid up to the value of t where inelasticity becomes appreciable.

The unitarity condition, Eq. (1), is utilized via the Omnès function^{15,8}

$$D_{J}(t) = \exp\left[\frac{-t}{\pi} \int_{4\mu^{2}}^{\infty} \frac{\delta_{J}^{I}(t')}{t'(t'-t-i\epsilon)} dt'\right] .$$
 (2)

The products $D_J(t)f_{\pm}^J(t)$ then have only the lefthand cut, where, as we have seen, the $f_{\pm}^J(t)$ are determined from physical πN scattering amplitudes, and a right-hand cut beginning where inelasticity becomes important, at high t.

Recent analyses of pion-production experiments^{9,10} have indicated that I=0 s-wave $\pi\pi$ scattering is essentially elastic up to the $K\overline{K}$ threshold and that *p*-wave scattering is elastic to about the same energy. Thus, the unitarity conditions, Eq. (1), for J=0 and J=1 should be valid up to $t \simeq 50\mu^2$.

The large amount of attention given to the $\pi\pi$ s-wave amplitude has now given a good qualitative picture of the phase shift δ_0^0 for $t < 50\mu^2$. Although various analyses each have small quoted uncertainties, they do maintain some disagreement with one another. For example, the values of δ_0^0 from the Berkeley⁹ energy-dependent analysis and those from the CERN-Munich¹⁰ energy-independent analysis, both shown in Fig. 1, show disagreement of their central values by about 11° below $t=m_\rho^2 \simeq 30\mu^2$. However, their quoted uncertainties are each about $\pm 4^\circ$.

Both of the above-cited experimental analyses, and the K_{e4} decay results from Geneva-Saclay,¹¹ show a somewhat larger δ_0^0 than that of the Morgan-Shaw¹⁶ analysis, which utilizes analyticity but less experimental $\pi\pi$ information, although the

FIG. 1. The $I = J = 0 \pi \pi$ phase shift δ_0^0 . Shown are the Morgan-Shaw result (MS, Ref. 16), the Berkeley result (LBL, Ref. 9), the CERN-Munich results (CM, Ref. 10) (for which half of the quoted points are shown), the Geneva-Saclay results (GS, Ref. 11), and the NPP results (Ref. 7). The dash-dot curve, constructed to agree with GS and LBL, is discussed in the text.

scattering length found in the Morgan-Shaw analysis $(0.16\mu^{-1})$ is in excellent agreement with that found by Pennington and Protopopescu¹⁷ $(0.15\mu^{-1})$. The Pennsylvania¹⁸ K_{e4} decay results appear to be consistent with both the Morgan-Shaw and Geneva-Saclay results. In what follows we first use the Morgan-Shaw δ_0^0 and then indicate the effect of using a larger value.

The *p*-wave $\pi\pi$ phase shift δ_1^1 is known with greater certainty because of the strong ρ resonance. The phase shift δ_1^1 is well represented, for $t < 50\mu^2$, by the expression

$$\left(\frac{\nu}{\nu+1}\right)^{1/2}\cot\delta_1^1 = \frac{(1-0.1536\nu)(1+0.00076\nu)}{0.035\nu}, (3)$$

where $\nu \mu^2$ is the center-of-mass pion momentum squared. This form was used by Morgan and Shaw¹⁶ but with a smaller width than that used here.⁹ The scattering length used, $0.035\mu^{-3}$, is in very good agreement with a recent determination.¹⁷

The *d*-wave $\pi\pi$ phase shift δ_2^0 is certainly less well known but all analyses find it to be small. The expression used here is¹⁶

$$\left(\frac{\nu}{\nu+1}\right)^{1/2} \cot \delta_2^0 = \frac{(1-0.0524\nu)(1+0.204\nu+0.0015\nu^2)}{0.0015\nu^2} .$$
(4)

This $\pi\pi$ phase shift is found to be of minor importance in the nuclear force.

