
10 SPECTATOR ISOBARS IN DEUTERON COLLISIONS 815

certain low value. Nevertheless, it will be seen from
Fig. 2(b) that for the uppermost range of u values the
"spectator" contribution should clearly exceed the
background "production" events.

t6Another suggestion for the detection of this configura-
tion is given in H. J. Weber, Phys. Rev. C 9, 1771
(1974).
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The J = 0,1,2 XN —Trm amplitudes are evaluated in the physical region of the two pions, t & 4p, ',
and used in a dispersion-theoretic calculation of nucleon-nucleon two-pion exchange. Experimental input
to the evaluations of the XN —mm amplitudes is via vr7r phase 'shifts, vrX scattering lengths, and mX
phase shifts. The effect of varying the I = J = 0 m7r phase shift within its present uncertainty is

investigated. Experimentally determined nucleon electromagnetic form factors are used in the evaluation
of the J = 1 NN -nn amplitude. After adding n and co exchange to the two-pion-exchange

amplitude, the theoretical phase shifts are compared with phase-shift-analysis results. The calculated 'S,
potential is also shown and compared with the phenomenological one of Hamada and Johnston.

I. INTRODUCTION

The dispersion-theoretic treatment of two-pion
exchange has been used by several authors' ' in
a recent wave of attempts to evaluate the inter-
mediate-range nuclear force. In this approach
the tmo-pion-exchange NN-NN amplitude is
obtained' from a fixed-energy dispersion relation.
Unitarity and crossing determine the absorptive
part as a bilinear product of the NN-nm amplitudes
A~', 8 ' in the low-energy physical region of the
two pions. Thus, full exploitation of this approach
requires a knowledge of the NN-nm amplitudes at
energies far below physical threshold. In 1970
Nielsen, Petersen, and Piete. rinen' (NPP} at-
tempted to evaluate the necessary s-, p-, and
d-wave NN-mm .amplitudes by analytic continuation
from the pion-nucleon physical scattering regions.
The resulting s-wave NN-mm amplitude was used
by Chemtob and Riska' to calculate nucleon-nu-
cleon phase shifts, giving qualitative agreement
mith phase-shift analysis. In later work' this
NN-mm s-wave amplitude mas used to calculate
two-pion-exchange NN potentials.

Unitarity of the NN-wn partial-wave amplitudes
implies' that their phases are those of nm scatter-
ing, modulo m, for the same angular momenta.
In fact, NPP had hoped to learn about the nvi

phases through use of this relation. Since that
time, homever, the mm s-wave phase shift has

been well established experimentally' '-': It shows
a strong discrepancy mith the NPP result. New
results for the s- and p-wave NN-@@partial-wave
amplitudes using the mn phase shifts as input have
nom been given by Nielsen and Oades" Bnd by
Epstein and McKellar. ' Surprisingly, the nuclear
force calculated from these newer and supposedly
more realistic NN-mn s-wave amplitudes seemed
to be in poorer agreement with nucleon-nucleon
phase- shift analysis and with phenomenological
NN potentials. "

These circumstances seemed to indicate to us
that a very careful evaluation of all input to the
two-pion-exchange calculation was needed. In
the calculations presented here the nucleon-pole
(Born} contributions to B~'i have been included
exactly, while A~' and the non-Born part of B '
mere represented by partial-wave expansions
truncated after d waves. By including the d waves
we found it unnecessary to rely upon a narrow-
width baryon-resonance model for the J ~ 2 partial
waves as was the case in several previous NN
calculations. We have evaluated the s-, P-, and
d-wave NN-nm amplitudes, while enforcing
unitarity, with special attention to the effect of
uncertainties in the mm phase-shift input. Sub-
traction constants required in our dispersion
relations were determined using new pion-nucleon
scattering lengths and phase shifts as well as
fixed-t dispersion relation results. " In addition,
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in evaluating the P-wave amplitudes, we have
used experimental information on the nucleon
electromagnetic form factors.

II. THE PHASES OF THE NN~nv AMPLITUDES

The singularities of the NÃ-nm helicity ampli-
tudesa f, are along the right-hand cut beginning
at t=4y, ' and the left-hand cut at t=4p,'- V'/m'.

The helicity amplitudes are determined on the
left-hand cut for t & -26p,' from continuation of
mN amplitudes. ' An extensive table of the re-
sulting s-, P-, and d-wave amplitudes in this
left-hand cut region was given by Nielsen. "

For 4p,
' ~ t ~ 16)r", on the right-hand cut, uni-

tarity requires' that

1mf', (t) =f~*(t)e"J'sin6~,

where 51+(t) is the appropriate vv scattering phase
shift. The upper limit, t=16p,', is set by the
opening of the 4II channel, but Eg. (1}will continue
to be valid up to the value of t where inelasticity
becomes appreciable.

