certain low value. Nevertheless, it will be seen from Fig. 2(b) that for the uppermost range of u values the "spectator" contribution should clearly exceed the background "production" events.

 16 Another suggestion for the detection of this configuration is given in H. J. Weber, Phys. Rev. ^C 9, 1771 (1974).

PHYSICAL REVIEW D VOLUME 10, NUMBER 3 1 AUGUST 1974

Calculation of nucleon-nucleon two-pion exchange utilizing theoretical and experimental $\pi\pi$, πN , and e N information*

G. E. Bohannon and Peter Signell

Department of Physics, Michigan State University, East Lansing, Michigan 48824

(Received 1S March 1974)

The $J = 0.1, 2 \text{ N } \overline{\text{N}} - \pi \pi$ amplitudes are evaluated in the physical region of the two pions, $t \ge 4\mu^2$, and used in a dispersion-theoretic calculation of nucleon-nucleon two-pion exchange. Experimental input to the evaluations of the $N\overline{N} - \pi\pi$ amplitudes is via $\pi\pi$ phase shifts, πN scattering lengths, and πN phase shifts. The effect of varying the $I = J = 0 \pi \pi$ phase shift within its present uncertainty is investigated. Experimentally determined nucleon electromagnetic form factors are used in the evaluation of the $J = 1$ $N\overline{N} - \pi\pi$ amplitude. After adding π and ω exchange to the two-pion-exchange amplitude, the theoretical phase shifts are compared with phase-shift-analysis results. The calculated ${}^{1}S_0$ potential is also shown and compared with the phenomenological one of Hamada and Johnston.

I. INTRODUCTION

The dispersion-theoretic treatment of two-pion exchange has been used by several authors¹⁻⁵ in a recent wave of attempts to evaluate the intermediate-range nuclear force. In this approach the two-pion-exchange $NN \rightarrow NN$ amplitude is obtained' from a fixed-energy dispersion relation. Unitarity and crossing determine the absorptive part as a bilinear product of the $N\overline{N} \! \twoheadrightarrow \! \pi\pi$ amplitude $A^{(\pm)}, B^{(\pm)}$ in the low-energy physical region of the two pions. Thus, full exploitation of this approach requires a knowledge of the $N\bar{N}$ - $\pi\pi$ amplitudes at energies far below physical threshold. In 1970 Nielsen, Petersen, and Pietarinen⁷ (NPP) attempted to evaluate the necessary s-, p-, and d-wave $N\bar{N}$ + $\pi\pi$ amplitudes by analytic continuation from the pion-nucleon physical scattering regions. The resulting s-wave $N\overline{N}$ - $\pi\pi$ amplitude was used by Chemtob and Riska' to calculate nucleon-nucleon phase shifts, giving qualitative agreement with phase-shift analysis. In later work¹ this $N\overline{N}$ - $\pi\pi$ s-wave amplitude was used to calculate two-pion-exchange NN potentials.

Unitarity of the $N\overline{N}$ + $\pi\pi$ partial-wave amplitudes implies⁸ that their phases are those of $\pi\pi$ scattering, modulo π , for the same angular momenta. In fact, NPP had hoped to learn about the $\pi\pi$ phases through use of this relation. Since that time, however, the $\pi\pi$ s-wave phase shift has

been well established experimentally⁹⁻¹²: It shows a strong discrepancy mith the NPP result. New results for the s- and p-wave $N\overline{N}$ - $\pi\pi$ partial-wave amplitudes using the $\pi\pi$ phase shifts as *input* have now been given by Nielsen and Oades¹³ and by Epstein and McKellar.⁴ Surprisingly, the nuclear force calculated from these newer and supposedly more realistic $N\overline{N}$ + $\pi\pi$ s-wave amplitudes seemed to be in poorer agreement with nucleon-nucleon phase-shift analysis and with phenomenologic NN potentials.^{4,5} r ag
aly
^{4,5}

These circumstances seemed to indicate to us that a very careful evaluation of all input to the two-pion-exchange calculation was needed. In the calculations presented here the nucleon-pole (Born) contributions to $B^{(*)}$ have been included exactly, while $A^{(\pm)}$ and the non-Born part of $B^{(\pm)}$ mere represented by partial-wave expansions truncated after d waves. By including the d waves we found it unnecessary to rely upon a narrowwidth baryon-resonance model for the $J \ge 2$ partial waves as was the case in several previous NN calculations. We have evaluated the $s-$, $p-$, and d-wave $N\overline{N}$ + $\pi\pi$ amplitudes, while enforcing unitarity, with special attention to the effect of uncertainties in the $\pi\pi$ phase-shift input. Subtraction constants required in our dispersion relations were determined using new pion-nucleon scattering lengths and phase shifts as well as scattering lengths and phase shifts as well as $fixed-t$ dispersion relation results.¹⁴ In addition

in evaluating the p -wave amplitudes, we have used experimental information on the nucleon electromagnetic form factors.