III. THE MAGNITUDE OF THE $N\overline{N} \rightarrow \pi\pi$ AMPLITUDE f_{\perp}^{0}

For the determination of the *magnitude* of the f_+^0 amplitude, we first wrote a twice-subtracted dispersion relation for $D_0(t)f_+^0(t)/(t-4m^2)$:

$$\frac{D_0(t)f_+^0(t)}{t-4m^2} = \frac{(t-4\mu^2)f_+^0(0)}{16m^2\mu^2} + \frac{t\,D_0(4\mu^2)f_+^0(4\mu^2)}{16\mu^2(\mu^2-m^2)} + \frac{t\,(t-4\mu^2)}{\pi} \int_{-\infty}^a \frac{D_0(t')\mathrm{Im}\,f_+^0(t')\,dt'}{t'(t'-4\mu^2)(t'-4m^2)(t'-t)} , \tag{5}$$

where $a \equiv 4\mu^2 - \mu^4/m^2$. The non-Born part of the input $\text{Im} f^{0}_{+}(t' < a)$ was taken from Nielsen's¹⁴ work and added to the Born term.¹⁹ For the t=0 subtraction constant, $\operatorname{Re} f^{0}_{+}(0)$ was found by Furuichi and Watanabe²⁰ to be -2.8μ . However, this value assumed²¹ $A^{(+)}(\nu = 0, t = 0) = 24.6\mu^{-1}$, which is in disagreement with other determinations.^{14,22-24} An improved value was used here, described later. In the $t = 4\mu^2$ subtraction constant, the value of $f^{0}_{+}(4\mu^{2})$ must be known accurately because of its large size. The value currently available in the literature²⁴ was obtained from fixed-t dispersion relations which depended on a continuation of the pion-nucleon partial-wave amplitudes to the branch cut at $t = 4\mu^2$, where formal convergence ceases; it is therefore open to question. An alternate procedure is used here.

IV. DETERMINATION OF THE πN AMPLITUDES AT $\nu = t = 0$

Fixed-t dispersion relations for

$$A^{(+)}(\nu, t)$$

and

$$A'^{(+)}(\nu, t) = A^{(+)}(\nu, t) + \frac{\nu}{1 - t (4m^2)^{-1}} B^{(+)}(\nu, t),$$

where $\nu = (s-u)/(4m)$, have been used to find $A^{(+)}$ and the derivative of $A^{(+)}(0, t)$ at t=0. With these quantities we have been able to find $f_+^0(4\mu^2)$ as described later and to improve the $f_+^0(0)$ of Ref. 20. Both $A^{(+)}$ and $A'^{(+)}$ satisfy dispersion relations of the form

$$A(\nu, t) = A(\nu_{c}, t) + \frac{2(\nu^{2} - \nu_{c}^{2})}{\pi} \int_{\nu_{c}}^{\infty} \frac{\nu' \operatorname{Im} A(\nu', t)}{(\nu'^{2} - \nu_{c}^{2})(\nu'^{2} - \nu^{2})} d\nu', \quad (6)$$

where $\nu_c = \mu + t/4m$. The necessary subtraction functions are written in terms of the isospin-even scattering lengths at the point $\nu = \nu_c$ as

$$A^{(+)}(\mu, 0) = 8\pi \left[\frac{2m + \mu}{4m} a_0^{(+)} + \mu m (a_{1+}^{(+)} - a_{1-}^{(+)}) \right], \quad (7a)$$

$$\frac{\partial}{\partial t} \mathbf{A}^{\prime(+)}(\nu_{c}(t), t) \Big|_{t=0} = \frac{4\pi(m+\mu)}{m} \left(\frac{a_{0}^{(+)}}{8m^{2}} + \frac{1}{2}a_{1-}^{(+)} + a_{1+}^{(+)} \right).$$
(7b)

