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%'e study the corrections to any secondary Regge trajectory arising from repeated exchange of the
Pomeranchuk singularity. Using renormalization-group methods we are able to determine the form of all
Pomeron, Reggeon Green's functions in the neighborhood of J = a(0) = 1 for the Pomerons and
J = a„(0)-1/2 for the Reggeons. Starting with bare linear trajectories for both Pomerons and
Reggeons we establish how these are modified by a triple-Pomeron and a two-Reggeon-Pomeron
coupling. In an expansion of the theory around D = 4 space dimensions (D = 2 is where physics
takes place), we find three allowed stable points of the renormahzation-group equations in the infrared
[J 1 or a„(0)] limit. For each of these we study the renormalized Region trajectories and the
structure of the Green. 's functions.

I. INTRODUCTION

The t -channel exchange of Reggeons like the
I", p, A„etc. has a firm place in hadronic phys-
ics folklore as providing both the correct large-s
description of amplitudes involving quantum-
number exchange and the corrections, down by
approximately Ws, to diffraction scattering gov-
erned by the Pomeranchuk singularity. The fact
that the Pomeron has 4-plane intercept a(0) = 1

leads to the well-known observation' that t -channel
exchange of a Reggeon with intercept as(0) and any

number of Pomerons yields a series of branch
points in 2 at as(0). This piling up of singularities
in J means that the structure of the Reggeon ex-
change in the neighborhood of 8= as(0) and t= 0
could be modified from the usual simple pole which

is phenomenologically so attractive.
In this paper we will employ renormalization-

group techniques to discuss the corrections to a
Reggeon arising from any number of Pomeron ex-
changes and interactions. %e will proceed along
the lines laid down in previous work on interacting
Reggeons" by first establishing a field theory for
Pomerons and Reggeons. Although our methods
will clearly be appbcable to a variety of different
situations (some of which we will discuss in our
concluding section), we confine our detailed cal-
culations to a theory where the bare (noninteract-
ing} Z-plane physics consists of two poles linear in
t

ao(t ) = ao + ao t

and

aso(t) = aso+ aso t.
Then we choose for the interaction a triple-

pomeron coupling" and an R R P-co-upling (see
Fig. 1.) which preserves the number of Reggeons.
This last choice is motivated by our desire to
concentrate on the neighborhood of 4= as(0), the
renormalized intercept of the Reggeon singularity,
and t near zero. Interactions which allow produc-
tion of Reggeons with a„(0}(lgive rise to singu-
larities lying further to the left in the J plane and

are not of any particular interest to us.
Perhaps at this juncture it will be useful to re-

call a similar problem from quantum electrody-
namics: the alteration of a charged boson propa-
gator, (m, -p'} ', taking into account all inter-
actions with a massless photon. In studying this
problem near P'= m', the renormalized mass, it
makes eminent sense to neglect all three -and-more-
boson intermediate states in the calculation; of
course, all photon states are to be treated. Since
by changing the names (Pomeron- massless photon;
Reggeon- boson) this situation is made qualitatively
identical to the Reggeon problem, it is useful to
recall the results of the electrodynamics calcula-
tion. The bare propagator changes from (m, ' -P') '

into (m -P )
""(in most gauges) where v is the

anomalous dimension. %e can expect very much

the same consequence of the interacting Reggeon
problem; namely, a bare propagator [8-a„o(t)]
will change into [8—as(t)) ' ". [This will result
in a change from s "~" in the Reggeon-exchange
amplitude into s & ' (lns)".] There are, of course,
differences in detail between the Reggeon problem
and electrodynamics. First, with photons one has
a gauge-dependent Green's function to compute. Sec-
ond, Pomerons can interact directly without the
intermediary of other Reggeons. Photons do not
convert into other photons in the absence of inter-
mediate-charged-boson pairs, which we have ar-
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FIG. 2. A Pomeron-exchange graph which is included
in the usual eikonal or absorption treatment of Pomeron
corrections to Reggeon exchange.