The unitarity condition, Eg. (1), is utilized via
the Gmnhs function"'~

5' (t')

The products D~(t)f~(t) then have only the left-
hand cut, where, as we have seen, the f~(t }are
determined from physical mN scattering ampli-
tudes, and a right-hand cut beginning where in-
elasticity becomes important, at high t.

Recent analyses of pion-production experi-
ments'" have indicated that I=0 s-wave m'n'

scattering is essentially elastic up to the KK
threshold and that p-wave scattering is elastic to
about the same energy. Thus, the unitarity con-
ditions, Eq. (1), for Z=O and 2=1 should be valid
up to t ~ 50pP.

The large amount of attention given to the mm

s-wave amplitude has now given a good qualitative
picture of the phase shift 5,' for t& 50'.'. Although
various analyses each have small quoted un-
certainties, they do maintain some disagreement
with one another. For exgmp/e, the values of 50
from the Berkeley' energy-dependent analysis
and those from the CERN-Munich" energy-inde-
pendent analysis, both shown in Fig. 1, show dis-
agreement of their central values by about 11'
below t =m~& = 30@,'. However, their quoted un-
certainties are each about a 4'.

Both of the above-cited experimental analyses,
and the E«decay results from Geneva-Saclay, "
show a somewhat larger 5,' than that of the Morgan-
Shaw" analysis, which utilizes analyticity but
less experimental mm information, although the
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FIG. 1. The I =J=0 «phase shift 50. Shown are the
Morgan-Shaw result {MS, Ref. 16), the Berkeley result
{LBL, Ref. 9), the CERN-Munich results {CM, Ref. 10}
{for which half of the quoted points are shown), the
Geneva-Saclay results {GS, Ref. 11},and the NPP
result@ {Ref. 7}. The dash-dot curve, constructed to
agree with GS and LBL, is discussed in the text.

scattering length found in the Morgan-Sham analy-
sis (0.16p~) is in excellent agreement with that
found by Pennington and Protopopescu" (0.15', ').
The Pennsylvania" K«decay results appear to be
consistent with both the Morgan-Shaw and Geneva-
Saclay results. In what follows we first use the
Morgan-Shaw 5~ and then indicate the effect of
using a larger value.

The P-wave nn phase shift 5,' is known with
greater certainty because of the strong p reso-
nance. The phase shift 5', is well represented, for
t& 50',', by the expression

v 'i', (1-0.1586v)(1+0.00076v)~

~

~

v+1 cot6' =
0.035v

where v p.
' is the center -of-mass pion momentum

squared. This form was used by Morgan and
Shaw" but with a smaller width than that used
here. ' The scattering length used, 0.035', ', is in
very good agreement with a recent determination. "

The d-wave mm phase shift 5, is certainly less
well known but all analyses find it to be small.
The expression used here is"

v '~'
0 (1-0.0524v)(1+ 0.204 v+ 0.0015v')

v+1 0.0015v'

(4)

This wm phase shift is found to be of minor impor-
tance in the nuclear force.
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III. THE MAGNITUDE OF THE XN~mn' AMPLITUDE f
For the determination of the magnitude of the f+ amplitude, we first wrote a twice-subtracted dispersion

relation for D2(t)f', (t)/(t-4m'):

D.(t )fl (t) (t 4u-')f:(0), t D2(4)2'}f'(4}2'), t (t -4t2')
t -4m' 16m2p. 2 16}2'(p,'-m') v

D,(t')Im f ', (t')&t'
„ t'(t'-4t ')(t'-4m')(t'-t} '

where a =4p2-p'/m2. The non-Born part of the
input Im f ', (t'& a} was taken from Nielsen's" work
and added to the Born term. " For the t =0 sub-
traction constant, Re f2 (0) was found by Furuichi
and %atanabe" to be -2.8p. . However, this value
assumed" A'(v=O, t=0) =24.6)2 ', which is in
disagreement with other determinations. '~"' "
An improved value was used here, described
later. In the t=4p,' subtraction constant, the value
of f', (4p2} must be known accurately because of its
large size. The value currently available in the
literature" was obtained from fixed-t dispersion
relations mhich depended on a continuation of the
pion-nucleon partial-mave amplitudes to the branch
cut at t=4p, ', where formal convergence ceases;
it is therefore open to question. An alternate
procedure is used here.