The sensitivity to $a_0^{(+)}$ is small in each case. The value used here is²⁵ $a_0^{(+)} = \frac{1}{3}(-0.014 \pm 0.005)\mu^{-1}$. The largest uncertainty in using Eq. (6) comes from the *p*-wave scattering lengths, for which we used a weighted average of experimental results:

$$a_{1+}^{(+)} - a_{1-}^{(+)} = \frac{1}{3} (0.571 \pm 0.010) \mu^{-3},$$

$$a_{1+}^{(+)} + \frac{1}{2} a_{1-}^{(+)} = \frac{1}{3} (0.310 \pm 0.010) \mu^{-3}.$$

The first of these combinations is consistent with the very accurate determination of Bugg, Carter, and Carter²⁵ as well as older analyses.^{22,23} For the second combination both Hamilton and Woolcock²² and Höhler *et al.*²³ found very nearly this value.

The imaginary parts of the amplitudes $A^{(+)}$ and $A'^{(+)}$ were obtained from πN phase shifts. The results for the on-shell amplitudes at $\nu = 0$ were rather insensitive to which of several sets²⁶ was used. The results found²⁷ are

$$\begin{aligned} \boldsymbol{A}^{(+)}(0,\,0) &= (25.9\pm0.5)\mu^{-1}\,,\\ \frac{\partial}{\partial t}\,\boldsymbol{A}^{(+)}(0,\,t)\,\bigg|_{t=0} &= (1.16\pm0.05)\mu^{-3} \end{aligned}$$

Both values are consistent with other determinations.^{14,22-24} Combining the first value with the results of Ref. 20, we now obtain

$$\operatorname{Re} f^{0}_{+}(0) = -2.4 \mu$$
 .

V. THE J = 0 SUBTRACTION CONSTANT AT $t = 4\mu^2$

The function $D_0(t)A^{(+)}(0, t)$ has no s-wave contribution to the nearby part of its right-hand cut where the $\pi\pi$ s-wave amplitude is elastic. The imaginary part of this function can therefore be evaluated on the nearby right-hand cut using the *d*-wave helicity amplitudes yet to be described, and assuming that the $J \ge 4$ helicity amplitudes are adequately given by the nucleon pole. Neglecting $\mathrm{Im} f_+^2$, the twice-subtracted dispersion relation then reads

$$D_{0}(t)A^{(+)}(0,t) = A^{(+)}(0,0) + t \left[\frac{\partial}{\partial t'} D_{0}(t')A^{(+)}(0,t')\right] \Big|_{t'=0} + I_{L} + \frac{t^{2}}{\pi} \int_{4\mu^{2}}^{\infty} \frac{-|D_{0}(t')|A^{(+)}_{J \ge 2}(0,t')\sin\delta^{0}_{0}(t')}{t'^{2}(t'-t)} dt', \quad (8)$$

FIG. 2. The J=0 spectral function $\rho_0^{(+)}(t) = 8\pi [(t-4\mu^2)/t]^{1/2} (4m^2-t)^{-2} |f_+^0(t)|^2$. Results are shown for various inputs to Eq. (5). Also shown are the Nielsen-Oades (N-O, Ref. 13) and the Epstein-McKellar (E-McK, Ref. 4) results.

where

$$A_{J\geq 2}^{(+)}(0, t) = A^{(+)}(0, t) - 16\pi(4m^2 - t)^{-1}f_{+}^0(t)$$

The contribution from the distant left-hand cut at $t = -27\mu^2$ is denoted I_L . Because of its remoteness and the two subtractions, it is expected that only the leading edge of this cut is important. The following parameterization was used to represent the left-hand cut:

$$D_0(t) \operatorname{Abs} A^{(+)}(0, t) = \alpha \left(-t - 4m \, \mu \right)^{1/2}. \tag{9}$$

Comparing Eq. (8) with Nielsen's¹⁴ fixed-t dispersion relation results, at negative t, fixed $\alpha \simeq 29\mu^{-2}$ when the Morgan-Shaw δ_0^0 was used. Using Eq. (8) with the Morgan-Shaw δ_0^0 to continue to $t = 4\mu^2$, where $A^{(+)}$ is purely s-wave in the $N\overline{N} \rightarrow \pi\pi$ channel, we found²⁸

$$f^{0}_{\pm}(4\mu^{2}) = (114 \pm 2)\mu$$

The uncertainty quoted here does not include that due to the uncertainty in the low- $t \, \delta_0^0$ input.