II. THE PHASES OF THE $N\overline{N}\rightarrow\pi\pi$ AMPLITUDES

The singularities of the $N\bar{N}$ + $\pi\pi$ helicity amplitudes⁸ f_{$\frac{J}{4}$} are along the right-hand cut beginning tudes $y +$ are along the right-hand cut beginn
at $t = 4\mu^2$ and the left-hand cut at $t = 4\mu^2 - \mu^4/m^2$ The helicity amplitudes are determined on the left-hand cut for $t > -26\mu^2$ from continuation of πN amplitudes.⁸ An extensive table of the resulting s -, p -, and d -wave amplitudes in this left-hand cut region was given by Nielsen.¹⁴ left-hand cut region was given by Nielsen.

For $4\mu^2 \le t \le 16\mu^2$, on the right-hand cut, unitarity requires⁸ that

$$
\operatorname{Im} f_{\pm}^{J}(t) = f_{\pm}^{J \ast}(t) e^{i \delta_{J}^{L}} \sin \delta_{J}^{I}, \tag{1}
$$

where $\delta^I_{J}(t)$ is the appropriate $\pi\pi$ scattering phase shift. The upper limit, $t=16\mu^2$, is set by the opening of the 4π channel, but Eq. (1) will continue to be valid up to the value of t where inelasticity becomes appreciable.

The unitarity condition, Eg. (1), is utilized via the Omnès function $15*8$

$$
D_J(t) = \exp\left[\frac{-t}{\pi} \int_{4\mu^2}^{\infty} \frac{\delta^L_J(t')}{t'(t'-t-i\epsilon)} dt'\right] . \tag{2}
$$

The products $D_{J}(t)f_{\pm}^{J}(t)$ then have only the lefthand cut, where, as we have seen, the $f^J_{+}(t)$ are determined from physical πN scattering amplitudes, and a right-hand cut beginning where inelasticity becomes important, at high t.

Recent analyses of pion-production experiments^{9,10} have indicated that $I=0$ s-wave $\pi\pi$ scattering is essentially elastic up to the $K\overline{K}$ threshold and that p -wave scattering is elastic to about the same energy. Thus, the unitarity conditions, Eq. (1), for $J=0$ and $J=1$ should be valid up to $t \approx 50\mu^2$.

The large amount of attention given to the $\pi\pi$ s-wave amplitude has now given a good qualitative s-wave amplitude has now given a good quartial
picture of the phase shift δ_0^0 for $t < 50\mu^2$. Althoug various analyses each have small quoted uncertainties, they do maintain some disagreement with one another. For example, the values of δ_0^0 from the Berkeley⁹ energy-dependent analysis and those from the CERN-Munich¹⁰ energy-independent analysis, both shown in Fig. 1, show disagreement of their central values by about 11' below $t = m_o^2 \approx 30\mu^2$. However, their quoted uncertainties are each about $\pm 4^{\circ}$.

Both of the above-cited experimental analyses,
d the K_{ad} decay results from Geneva-Saclay, 11 and the K_{e4} decay results from Geneva-Saclay,¹¹ and the A_{e4} decay results from Geneva-Sacray,
show a somewhat larger δ_0^o than that of the Morgan Shaw¹⁶ analysis, which utilizes analyticity but less experimental $\pi\pi$ information, although the

FIG. 1. The $I = J = 0 \pi \pi$ phase shift δ_0^0 . Shown are the Morgan-Shaw result {MS, Ref. 16), the Berkeley result (LBL, Ref. 9), the CERN-Munich results (CM, Ref. 10) {for which half of the quoted points are shown), the Geneva-Saclay results (GS, Ref. 11), and the NPP results (Ref. 7). The dash-dot curve, constructed to agree with GS and LBL, is discussed in the text.

scattering length found in the Morgan-Sham analysis $(0.16\mu^{-1})$ is in excellent agreement with that found by Pennington and Protopopescu¹⁷ (0.15 μ^{-1}). The Pennsylvania¹⁸ K_{e4} decay results appear to be consistent with both the Morgan-Shaw and Geneva-Saclay results. In what follows we first use the Morgan-Shaw δ_0^0 and then indicate the effect of using a larger value.