FIG. 1.. (a) The bare triple-Porneron vertex. It has
strength ~o. (b) The bare Reggeon-Reggeon-Pomeron
vertex. It conserves Reggeon number and has strength

Dashed lines are Reggeons; wiggly lines are Pomer-
OIlS .

gued one ought to neglect. The Pomeron problem,
therefore, is slightly more complicated.

Our calculation takes advantage of the fact that
in D = 4 space dimensions of the Reggeon space,
the theory we will set up in the next section pos-
sesses a scale invariance. The physics of real
interacting Reggeons takes I.lace at D =2. We fol-
low the lead of Refs. 2 and 3 by carrying out our
calculations in a general number of dimensions
and then expanding the results about D = 4. This
procedure is justified, as in the strictly Pomeron
case, by the existence of a renormalized dimen-
sionless coupling constant, which is of order
(D —4)'" and which is the appropriate expansion
parameter for the problem. Actually we find three
possible values of the dimensionless RAP coupling
constant which could, in principle, govern the be-
havior of the interacting Green's functions near
4= oa(0) and t= 0. Ea.ch of the three coupling con-
stants is of order (4 -D)'" and is a stable point
(infrared) of the renormalization-group equations.
To choose among the three solutions requires
principles in addition to the formal structure of
the renormalization-group program. We will in-
dicate our preference at the appropriate moment,
but it will be clear we are adding to the rules of
the game.

The problem of Pomeron corrections to a Reg-
geon exchange has been treated before in the liter-
ature. Basically there are two approaches:

(l) One pretends that the Reggeon exchange and
the Pomeron exchange are two scattering "poten-
tials. " Then by some eikonal or impact-parame-
ter absorption technique'' one takes an infinite
number of Pomeron exchanges into account while
treating the Reggeon in first. -order perturbation
theory. Interactions between the Pomerons and

Reggeons are neglected. A Reggeon-exchange
graph as in Fig. 2 is included in these calculations.
Typically higher-order Pomeron exchanges con-

tribute corrections (- 1)"s'~/(lns)" from these
considerations. A Reggeon interaction graph such
as Fig. 3 is not evaluated by these absorptive pro-
cedures; we will include it.

(2) As part of their program to study Reggeon
interactions via the Schwinger -Dyson equations of
Reggeon field theories, Gribov and his collabora-
tors' have explicitly considered the theory in this
paper. Beginning with the linear trajectory in Eq.
(2), they argue that either the RRP coupling must
be zero and the renormalized pole is determined
by an RRPI' coupling to be

n ( t ) = o.„(0)+ e ' t —C t!'(ln t )'

or the linear trajectory changes form dramatically
to

o.a(t) = o.„(0)six' —i (4)

for t&0.
Although we have not yet studied the former

case, it is reminiscent of the results in the pure
Pomeron problem when only a quartic interaction
is present. ' In the work in this paper where we
do examine the latter case, we do not find any-
thing resembling the 4- t trajectory of Gribov
et al. We do find that for each of the possible
stable points of our equations there is a Regge
trajectory of the form

&R(f)- &R(0)+ o'a t

but the power P is either one or deviates from it
by a small, computable number.

The solution, Eq. (4), of Gribov ef al. is never-
theless extremely intriguing, for it is the kind of
result one might expect not from an initial linear
trajectory, but from an initial trajectory of 0- t
form itself, interacting with a Pomeron whose
singularity is something like

I (I —1)'+a'f]", (6)

FIG. 3. An example of a graph omitted by eikonal
methods.

with a and n some constants. In the present work
we have not examined this attractive theory. The
linear trajectories appeared both attractive enough
and indeed are intricate enough in detail to provide
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a substantial discussion in themselves. We hope
to return to this problem, coupled with the consid-
eration of pure Pomerons with the structure of
Eq. (6).'