Shown in Fig. 1 is a δ_0^0 constructed to agree with the Geneva-Saclay¹¹ K_{e4} decay results at $t < 8\mu^2$ and to join smoothly with the Berkeley⁹ δ_0^0 at $t \simeq 20\mu^2$. When this phase shift, which we shall refer to as GS + LBL, was used in Eq. (8) we found $\alpha \simeq 29\mu^{-2}$ and a larger amplitude at $t = 4\mu^2$:

$f^{0}_{+}(4\mu^{2}) = (118 \pm 2)\mu.$

The magnitude $|f_+^0(t)|$ and the J=0 spectral function, which directly enters the *NN* fixed-energy dispersion relation and is proportional to $|f_+^0(t)|^2$, was then calculated from Eq. (5). We have found that the results from Eq. (5) for $t \ge 20\mu^2$ are somewhat sensitive to the phase of f_+^0 above $50\mu^2$, where it is not known. In Fig. 2 results are shown

FIG. 3. The nucleon electromagnetic form factors $G_E^V = F_1^V + (t/2m)F_2^V$ and $G_M^V = F_1^V + 2mF_2^V$, with F_1^V from Eq. (12) and Γ from Eq. (11). Data are as in Ref. 29.

for several assumed forms of the f_+^0 phase above $t = 50\mu^2$, all of which have the general form

$$\delta(t) = (50\mu^2/t)^n \,\delta(50\mu^2) \,. \tag{10}$$

For clarity, calculations using the Morgan-Shaw δ_{0}^{0} , Re $f_{+}^{0}(0) = -2.4\mu$, and $f_{+}^{0}(4\mu^{2}) = 114\mu$ are designated S1. Since the S1 curves for various n > 0 are very similar at $t \leq 20\mu^{2}$ they all produce similar *NN* amplitudes for the states and energies to be shown here. When the calculation was performed with the GS + LBL δ_{0}^{0} the resulting $|f_{+}^{0}(t)|$ was considerably smaller for $t > 6\mu^{2}$. This result, which used Re $f_{+}^{0}(0) = -2.4\mu$ and $f_{+}^{0}(4\mu^{2}) = 118\mu$, is designated S2. We have shown the S2 result using n = 3.

Also given in Fig. 2 are the results found by Nielsen and Oades¹³ using the Morgan-Shaw δ_0^0

and those found by Epstein and McKellar.⁴ Although Nielsen and Oades used n=1 in Eq. (10), their analytic continuation of $D_0 f_+^0 / (t-4m^2)$ from $t < 4\mu^2$ to $4\mu^2 < t < 50\mu^2$ would be expected to be less sensitive to the $t > 50\mu^2$ input phase.

819

VI. THE *p*-WAVE AMPLITUDES f_{\pm}^{1}

It is convenient to work with the amplitudes⁸

$$\Gamma_{1} = \frac{4m}{t - 4m^{2}} \left(f_{+}^{1} - \frac{t}{4\sqrt{2}m} f_{-}^{1} \right),$$

$$\Gamma_{2} = \frac{2}{t - 4m^{2}} \left(-f_{+}^{1} + \frac{m}{\sqrt{2}} f_{-}^{1} \right).$$