The p-wave $\pi\pi$ phase shift δ_1^1 is known with greater certainty because of the strong ρ resonance. The phase shift δ_1^1 is well represented, for

$$
t < 50\mu^2
$$
, by the expression
\n $\left(\frac{\nu}{\nu+1}\right)^{1/2} \cot \delta_1^1 = \frac{(1-0.1536\nu)(1+0.00076\nu)}{0.035\nu}$, (3)

where $\nu\mu^2$ is the center-of-mass pion momentu squared. This form was used by Morgan and Shaw¹⁶ but with a smaller width than that used here.⁹ The scattering length used, $0.035\mu^{-3}$, is in here.⁹ The scattering length used, $0.035\mu^{-3}$, is in very good agreement with a recent determination.¹⁷

The d-wave $\pi\pi$ phase shift δ_2^0 is certainly less well known but all analyses find it to be small. The expression used here is¹⁶

$$
\left(\frac{\nu}{\nu+1}\right)^{1/2} \cot \delta_2^0 = \frac{(1-0.0524\nu)(1+0.204\nu+0.0015\nu^2)}{0.0015\nu^2} \ .
$$
\n(4)

This $\pi\pi$ phase shift is found to be of minor importance in the nuclear force.

10

III. THE MAGNITUDE OF THE $N\overline{N} \rightarrow \pi\pi$ AMPLITUDE f_{\perp}^{0}

For the determination of the *magnitude* of the f^0_+ amplitude, we first wrote a twice-subtracted dispersion relation for $D_0(t) f_+^0(t)/(t-4m^2)$:

$$
\frac{D_0(t)f_+^0(t)}{t-4m^2} = \frac{(t-4\mu^2)f_+^0(0)}{16m^2\mu^2} + \frac{tD_0(4\mu^2)f_+^0(4\mu^2)}{16\mu^2(\mu^2-m^2)} + \frac{t(t-4\mu^2)}{\pi} \int_{-\infty}^a \frac{D_0(t')\mathrm{Im}f_+^0(t')dt'}{t'(t'-4\mu^2)(t'-4m^2)(t'-t)} , \qquad (5)
$$

where $a = 4\mu^2 - \mu^4/m^2$. The non-Born part of the input Im $f^0_+(t' < a)$ was taken from Nielsen's¹⁴ work
and added to the Born term.¹⁹ For the $t = 0$ suband added to the Born term.¹⁹ For the $t = 0$ subtraction constant, Re $f^0_+(0)$ was found by Furuichi and Watanabe²⁰ to be -2.8μ . However, this value assumed²¹ $A^{(+)}(\nu=0, t=0) = 24.6\mu^{-1}$, which is in assumed²¹ $A^{(+)}(\nu = 0, t = 0) = 24.6\mu^{-1}$, which is in disagreement with other determinations.^{14,22-24} An improved value was used here, described later. In the $t = 4\mu^2$ subtraction constant, the value of $f^0_+(4\mu^2)$ must be known accurately because of its large size. The value currently available in the literature²⁴ was obtained from fixed-t dispersion relations mhich depended on a continuation of the pion-nucleon partial-mave amplitudes to the branch cut at $t=4\mu^2$, where formal convergence ceases; it is therefore open to question. An alternate procedure is used here.

IV. DETERMINATION OF THE πN AMPLITUDES AT $v=t=0$

Fixed-t dispersion relations for

$$
A^{(+)}(\nu, t\,)
$$

and

$$
A^{(t)}(\nu, t) = A^{(+)}(\nu, t) + \frac{\nu}{1 - t(4m^2)^{-1}} B^{(+)}(\nu, t),
$$

where $v = (s-u)/(4m)$, have been used to find $A^{(+)}$ and the derivative of $A^{(+)}(0, t)$ at $t=0$. With these quantities we have been able to find $f^0_+(4\mu^2)$ as described later and to improve the $f^0_+(0)$ of Ref. 20. Both $A^{(+)}$ and $A^{\prime (+)}$ satisfy dispersion relation of the form

$$
A(\nu, t) = A(\nu_c, t)
$$

+
$$
\frac{2(\nu^2 - \nu_c^2)}{\pi} \int_{\nu_c}^{\infty} \frac{\nu' \text{Im} A(\nu', t)}{(\nu'^2 - \nu_c^2)(\nu'^2 - \nu^2)} d\nu', \quad (6)
$$

where $v_c = \mu + t/4m$. The necessary subtraction functions are written in terms of the isospin-even scattering lengths at the point $v = v_c$ as

$$
A^{(+)}(\mu, 0) = 8\pi \left[\frac{2m + \mu}{4m} a_0^{(+)} + \mu m (a_{1+}^{(+)} - a_{1-}^{(+)}) \right], \qquad (7a)
$$

$$
\frac{\partial}{\partial t} A^{\prime^{(+)}}(\nu_{\sigma}(t), t) \Big|_{t=0}
$$