IV. DETERMINATION OF THE 7tN AMPLITUDES
AT v= t=O

Fixed-t dispersion relations for

A"(v, t)

(+)
4w(m + II ) a ( ) (

&) [7b)
m 882 +pa~ +a~

The sensitivity to a,' is small in each ease. The
value used here is" a,'l=-2'(-0. 014+ 0.005)V,
The largest uncertainty in using Eq. (6) comes
from the p-wave scattering lengths, for which we
used a weighted average of experimental results:

a~,',~ -a~,'=2 (0.571+ 0.010)}2 ',
a~,',~+2a~,'~=2 (0.310+0.010}p, '.

The first of these combinations is consistent with
the very accurate determination of Bugg, Carter,
and Carter" as well as older analyses. ""' For
the second combination both Hamilton and
%'oolcock and Hohler et a/. ' found very nearly
this value.

The imaginary parts of the amplitudes A ' and
A' ' mere obtained from mN phase shifts. The
results for the on-shell amplitudes at &=0 were
rather insensitive to which of several sets~6 was
used. The results found'7 are

and

A"'(v, t)-A&'(v, t)+ (',), a'&(v, t),

At'l(0, 0}= (25.9 s 0.5) v, ',
A~'l(0, t ) = (1.16 s 0.05}t2 '.

Bt t=o

2(v'-v ')
g

v'ImA(v', t) d, (6)(vl2 v 2)(v t2 v2}

where v, = p, +t/4m. The necessary subtraction
functions are written in terms of the isospin-even
scattering lengths at the point ~= ~, as

A'(p, , O)=8m a ' + p, m(a, ', -a,'), (7a)2m+ad,

where v = (s-u)/(4m ), have been used to find At'l

and the derivative of A' (0, t}at t=O. With these
quantities we have been able to find f,'(4p2) as
described later and to improve the f', (0) of Ref.
20. Both A ' and A'~') satisfy dispersion relations
of the form

A(v, t}=A(v, , t}

Both values are consistent with other determina-
tions. '~"' " Combining the first value with the
results of Ref. 20, me now obtain

Ref ', (0) = -2.4p .

V. THE J=0 SUBTRACTION CONSTANT AT t =4@'

The function D2(t )At' (0, t ) has no s-wave con-
tribution to the nearby part of its right-hand cut
where the nm s-wave amplitude is elastic. The
imaginary part of this function can therefore be
evaluated on the nearby right-hand cut using the
d-wave helicity amplitudes yet to be described,
and assuming that the J ~ 4 helicity amplitudes are
adequately given by the nucleon pole. Neglecting
Im f'„ the twice-subtracted dispersion relation
then reads

D,(t)A"(0, t) =A"(0, 0)+t —,D,(t')A"(0, t') + &, + —, ' ' 't„' t, 't}
" &t', (6)

gg/ o
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FIG. 2. The 8=0 spectral function po+I(t} =as((t —4g }/I) (4~ -t) If+(t}l . Results are shown for various inputs
to Eq. (5). Also shown are the Nielsen-Oades {N-O, Ref. 13) and the Epstein-McKellar {E-McK, Ref. 4) results.

where

The contribution from the distant left-hand cut at
t= -27',' is denoted I~. Because of its remoteness
and the two subtractions, it is expected that only
the leading edge of this cut is important. The
following parameterization was used to represent
the left-hand cut:

D,(t)Aber('I(0, t) =n(-t-4m ', )"'.
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Comparing Eq. (8) with Nielsen's' fixed-t
dispersion relation results, at negative t, fixed
n = 29', ' when the Morgan-Shaw 6', was used.
Using Eti. (8) with the Morgan-Shaw 5,'to continue
to t=4p.', where A' is purely s-wave in the
XN-mm channel, we found"

f ', (4P,') = (114+ 2)II. .

The uncertainty quoted here does not include that
due to the uncertainty in the low-t ~,'input.

Shown in Fig. 1 is a 5, constructed to agree with
the Geneva-Saclay" K,4 decay results at t& ap.'
and to join smoothly with the Berkeley' 5,' at
t = 20'.'. When this phase shift, which we shall
refer to as GS+ LBL, was used in Etl. (8} we
found e= 29', ' and a larger amplitude at t=4p, '.
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f'„(4p.'-) = (118+ 2)g.