For these amplitudes we used the following dispersion relation:

$$D_{1}(t)\Gamma_{i}(t) = \Gamma_{iB}(t) + \frac{t_{0}-t}{t_{0}} \tilde{\Gamma}_{i}(0) + \frac{t}{t_{0}} \left[D_{1}(t_{0})\Gamma_{i}(t_{0}) - \Gamma_{iB}(t_{0}) \right] \\ + \frac{t(t-t_{0})}{\pi} \int_{-\infty}^{a} \frac{D_{1}(t')\operatorname{Im} \tilde{\Gamma}_{i}(t') + \left[D_{1}(t') - 1 \right]\operatorname{Im} \Gamma_{iB}(t')}{t'(t'-t_{0})(t'-t)} dt'$$
(11)

where $\tilde{\Gamma}_i \equiv \Gamma_i - \Gamma_{iB}$. The dispersion relation for the Born term Γ_{iB} has been subtracted from the relation for Γ_i to obtain a less rapidly varying integrand near t' = a. The values $\tilde{\Gamma}_1(0) = 0.017 \mu^{-2}$ and $\tilde{\Gamma}_2(0) = -0.0185 \mu^{-3}$ were obtained from Ref. 14. We chose to take $t_0 = 30 \mu^2 \simeq m_p^2$, and determined

FIG. 4. The imaginary parts of the *p*-wave helicity amplitudes f_{+}^{1} (upper solid and dashed curves) and f_{-}^{1} (lower curves) in units where $\mu = 1$. The solid curves are from Eq. (11); the dashed curves are from Nielsen and Oades, Ref. 13.

the constants $\Gamma_i(t_0)$ from the nucleon electromagnetic form factors as follows.

Attempts²⁹ to explain the behavior of the nucleon form factors suggest that the isovector form factors at small t < 0 (spacelike) are determined via analyticity by the two-pion intermediate state $(N\overline{N} \rightarrow 2\pi \rightarrow \gamma)$ at $t > 4\mu^2$. The form factors³⁰ F_1^{V} and F_2^{V} have the following representations⁸:

FIG. 5. The *d*-wave helicity amplitude magnitudes $|f_1^2|$ multiplied by $q^2 = t/4 - \mu^2$. The solid curves are from once-subtracted Omnès relations. The short-dashed curves were obtained by setting $D_2 = 1$. The long-dashed curves are the Born (nucleon pole) contributions.

$$F_{i}^{V}(t) = F_{i}^{V}(0) - \frac{t}{\pi} \int_{4\mu^{2}}^{\infty} \left[\frac{(t'-4\mu^{2})^{3}}{64t'} \right]^{1/2} \\ \times \frac{F_{\pi}^{*}(t')\Gamma_{i}(t')}{t'(t'-t)} dt', \quad (12)$$

where $F_1^V(0) = \frac{1}{2}$ and $F_2^V(0) = 1.853/(2m)$. We used $1/D_1(t)$ for $F_{\pi}(t)$, the pion form factor.^{8,30}

We have found without detailed fitting that the small-|t| experimental form factor data are very well reproduced (Fig. 3) with the following values of $|\Gamma_t(30\mu^2)|$:

$$|\Gamma_1(30\mu^2)| = 0.121\mu^{-2},$$

 $|\Gamma_2(30\mu^2)| = 0.0544\mu^{-3}.$

The result (Fig. 4) for $\text{Im} f_{-}^1$ is in good agreement with that of Nielsen and Oades,¹³ while $\text{Im} f_{+}^1$ is somewhat lower near resonance.

VII. THE *d*-WAVE AMPLITUDES f_{\pm}^2

Using a once-subtracted dispersion relation with the Born amplitude removed, subtractions were made at both $t_0 = \mu^2$ and $t_0 = 3\mu^2$ giving very similar results. The subtraction constants $\tilde{f}_{\pm}^2(t_0)$ were obtained from Ref. 14. The results (Fig. 5) show a significant non-Born contribution to f_{\pm}^2 , while f_{\pm}^2 is close to the Born amplitude, in agreement with NPP.⁷

FIG. 6. (Continued on following page.)