=
$$
\frac{4\pi (m+\mu)}{m} \left(\frac{a_0^{(+)}}{8m^2} + \frac{1}{2} a_{1-}^{(+)} + a_{1+}^{(+)} \right).
$$
 (7b)

The sensitivity to $a_0^{(+)}$ is small in each case. The value used here is²⁵ $a_0^{(+)} = \frac{1}{3}(-0.014 \pm 0.005)\mu^{-1}$. The largest uncertainty in using Eq. (6) comes from the p -wave scattering lengths, for which we used a weighted average of experimental results:

$$
a_{1+}^{(+)}-a_{1-}^{(+)}=\frac{1}{3}(0.571\pm0.010)\mu^{-3},
$$

\n $a_{1+}^{(+)}+\frac{1}{2}a_{1-}^{(+)}=\frac{1}{3}(0.310\pm0.010)\mu^{-3}.$

The first of these combinations is consistent with the very accurate determination of Bugg, Carter, the very accurate determination of Bugg, Carte
and Carter²⁵ as well as older analyses.^{22,23} For the second combination both Hamilton and Woolcock²² and Höhler *et al.*²³ found very nearly this value.

The imaginary parts of the amplitudes $A^{(+)}$ and $A^{(+)}$ were obtained from πN phase shifts. The results for the on-shell amplitudes at $v=0$ were rather insensitive to which of several sets 26 was used. The results found²⁷ are

$$
A^{(+)}(0, 0) = (25.9 \pm 0.5)\mu^{-1},
$$

$$
\frac{\partial}{\partial t} A^{(+)}(0, t) \Big|_{t=0} = (1.16 \pm 0.05)\mu^{-3}.
$$

Both values are consistent with other determina-Both values are consistent with other determin
tions.^{14,22-24} Combining the first value with the results of Ref. 20, me now obtain

$$
Re f^{0}_{+}(0) = -2.4 \mu .
$$

V. THE $J=0$ SUBTRACTION CONSTANT AT $t = 4\mu^2$

The function $D_0(t) A^{(+)}(0, t)$ has no s-wave contribution to the nearby part of its right-hand cut where the $\pi\pi$ s-wave amplitude is elastic. The imaginary part of this function can therefore be evaluated on the nearby right-hand cut using the d-wave helicity amplitudes yet to be described, and assuming that the $J \geq 4$ helicity amplitudes are adequately given by the nucleon pole. Neglecting Im f^2 , the twice-subtracted dispersion relation then reads

$$
D_0(t) A^{(+)}(0, t) = A^{(+)}(0, 0) + t \left[\frac{\partial}{\partial t'} D_0(t') A^{(+)}(0, t') \right] \Big|_{t'=0} + I_L + \frac{t^2}{\pi} \int_{4\mu^2}^{\infty} \frac{-|D_0(t')| A_{J=2}^{(+)}(0, t') \sin \delta_0^0(t')}{t'^2(t'-t)} dt', \quad (8)
$$

FIG. 2. The $J=0$ spectral function $\rho_0^{(+)}(t) = 8\pi[(t - 4\mu^2)/t]^{1/2}(4m^2 - t)^{-2}|f_{+}^{0}(t)|^2$. Results are shown for various inputs to Eq. (5). Also shown are the Nielsen-Oades {N-O, Ref. 13) and the Epstein-McKellar {E-McK, Ref. 4) results.

where

$$
A_{J\geq 2}^{(+)}(0, t) = A^{(+)}(0, t) - 16\pi (4m^2 - t)^{-1}f_{+}^{0}(t).
$$

The contribution from the distant left-hand cut at $t=-27\mu^2$ is denoted I_L . Because of its remotenes and the two subtractions, it is expected that only the leading edge of this cut is important. The following parameterization was used to represent the left-hand cut:

$$
D_0(t) \operatorname{Abs} A^{(+)}(0, t) = \alpha \left(-t - 4m \mu \right)^{1/2} . \tag{9}
$$

Comparing Eq. (8) with Nielsen's¹⁴ fixed-t dispersion relation results, at negative t , fixed $\alpha \simeq 29\mu^{-2}$ when the Morgan-Shaw δ_0^0 was used. Using Eq. (8) with the Morgan-Shaw δ_0^0 to continue to $t=4\mu^2$, where $A^{(+)}$ is purely s-wave in the $N\overline{N}$ + $\pi\pi$ channel, we found²⁸

$$
f^{\,0}_{\, +}(4\mu^2) = (114 \pm 2)\,\mu \,.
$$

The uncertainty quoted here does not include that due to the uncertainty in the low-t δ_0^0 input.