The magnitude If', (t)I and the J 0 spectral
function, which directly enters the NN fixed-energy
dispersion relation and is proportional to If, (t ) I',
was then calculated from Eq. (5}. We have found
that the results from Eq. (5) for t a 20'' are
somewhat sensitive to the phase of fc above 50',',
where it is not known. In Fig. 2 results are shown
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FIG. 3. The nucleon electromagnetic form factors
G& =F& +(t /2m)E2 and G& = F& +2mF2, with FI from
Eq. (12) and I from Eq. (11). Data are as in Ref. 29.



10 CALCULATION OF NUCLEON-NUCLEON TWO-PION EXCHANGE ~ -.

for several assumed forms of the f', phase above
t = 50'.', all of which have the general form

(10)

For clarity, calculations using the Morgan-Shaw
O'„Ref', (0}=-2.4p, , and f', (4p, '}=114p, are desig-
nated 81. Since the 81 curves for various n& 0
are very similar at t&20p. ' they all produce
similar NN amplitudes for the states and energies
to be shown here. When the calculation was per-
formed with the GS+ LBL 8', the resulting )fc+(t)

~

was considerably smaller for t+ 6p.'. This result,
which used Re f', (0}=-2.4p, and f', (4p,') =118',, is
designated 82. We have shown the 82 result using
n=3.

Also given in Fig. 2 are the results found by
Nielsen and Oades" using the Morgan-Shaw 50

and those found by Epstein and McKellar. 4 Al-
though Nielsen and Oades used n= 1 in Eq. (10),
their analytic continuation of Dg', /(t 4m-') from
t & 4p,' to 4p,'& ]& 50',' would be expected to be less
sensitive to the t & 50'.' input phase.

VI. THE p -O'AVE AMPLITUDES f I

It is convenient to work with the amplitudes'

4m, t
t -4m' ' 4&2m

2 J PÃ ]=t 4m

For these amplitudes we used the following dis-
persion relation:

D,(f}r,(f)=r„(f)+ ' f;(0)+ [D,(f,)r, (t,}-r„(t,)1
f(f-f, )

' D,(t')Im i",(I')+[D,(t')-ljfmr&s(t') d, ,
v I '(I '-I,)(&'-t)

where F, = I', -F,~. The dispersion relation for
the Born term I',3 has been subtracted from the
relation for I"& to obtain a less rapidly varying
integrand near f'=a. The values T', (0) =0.017' '
and 1;(0)= -0.0185p, ' were obtained from Ref. 14.
We chose to take t, =30','= mp', and determined

I I I I I I I I I I I I I I I I I I I I I I

the constants I', (t,) from the nucleon electro-
magnetic form factors as follows.

Attempts" to explain the behavior of the nucleon
form factors suggest that the isovector form
factors at small t & 0 (spacelike) are determined
via analyticity by the two-pion intermediate state
(NN-2v- y) at t&4p'. The form factors'c F",

and F, have the following representations'.
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FIG. 4. The imaginary parts of the P-wave helicity
amplitudes f+ (upper solid and dashed curves) and f
gower curves) in units where p =1. The solid curves are
from Eq. (11);the dashed curves are from Nielsen and
Qades, Ref. 13.
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FIG. 5. The d-wave helicity amplitude magnitudes
~f~~ multiplied by qt = t/4-p Thte solid curves are
from once-subtracted Omnbs relations. The short-
dashed curves were obtained hy setting D& =1. The
long-dashed curves are the Born (nucleon pole) contri-
butions.
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t " (t'-4p')
m' ~„2 64t'

„E.'(t'}r, (t') „,,
t '(t' t)-

where E,(0) = —,
' and E2v(0) =1.853/(3m). We used

I/D, (t) for E,(t ), the pion form factor. 8"
%'e have found without detailed fitting that the

small-j t j experimental form factor data are very
well reproduced (Fig. 3) with the following values
of jr, (30'') j:

jr, (30t ')
j
=o.lglt -',

j r, (30'') j =0.0544', '.

The result (Fig. 4) for Im f ' is in good agreement
with that of Nielsen and Oades, "while Im f,' is
somewhat lower near resonance.

VII. THE d -WAVE AMPLITUDES f ~~

Using a once-subtracted dispersion relation with
the Born amplitude removed, subtractions were
made at both to= p,

' and t, =sp.' giving very similar
results. The subtraction constants j', (t,) were
obtained from Ref. 14. The results (Fig. 5} show
a significant non-Born contribution to f„while
f' is close to the Born amplitude, in agreement
with NPP. '
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FIG. 6. (Continued on following puge. )
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FIG. 6. The NN nuclear-bar phase shifts as a function of lab kinetic energy for two sets of input. The data points are
from the single-energy phase-shift analyses of M. H. Mac Gregor, R. A. Amdt, and R. M. Wright, Phys. Rev. 182 ~