820

FIG. 6. The NN nuclear-bar phase shifts as a function of lab kinetic energy for two sets of input. The data points are from the single-energy phase-shift analyses of M. H. Mac Gregor, R. A. Arndt, and R. M. Wright, Phys. Rev. <u>182</u>, 1714 (1969). A small correction has been applied to the phase-shift-analysis ¹D₂ value to remove the effect of the Coulomb force. Also shown are the one-pion-exchange phase shifts. In all cases the theoretical phase shifts are defined via the real part of the scattering amplitude with no unitarization imposed. The *F*-wave phase-shift combinations are ${}^{3}\overline{F}_{c} = (5\,{}^{3}\overline{F}_{2} + 7\,{}^{3}F_{3} + \frac{9}{21}\,{}^{3}\overline{F}_{4})$, ${}^{3}\overline{F}_{T} = -\frac{5}{112}$ (4 ${}^{3}\overline{F}_{2} - 7\,{}^{3}F_{3} + 3\,{}^{3}\overline{F}_{4}$), ${}^{3}\overline{F}_{LS} = -(20\,{}^{3}\overline{F}_{2} + 7\,{}^{3}F_{3} - 27\,{}^{3}\overline{F}_{4})/168$.

821

It is interesting to see the effect of neglecting the right-hand cut (setting $D_2 = 1$) because of the uncertainty in the *d*-wave $\pi\pi$ phase shift. Fig. 5 shows that the right-hand cut has a larger effect on f_+^2 than on f_-^2 . Even so, neglecting this J=2cut has a negligible effect on the two-pion-exchange amplitude to be shown here.

VIII. THE NUCLEON - NUCLEON AMPLITUDE

The two-pion-exchange amplitude was calculated from the $N\overline{N} \rightarrow \pi\pi$ amplitudes, as described in the Introduction, and added to a one-pion-exchange pole with $g^2/4\pi = 14.4$ and an ω -exchange pole with $g_{\omega}^2/4\pi = 4.7$, $f_{\omega}/g_{\omega} = -0.12$. The phase shifts representing this NN amplitude are shown in Fig. 6. Results are given for two different values of the J=0 spectral function, which we recall is proportional to $|f^0_+(t)|^2$. The input to the curves labeled S1, n=3 included the Morgan-Shaw I=J=0 $\pi\pi$ phase shift δ_0^0 and the $t > 50\mu^2 f_+^0$ phase given by n=3 in Eq. (10). For the curves labeled S2, n=3the input included the δ_0^0 constructed to agree with the Geneva-Saclay¹¹ K_{e4} decay results and the Berkeley⁹ results (GS+LBL), and n=3. The L=3phase shifts are given as linear combinations of the ${}^{3}F_{i}$ phase shifts to approximately separate the central, tensor, and spin-orbit components of the T=1 amplitude. The tensor component is independent of $|f_{\pm}^{0}|$.

The phase shifts indicate that the theoretically

FIG. 7. The ${}^{1}S_{0}$ potential for two sets of δ_{0}^{0} input. The Hamada-Johnston (HJ, Ref. 30) and one-pion-exchange potentials are also shown.

calculated T = 0,1 triplet central and T = 1 singlet components are too attractive at higher energies. As shown in Fig. 7, the calculated T = 1 singlet potential is in fact more attractive than the Hamada-Johnston phenomenological potential.³¹ The excess attraction in the phase shifts and potential is reduced if one uses a smaller $|f_{+}^{0}(t)|$, such as that which would be introduced by an enhancement of the $\pi\pi$ phase shift δ_{0}^{0} in the $4-10\mu^{2}$ region. This is indeed the region in which the experimental values are less certain.^{11,18}

The effect of shifting from S1 to S2 is particularly large on the ${}^{3}\overline{D}_{3}$ phase shift. This phase shift is sensitive to the high-*t* spectral function input, which has not been convincingly determined. This sensitivity to high-*t* input indicates that the ${}^{3}\overline{D}_{3}$ may also have a significant contribution from three-pion exchange. The situation of the T=0 singlet state (${}^{1}F_{3}$) is unclear; perhaps it has a little less repulsion than is in the theoretical amplitude. The T=1 spin-orbit component is insufficiently attractive with either form of δ_{0}^{0} input.