Shown in Fig. 1 is a δ_0^0 constructed to agree with the Geneva-Saclay¹¹ K_{eq} decay results at $t < 8\mu^2$ and to join smoothly with the Berkeley⁹ δ_0^0 at $t \approx 20\mu^2$. When this phase shift, which we shall refer to as $GS + LBL$, was used in Eq. (8) we found $\alpha \simeq 29\mu^{-2}$ and a larger amplitude at $t = 4\mu^2$.

$f^0_{+}(4\mu^2) = (118 \pm 2)\mu$.

The magnitude $|f_{+}^{0}(t)|$ and the J=0 spectral function, which directly enters the NN fixed-energy dispersion relation and is proportional to $|f_{+}^{0}(t)|^{2}$, was then calculated from Eq. (5}. We have found that the results from Eq. (5) for $t \ge 20\mu^2$ are somewhat sensitive to the phase of f_{+}^{0} above $50\mu^{2}$, where it is not known. In Fig. ² results are shown

FIG. 3. The nucleon electromagnetic form factors $G_E^V = F_1^V + (t \nvert 2m)F_2^V$ and $G_M^V = F_1^V + 2mF_2^V$, with F_i^V from Eq. (12) and Γ from Eq. (11). Data are as in Ref. 29.

for several assumed forms of the f^0_+ phase above $t = 50\mu^2$, all of which have the general form

$$
\delta(t) = (50\mu^2/t)^n \delta(50\mu^2) \,. \tag{10}
$$

For clarity, calculations using the Morgan-Shaw δ_0^0 , Re $f_+^0(0)$ = -2.4 μ , and $f_+^0(4\mu^2)$ = 114 μ are designated S1. Since the S1 curves for various $n > 0$ are very similar at $t \le 20\mu^2$ they all produce similar NN amplitudes for the states and energies to be shown here. When the calculation was performed with the GS + LBL δ_0^0 the resulting $|f_+^0(t)|$ was considerably smaller for $t > 6\mu^2$. This result, which used Re $f_{+}^{0}(0) = -2.4\mu$ and $f_{+}^{0}(4\mu^{2}) = 118\mu$, is designated 82. We have shown the 82 result using $n=3$.

Also given in Fig. 2 are the results found by Nielsen and Oades¹³ using the Morgan-Shaw δ_0^0 and those found by Epstein and McKellar.⁴ Although Nielsen and Oades used $n=1$ in Eq. (10), their analytic continuation of $D_0f_+^0/(t-4m^2)$ from t < $4\mu^2$ to $4\mu^2 < t < 50\mu^2$ would be expected to be less sensitive to the $t > 50\mu^2$ input phase.

819

VI. THE p -WAVE AMPLITUDES f_{\pm}^1

It is convenient to work with the amplitudes⁸

$$
\Gamma_1 = \frac{4m}{t - 4m^2} \left(f_+^1 - \frac{t}{4\sqrt{2}m} f_-^1 \right),
$$

$$
\Gamma_2 = \frac{2}{t - 4m^2} \left(-f_+^1 + \frac{m}{\sqrt{2}} f_-^1 \right).
$$

For these amplitudes we used the following dispersion relation:

$$
D_{1}(t)\Gamma_{i}(t) = \Gamma_{iB}(t) + \frac{t_{o} - t}{t_{o}} \tilde{\Gamma}_{i}(0) + \frac{t}{t_{o}} [D_{1}(t_{o})\Gamma_{i}(t_{o}) - \Gamma_{iB}(t_{o})]
$$

+
$$
\frac{t(t - t_{o})}{\pi} \int_{-\infty}^{a} \frac{D_{1}(t^{*}) \text{Im } \tilde{\Gamma}_{i}(t^{*}) + [D_{1}(t^{*}) - 1] \text{Im} \Gamma_{iB}(t^{*})}{t^{*}(t^{*} - t_{o})(t^{*} - t)} dt^{*}
$$
(11)

where $\tilde{\Gamma}_i \equiv \Gamma_i - \Gamma_{iB}$. The dispersion relation for the Born term Γ_{i} has been subtracted from the relation for Γ_i to obtain a less rapidly varying integrand near $t' = a$. The values $\overline{T}(0) = 0.017 \mu^{-2}$ and $\tilde{\Gamma}_2(0) = -0.0185\mu^{-3}$ were obtained from Ref. 14. We chose to take $t_0 = 30\mu^2 \approx m_0^2$, and determined

FIG. 4. The imaginary parts of the p -wave helicity amplitudes f^1_+ (upper solid and dashed curves) and f^1_- (lower curves) in units where $\mu = 1$. The solid curves are from Eq. (11); the dashed curves are from Nielsen and Qades, Ref. 13.

the constants $\Gamma_i(t_0)$ from the nucleon electromagnetic form factors as follows.