The plan of this paper will be to introduce the
Reggeon-Pomeron field theory in Sec. II. Much of
the background for this section is to be found in
Refs. 2 and 3 and, for the uninitiated, in the clas-
sical work of Gribov. ' In this section we will also
establish the renormalization-group equations and
obtain the scaling laws for the full Green's func-
tions. The infrared behavior [4- ns(0) or o,(0),
t small] is the subject of Sec. III. Section IV will
present what information one can extract from the
combination of scaling laws derived from the so-
lution of the renormalization-group equations and
the expansion about 4 space dimensions suggested
by the fact that the effective renormalized coupling
constants are of order (4-D)'". A final section
is devoted to a brief discussion of our results and
some thoughts on future investigations.

and

uo(t ) = o., + e,'t (8)

&Ro(t ) &so+ &so

(10)

w'here

where a(t= —
~
q(') is the ordinary Regge trajecto-

ry, and the energy is in general 1-angular momen-
tum. . The noninteracting theory clearly depends on
what o(tl) one begins with. We shall study in this
paper a theory where both the bare Pomeron and
bare Reggeon have linear trajectories given re-
spectively by

II. FIELD THEORY FOR INTERACTING REGGEONS AND

POMERONS; RENORMALIZATION -GROUP EQUATIONS

In a Reggeon field theory a noninteracting Reg-
geon is taken to be a quasiparticle with an energy-
momentum relation

and

+Ro ~ &Ro (13)

are the mass gaps for the two bare trajectories.
The action which describes this situation is

T

Ao= d ddt qadi x, t —
Q x, t ao &0 'VQ &o4 (II)'+ ~iX x, t) —Xx, t) QRO &X pX

(14)

with a field P(x, t) for the Pomeron and a field X(x, t) for the Reggeon. These fields are defined in D
space dimensions x. Physics takes place at D =2; it will be convenient to leave D free for now.

The interaction is described by a Lagrangian density

Zz(x, t)= —,'io'o[Q (x, t)'P—( tx)+@ (x, t)P'(x, t)]-ttoXt(x, t)X(x, t) [P (x, t) P+(x, t)] +(5& P+5sX X. {15)

The first two terms in the interaction Lagrangian
describe a triple-Pomeron coupling and a Reggeon-
number -conserving Reggeon-Reggeon-Pomeron
interaction. The last two quantities are mass
counterterms to be determined order by order in
perturbation theory in r, and Xo. The two coupling
constants x, and X, are real as is dictated by the
general signature analysis of Gribov. This last
remark means immediately that the one-Reggeon-
one-Pomeron cut occurs with a negative sign with
respect to the one-Reggeon-pole term in an ex-
pansion in Ao. This is strongly supported by phe-
nomenological analyses of quantum-number ex-
change processes.

Since the Reggeon number operator is conserved,
we may make a phase change on the field operator
X(x, t),

X(x, t)-e' &o'X(x, t ), (16)

which leaves the commutation relation

[X~(x, t), X(y, t)] = 5D(x -y)

and the interaction unmodified and replaces E= 1-J
for a Reggeon by

+Ra +Ra

We will, therefore, discuss this theory in terms
of E; = 1-J& for Pomerons and 8, = aR(0) —J; for
Reggeons. If Reggeon number were not conserved,
this little trick would fail.

Our objects of study will be the Green's functions
for n Pomerons+k Reggeons-m Pomerons+k Reg-
geons. They are defined by
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d "":"(z,, t) „s„j&)a(P z, if s, - Q z, -P g,
i=1 J=l i=1 J-1

qi + p&
— qi —

p~
i=1 g=l i=1 g=1

d &) dt's Ig d x&dt& II d y~dr) d~y,'dq&

x exp{ t( x( '(l; -E; tg —x( '(l( +E( t(+yg ' p) —$)7' —
yq

'
pg + h )T)))

(0I ~[0'(x„t, ) @'(x„,t„)A(x'„ t', ) "0(x.', t.')
XX (y„7', ) ~ X"(y„T,)X(y'„r', ) ~ ~ ~ X(y,', 7,')) j 0)

(see Fig. 4). The Pomeron Green's functions
G " ' ~ will be unaffected by the Reggeon field, so
the results in Refs. 2 and 3 for those quantities
may be carried over directly. Our task here is to
study the Green's functions for 4&0.