The $\pi\pi$ *p*-wave exchange contribution is believed to have been accurately included. Neglect of higher mass states in the electromagnetic form factors may have had some influence on our Γ_i but the effect in the *intermediate-range NN* force is expected to be small. Whether one uses our Γ_i results or those of Nielsen and Oades¹³ makes negligible difference in the *NN* amplitude shown here.

The high-*t* three-pion-exchange contribution was represented here by the ω pole with coupling constants which are rather uncertain. The g_{ω}^{2} value that we used is consistent with the quarkmodel prediction $g_{\omega}^{2} = 9g_{\rho}^{2}$; the f_{ω}/g_{ω} value is found by assuming the simplest ω -pole dominance of the isoscalar nucleon form factors. Larger coupling constants, such as those required in recent one-boson-exchange fits³² to the *NN* data, would simultaneously increase the spin-orbit repulsion and decrease the central attraction. However, the high mass of the ω meson requires a very large value of g_{ω}^{2} in order to subtantially influence the intermediate-range *NN* force.³³

While two-pion exchange is certainly the dominant intermediate-range correction to onepion exchange, our understanding of the intermediate-range force is still not complete. We have shown that the two-pion-exchange amplitude is very dependent on the low- $t \pi \pi$ phase shift δ_0^0 . A more accurate determination of the low- $t \delta_0^0$ is essential to reducing the uncertainty in the twopion-exchange amplitude. The calculation of lowt three-pion-exchange effects may also be helpful in understanding the remaining differences between experiment and present theory.

- *Research supported by the National Science Foundation.
- ¹M. Chemtob, J. W. Durso, and D. O. Riska, Nucl. Phys. B38, 141 (1972).
- ²M. Chemtob and D. O. Riska, Phys. Lett. <u>35B</u>, 115 (1971).
- ³G. E. Brown and J. W. Durso, Phys. Lett. <u>35B</u>, 120 (1971).
- ⁴G. Esptein and B. McKellar, Nuovo Cimento Lett. <u>5</u>, 807 (1972).
- ⁵R. Vinh Mau, J. M. Richard, B. Loiseau, M. Lacombe, and W. N. Cottingham, Phys. Lett. <u>44B</u>, 1 (1973); Phys. Rev. D 8, 800 (1973).
- ⁶D. Amati, E. Leader, and B. Vitale, Phys. Rev. <u>130</u>, 750 (1963).
- ⁷H. Nielsen, J. L. Petersen, and E. Pietarinen, Nucl. Phys. B22, 525 (1970).
- ⁸W. R. Frazer and J. R. Fulco, Phys. Rev. <u>117</u>, 1603 (1960); <u>117</u>, 1609 (1960).
- ⁹S. D. Protopopescu et al., Phys. Rev. D 7, 1279 (1973).
- ¹⁰P. Estabrooks et al., in π - π Scattering—1973, proceedings of the international conference on π - π scattering and associated topics, Tallahassee, 1973, edited by P. K. Williams and V. Hagopian (A.I.P., New York, 1973); the following analysis of the same data resulted in somewhat lower values of δ_0^0 than the CM points in Fig. 1: G. Grayer et al., in Experimental Meson Spectroscopy—1972, proceedings of the third international conference on experimental meson spectroscopy, Philadelphia, 1972, edited by Kwan-Wu Lai and Arthur H. Rosenfeld (A.I.P., New York, 1972).
- ¹¹P. Basile *et al.*, Phys. Lett. <u>36B</u>, 619 (1971);
 A. Zylbersztejn *et al.*, Phys. Lett. <u>38B</u>, 457 (1971).
- ¹²The reader is referred to the Review of Particle Properties for further references: Particle Data Group, Rev. Mod. Phys. <u>45</u>, S1 (1973), p. S73.
- ¹³H. Nielsen and G. C. Oades, Nucl. Phys. <u>B49</u>, 586 (1972).
- ¹⁴H. Nielsen, Nucl. Phys. <u>B33</u>, 152 (1971).
- ¹⁵R. Omnès, Nuovo Cimento 8, 316 (1958).
- ¹⁶D. Morgan and G. Shaw, Phys. Rev. D 2, 520 (1970).
- ¹⁷M. R. Pennington and S. D. Protopopescu, Phys. Rev. D <u>7</u>, 1429 (1973); <u>7</u>, 2591 (1973).
- ¹⁸E. W. Beier et al., Phys. Rev. Lett. <u>30</u>, 399 (1973).
- ¹⁹For J=0, 1, and 2 we used a hand extrapolation of Nielsen's Im \tilde{f}_{\pm}^{J} from $t=-25\mu^{2}$ to $-35\mu^{2}$, $-45\mu^{2}$, and $-45\mu^{2}$, respectively, in an attempt to reduce the