Attempts²⁹ to explain the behavior of the nucleon form factors suggest that the isovector form factors at small $t < 0$ (spacelike) are determined via analyticity by the two-pion intermediate state $(N\overline{N}+2\pi+\gamma)$ at $t>4\mu^2$. The form factors³⁰ $F_1^{\bf v}$ and F^V have the following representations⁸:

FIG. 5. The d-wave helicity amplitude magnitudes $|f_{\pm}^2|$ multiplied by $q^2 = t/4 - \mu^2$. The solid curves are from once-subtracted Omnès relations. The shortdashed curves were obtained by setting $D_2 = 1$. The long-dashed curves are the Born (nucleon pole) contributions.

$$
F_i^V(t) = F_i^V(0) - \frac{t}{\pi} \int_{4\mu^2}^{\infty} \left[\frac{(t'-4\mu^2)^3}{64t'} \right]^{1/2} \times \frac{F_{\pi}*(t')\Gamma_i(t')}{t'(t'-t)} dt', \qquad (12)
$$

where $F_1^V(0) = \frac{1}{2}$ and $F_2^V(0) = 1.853/(2 m)$. We used $1/D_1(t)$ for $F_\pi(t)$, the pion form factor.^{8,31}

We have found without detailed fitting that the small- $|t|$ experimental form factor data are very well reproduced (Fig. 3) with the following values of $|\Gamma_i(30\mu^2)|$:

$$
|\Gamma_1(30\mu^2)| = 0.121\mu^{-2},
$$

 $|\Gamma_2(30\mu^2)| = 0.0544\mu^{-3}.$

The result (Fig. 4) for $\text{Im } f^{\perp}$ is in good agreement The result (Fig. 4) for $\text{Im } f^1$ is in good agreem with that of Nielsen and Oades,¹³ while $\text{Im } f^1$ is somewhat lower near resonance.

VII. THE d -WAVE AMPLITUDES f_{\pm}^2

Using a once-subtracted dispersion relation with the Born amplitude removed, subtractions were mode at both $t_0 = \mu^2$ and $t_0 = 3\mu^2$ giving very similar results. The subtraction constants $\tilde{f}_\pm^2(t_0)$ were obtained from Ref. 14. The results (Fig. 5} show a significant non-Born contribution to f^2_+ , while f^2_- is close to the Born amplitude, in agreement with NPP.⁷

FIG. 6. (Continued on following page.)

FIG. 6. The NN nuclear-bar phase shifts as a function of lab kinetic energy for two sets of input. The data points are from the single-energy phase-shift analyses of M. H. Mac Gregor, R. A. Arndt, and R. M. Wright, Phys. Rev. 182, 1714 (1969). A small correction has been applied to the phase-shift-analysis 1D_2 value to remove the effect of the Coulomb force. Also shown are the one-pion-exchange phase shifts. In all cases the theoretical phase shifts are defined via the real part of the scattering amplitude with no unitarization imposed. The F-wave phase-shift combinations are ${}^{3}F_{c} = (5 {}^{3}F_{2} + 7 {}^{3}F_{3} + \frac{9}{21} {}^{3}F_{4})$, ${}^{3}F_{T} = - \frac{5}{112} (4 {}^{3}F_{2} - 7 {}^{3}F_{3} + 3 {}^{3}F_{4})$

It is interesting to see the effect of neglecting the right-hand cut (setting $D_2 = 1$) because of the uncertainty in the d -wave $\pi\pi$ phase shift. Fig. 5 shows that the right-hand cut has a larger effect on f^2 , than on f^2 . Even so, neglecting this $J=2$ cut has a negligible effect on the two-pion-exchange amplitude to be shown here.

VIII. THE NUCLEON - NUCLEON AMPLITUDE

The two-pion-exchange amplitude was calculated from the $N\overline{N}$ - $\pi\pi$ amplitudes, as described in the Introduction, and added to a one-pion-exchange pole with $g^2/4\pi = 14.4$ and an ω -exchange pole with $g_{\omega}^2/4\pi$ =4.7, f_{ω}/g_{ω} =-0.12. The phase shifts representing this NN amplitude are shown in Fig. 6. Results are given for two different values of the $J=0$ spectral function, which we recall is proportional to $|f_{+}^{0}(t)|^{2}$. The input to the curves labeled S1, $n=3$ included the Morgan-Shaw $I=J=0$ $\pi\pi$ phase shift δ_0^0 and the $t > 50\mu^2 f_{+}^0$ phase given by $n=3$ in Eq. (10). For the curves labeled S2, $n=3$ $h = 3$ in Eq. (10). For the curves labeled 52 , $h = 3$
the input included the δ_0^0 constructed to agree with the Geneva-Saclay¹¹ K_{q4} decay results and the Berkeley⁹ results (GS + LBL), and $n=3$. The $L=3$ phase shifts are given as linear combinations of the ${}^{3}F$, phase shifts to approximately separate the central, tensor, and spin-orbit components of the $T=1$ amplitude. The tensor component is independent of $|f_+^0|$.