1714 (1969). A small correction has been applied to the phase-shift-analysis ~D& value to remove the effect of the Cou-
lomb force. Also shown are the one-pion-exchange phase shifts. In aQ cases the theoretical phase shifts are defined
via the real part of the scattering amplitude with no unitarization imposed' The E-wave phase-shift combinations are
'Ec=(5 F2+7 Eg+

~2
E4)~ Ep=- ~ (4 E2 —7 F3+3 F4), Ez.s = —(20 E2+7 E3 —27 Fg/168
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It is interesting to see the effect of neglecting
the right-hand cut (setting B,=1) because of the
uncertainty in the d-wave mn phase shift, Fig. 5
shows that the right-hand cut has a larger effect
on f', than on f'. Even so, neglecting this J=2
cut has a negligible effect on the two-pion-ex-
change amplitude to be shown here.

VIII. THE NUCLEON - NUCLEON AMPLITUDE
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I sa I
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FIG. 7. The ~SO potential for two sets of 600input. The
Hamada-Johnston (HJ, Ref. 30} and one-pion-exchange
potentials are also shown.

The two-pion-exchange amplitude was calculated
from the NN-mm amplitudes, as described in the
Introduction, and added to a one-pion-exchange
pole with g'/4w = 14.4 and an u&-exchange pole with
g'/4w=4. 7, f /g =-0.12. The phase shifts rep-
resenting this NN amplitude are shown in Fig. 6.
Results are given for two different values of the
8= 0 spectral function, which we recall is propor-
tional to ~f', (t) ~'. The input to the curves labeled
81, n=3 included the Morgan-8hawI=J=O mm

phase shift 5,' and the t & 50'' fo+ phase given by
n = 3 in Eq. (10). For the curves labeled S2, n = 3
the input included the 5,' constructed to agree with
the Geneva-8aclay" K„decay results and the
Berkeley' results (GS+LBL), and n=3. The f.=3
phase shifts are given as linear combinations of
the 'I"& phase shifts to approximately separate the
central, tensor, and spin-orbit components of the
T=1 amplitude. The tensor component is inde-
pendent of (f0+ (.

The phase shifts indicate that the theoretically

calculated T =0,1 triplet central and T =1 singlet
components are too attractive at higher energies,
As shown in Fig. 7, the calculated T =1 singlet
potential is in fact more attractive than the
Hamada- Johnston phenomenological potential. "
The excess attraction in the phase shifts and
potential is reduced if one uses a smaller

~
f', (t) ~,

such as that which would be introduced by an en-
hancement of the wm phase shift 5,' in the 4-10','
region. This is indeed the region in which the
experimental values are less certain. "'"

The effect of shifting from 81 to 82 is particular-
ly large on the '5, phase shift. This phase shift
is sensitive to the high-t spectral function input,
which has not been convincingly determined. This
sensitivity to high-t input indicates that the 'B,
may also have a significant contribution from
three-pion exchange. The situation of the T= 0 sin-
glet state ('E, ) is unclear; perhaps it has a little
less repulsion than is in the theoretical amplitude.
The T=1 spin-orbit component is insufficiently
attractive with either form of 6', input.

The mw P-wave exchange contribution is believed
to have been accurately included. Neglect of
higher mass states in the electromagnetic form
factors may have had some influence on our I",
but the effect in theintexmediate-range NN force
is expected to be small. Whether one uses our
I', results or those of Nielsen and Oades" makes
negligible difference in the NN amplitude shown
here.

The high- t three-pion-exchange contribution
was represented here by the cu pole with coupling
constants which are rather uncertain. The g '
value that we used is consistent with the quark-
model prediction g ' = Qgz', the f /g value is
found by assuming the simplest co-pole dominance
of the isoscalar nucleon form factors. Larger
coupling constants, such as those required in
recent one-boson-exchange fits" to the NN data,
would simultaneously increase the spin-orbit re-
pulsion and decrease the central attraction. How-
ever, the high mass of the + meson requires a
very large value of g ' in order to subtantially
influence the intermediate-range NN force."

While two-pion exchange is certainly the
dominant intermediate-range correction to one-
pion exchange, our understanding of the inter-
mediate-range force is still not complete. We
have shown that the two-pion-exchange amplitude
is very dependent on the low-t mm phase shift 6,'.
A more accurate determination of the low-t 5,'
is essential to reducing the uncertainty in the two-
pion-exchange amplitude. The calculation of low-
t three-pion-exchange effects may also be helpful
in understanding the remaining differences be-
tween experiment and present theory.
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