error due to cutoff of the dispersion integrals.

- ²⁰S. Furuichi and K. Watanabe, Prog. Theor. Phys. 37, 465 (1967).
- ²¹V. K. Samaranayake and W. S. Woolcock, Phys. Rev. Lett. <u>15</u>, 936 (1965).
- ²²J. Hamilton and W. S. Woolcock, Rev. Mod. Phys. <u>35</u>, 737 (1963).
- ²³G. Höhler, H. Schaile, and R. Strauss, Z. Phys. <u>229</u>, 217 (1969).
- ²⁴J. Engels, Nucl. Phys. <u>B36</u>, 73 (1972); G. Höhler and R. Strauss, Z. Phys. <u>232</u>, 205 (1970); G. Höhler, H. P. Jakob, and R. Strauss, Nucl. Phys. <u>B39</u>, 237 (1972).
- ²⁵D. V. Bugg, A. A. Carter, and J. R. Carter, Phys. Lett. 44B, 278 (1973).
- ²⁶The πN phase shifts used in this work were kindly supplied by the Particle Data Group (Ref. 12); S. Almehed and C. Lovelace, Nucl. Phys. <u>B40</u>, 157 (1972); A. T. Davies, Nucl. Phys. <u>B21</u>, 359 (1970); R. Ayed, P. Bareyre, and G. Villet, Phys. Lett. <u>31B</u>, 598 (1970); L. D. Roper, R. M. Wright, and B. T. Feld, Phys. Rev. <u>138</u>, B190 (1965).
- ²⁷Crossing symmetry implies that at $\nu = 0$ the t derivatives at fixed ν and at fixed s are equal.
- ²⁸Neglecting I_L in Eq. (8) increases the $f^{0}_{+}(4\mu^2)$ value by less than 2%. The results for $f^{0}_{+}(4\mu^2)$ are almost insensitive to small variations in the $t > 50\mu^2 f^{0}_{+}$ phase.
- ²⁹P. Signell and J. W. Durso, Phys. Rev. Lett. <u>18</u>, 185 (1967) and references therein.
- ³⁰P. Federbush, M. L. Goldberger, and S. B. Treiman, Phys. Rev. <u>112</u>, 642 (1958).
- ³¹T. Hamada and I. D. Johnston, Nucl. Phys. <u>34</u>, 382 (1962).
- ³² R. A. Bryan and A. Gersten, Phys. Rev. D <u>6</u>, 341 (1972).
- ³³The authors of Ref. 32 quote the value $g_{\omega}^{2}/4\pi = 9.39$ for their model *D*. However, they multiply this value by a constant which raises the effective coupling constant value to $g_{\omega}^{2}/4\pi = 21.09$. Finally, they subtract off an angular-momentum-dependent term, which tends to bring the value back down for low partial waves. However, for the higher partial waves given by the intermediate-range *NN* interaction, the effective value stays close to 20. We would like to thank R. Bryan for a private communication confirming this aspect of the model in Ref. 32.