The phase shifts indicate that the theoretically

FIG. 7. The ${}^{1}S_0$ potential for two sets of δ_0^0 input. The Hamada-Johnston (HJ, Ref. 30} and one-pion-exchange potentials are also shown.

calculated $T = 0.1$ triplet central and $T = 1$ singlet components are too attractive at higher energies, As shown in Fig. 7, the calculated $T = 1$ singlet potential is in fact more attractive than the potential is in fact more attractive than the
Hamada-Johnston phenomenological potential.³¹ The excess attraction in the phase shifts and potential is reduced if one uses a smaller $|f_+^0(t)|$, such as that which would be introduced by an enhancement of the $\pi\pi$ phase shift δ_0^0 in the $4-10\mu^2$ region. This is indeed the region in which the experimental values are less certain.^{11,18}

The effect of shifting from 81 to 82 is particularly large on the ${}^{3}D_{3}$ phase shift. This phase shift is sensitive to the high- t spectral function input, which has not been convincingly determined. This sensitivity to high-t input indicates that the ${}^{3}\overline{D}_3$ may also have a significant contribution from three-pion exchange. The situation of the $T=0$ singlet state (F_3) is unclear; perhaps it has a little less repulsion than is in the theoretical amplitude. The $T=1$ spin-orbit component is insufficiently attractive with either form of δ_0^0 input.

The $\pi\pi$ p-wave exchange contribution is believed to have been accurately included. Neglect of higher mass states in the electromagnetic form factors may have had some influence on our Γ_i but the effect in the intermediate-range NN force is expected to be small. Whether one uses our Γ_i results or those of Nielsen and Oades¹³ makes negligible difference in the NN amplitude shown here.

The high- t three-pion-exchange contribution was represented here by the ω pole with couplin constants which are rather uncertain. The g_ω^2 value that we used is consistent with the quark model prediction $g_{\omega}^2 = 9g_{\rho}^2$; the f_{ω}/g_{ω} value is found by assuming the simplest ω -pole dominance of the isoscalar nucleon form factors. Larger coupling constants, such as those required in recent one-boson-exchange fits³² to the NN data, would simultaneously increase the spin-orbit repulsion and decrease the central attraction. However, the high mass of the $\pmb{\omega}$ meson requires a very large value of g_{ω}^2 in order to subtantially
influence the intermediate-range NN force.³³ influence the intermediate-range NN force.³³

While two-pion exchange is certainly the dominant intermediate-range correction to onepion exchange, our understanding of the intermediate-range force is still not complete. We have shown that the two-pion-exchange amplitude is very dependent on the low-t $\pi\pi$ phase shift δ_0^0 . A more accurate determination of the low-t δ_0^0 is essential to reducing the uncertainty in the twopion-exchange amplitude. The calculation of low t three-pion-exchange effects may also be helpful in understanding the remaining differences between experiment and present theory.

- *Research supported by the National Science Foundation.
- 1 M. Chemtob, J. W. Durso, and D. O. Riska, Nucl. Phys. B38, 141 (1972).
- ²M. Chemtob and D. O. Riska, Phys. Lett. 35B, 115 (1971).
- 3G. E. Brown and J. W. Durso, Phys. Lett. 35B, ¹²⁰ $(1971).$
- 46. Esptein and B. McKellar, Nuovo Cimento Lett. 5, 807 (1972).
- 5R. Vinh Mau, J. M. Richard, B. Loiseau, M. Lacombe, and W. N. Cottingham, Phys. Lett. 44B, 1 (1973); Phys. Rev. D $8, 800$ (1973).
- ${}^{6}D.$ Amati, E. Leader, and B. Vitale, Phys. Rev. 130 , 750 (1963).
- 7 H. Nielsen, J. L. Petersen, and E. Pietarinen, Nucl. Phys. B22, 525 (1970}.
- 8 W. R. Frazer and J. R. Fulco, Phys. Rev. 117, 1603 (1960); 117, 1609 (1960).
- ⁹S. D. Protopopescu et al., Phys. Rev. D $\frac{7}{1}$, 1279 (1973).
- S. D. Protopopescu et al., Phys. Rev. D $\frac{1}{1}$, 1279 (19 $\frac{1}{2}$ P. Estabrooks *et al.*, in π - π *Scattering*—1973, proceedings of the international conference on π - π scattering and associated topics, Tallahassee, 1973, edited by P. K. Williams and V. Hagopian (A.I.P., New York, 1973); the following analysis of the same data resulted in somewhat lower values of δ_0^0 than the CM points in Fig. 1: G. Grayer et al., in *Experimental Meso*n Spectroscopy-1972, proceedings of the third international conference on experimental meson spectroscopy, Philadelphia, 1972, edited by Kwan-Wu Lai and Arthur H. Rosenfeld (A.I.P, New York, 1972).
- 11 P. Basile et al., Phys. Lett. $36B$, 619 (1971); A. Zylbersztejn et al., Phys. Lett. 38B, 457 (1971).
- 12 The reader is referred to the Review of Particle Properties for further references: Particle Data Group, Rev. Mod. Phys. 45, S1 (1973), p. S73.
- 13 H. Nielsen and G. C. Oades, Nucl. Phys. $\underline{B49}$, 586 (1972).
- ¹⁴H. Nielsen, Nucl. Phys. B33, 152 (1971).
- 15 R. Omnes, Nuovo Cimento 8, 316 (1958).
- 16 D. Morgan and G. Shaw, Phys. Rev. D 2, 520 (1970).
- $17M$. R. Pennington and S. D. Protopopescu, Phys. Rev. D 7, 1429 (1973); 7, 2591 (1973).
- $^{18}E.$ W. Beier et al., Phys. Rev. Lett. $30, 399$ (1973).
- ¹⁹For $J=0$, 1, and 2 we used a hand extrapolation of Nielsen's Im \tilde{f}_\pm^J from $t = -25\mu^2$ to $-35\mu^2$, $-45\mu^2$, and $-45\mu^2$, respectively, in an attempt to reduce the

error due to cutoff of the dispersion integra1s.

- ²⁰S. Furuichi and K. Watanabe, Prog. Theor. Phys. 3V, 465 (1967).
- $21\overline{V}$. K. Samaranayake and W. S. Woolcock, Phys. Rev. Lett. 15, 936 (1965).
- 22 J. Hamilton and W. S. Woolcock, Rev. Mod. Phys. 35 , 737 {1963).
- 23 G. Höhler, H. Schaile, and R. Strauss, Z. Phys. 229 , 217 (1969).
- 24 J. Engels, Nucl. Phys. B36, 73 (1972); G. Höhler and R. Strauss, Z. Phys. 232, 205 (1970); G. Höhler, H. P. Jakob, and R. Strauss, Nucl. Phys. B39, 237 (1972).
- ²⁵ D. V. Bugg, A. A. Carter, and J. R. Carter, Phys. Lett. 44B, 278 (1973).
- 26 The πN phase shifts used in this work were kindly supplied by the Particle Data Group (Ref. 12); S. Almehed and C. Lovelace, Nucl. Phys. B40, 157 (1972); A. T. Davies, Nucl. Phys. B21, 359 (1970); R. Ayed, P. Bareyre, and G. Villet, Phys. Lett. 31B, 598 (1970); L. D. Roper, R. M. Wright, and B. T. Feld, Phys. Rev. 138, B190 (1965).
- ²⁷Crossing symmetry implies that at $\nu = 0$ the t derivatives at fixed ν and at fixed s are equal.
- ²⁸Neglecting I_L in Eq. (8) increases the $f^0_+(4\mu^2)$ value by less than 2%. The results for $f^0_+(4\mu^2)$ are almost insensitive to small variations in the $t > 50 \mu^2 f +$ phase.
- 29 P. Signell and J. W. Durso, Phys. Rev. Lett. 18, 185 (1967) and references therein.
- 30 P. Federbush, M. L. Goldberger, and S. B. Treiman, Phys. Rev. 112, 642 (1958}.
- 31 T. Hamada and I. D. Johnston, Nucl. Phys. 34 , 382 (1962).
- $32R$. A. Bryan and A. Gersten, Phys. Rev. D 6 , 341 (1972).
- ³³The authors of Ref. 32 quote the value $g_\omega^2/4\pi = 9.39$ for their model D . However, they multiply this value by a constant which raises the effective coupling constant value to $g_\omega^2/4\pi = 21.09$. Finally, they subtract off an angular-momentum-dependent term, which tends to bring the value back down for low partial waves. However, for the higher partial waves given by the intermediate-range NN interaction, the effective value stays close to 20. We would like to thank R. Bryan for a private communication confirming this aspect of the model in Ref. 32.