From the action we may extract the Feynman
graph rules to be used in evaluating G "' '" in a
perturbation series in r, and Ap They are as
follows:

(l) Draw all topologically distinct diagrams
with arrows indicating the direction of propagation
of Reggeons and Pomerons.

(2) f d~q dE around each loop.
(3) At each triple-Pomeron vertex put a factor

of r,/(2v)(~+ "t'
(4) At each RAP vertex put a factor of )(~~

(2 )(D+ &)/2

(5) For each mass-renormaiization counterterm

use a factor of i5 or i6~.
(6) For each Pomeron of momentum (l and ener-

gy E use the bare propagator

G,'"" (E, (l') =t(E —o,'j'+to) '.
(7) For each Reggeon of momentum p and energy

8+L~ use the bare propagator

Go""(&, p') = t (&- neo'p'+ «) '.

(8) For each two-Pomeron loop with both mo-
menta in the same direction, multiply by —,'.

(9) Conserve energy and momentum at all verti-
ces.

Our equations will all be expressed in terms of
the connected proper vertex functions I' "' '" which
are defined by amputating the external legs of the
connected Green's functions 6',",„„",'~.

f (nm;a) (E g )
hatt

=II G'""'(« ~ ') 'lI Gd"'"'"(E' ") 'IIG"'"(& p ') 'G"'"(e,p )-'G'.":.;, (, .-&, p)

One may now proceed to evaluate the I" "' '" as
a function of the parameters Ap Q+p rp and ~p

to whatever order is desired. These quantities
will be renormalized by the interaction and take on

new values n', Q|~', r, and X. Vk shall always
determine the counterterms 5 and 5~ so that the
singularities of the renormalized inverse propa-
gators pass through 4= l at (l' =0 and 4= os(0) at
p'=0. %e guarantee this by

I" "' ' (E;,q, , S, , p;, r, A, , (y', n ', E )

Z( ff+ m)/2 g8

Here E„&0 is a point where we choose to normalize
the vertex functions 1" in order to define the re-
normalized parameters r, ~, e'„and a&'. As
explained in Ref. 3 it replaces the renormalized
mass gap 6 = 1 —n(0). The parameter A in 1"„is

(22)

The renormalization procedure replaces the unre-
normalized fields p(x, t ) and X(x, t }by Z '~'@ and

Z&
' 2X, respectively. This takes an unrenormal-

ized vertex function I"U"' '" into its renormalized
counterpart I' "' ' via

~) &Pl

ks&k

ivP)

6k, P'~

FIG. 4. The fuII Beggeon-Porneron Green's function.
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a cutoff one may wish to use to regularize the
integrals appearing in the unrenormalized theory.

%e define the renormalized parameters, which
are functions of E„, by the following conditions
on the vertex functions:

—3r"'" (E,q')

3 r( 0, 0' 1) (g ~p2)
&= -EN;p 2=0

(25}

3ri 1, 1:0) (E q )
-

42 (E )
Bq 8= -8 q2 =0

3r ' ' (S, p~) = —42„'(EN),
Bp f, g . p2

m(1, 2;0) (~(Elt qlt ' ' ' t 3t 33) l s,=2D3= 333 Bg' 04= 0

= r(E )/(3s)"""', (33)

and

~(0, 1;1) (g ~ gi(~lt Plt lt Plt ltql) ~ 31=231=2slt--8&-Pl= Pl= 0' =0

y(E ) l(3v)(D41)/2 (39)

These parameters are not directly the actual slope
of a renormalized trajectory or a renormalized
coupling. They are simply a set of normalization
numbers which serve to parameterize the renor-
malized vertex functions.

We choose to replace the constants ns'(E„),
r(E„), and A(E„) by the dimensionless quantities

r(ES) E D/4 —1
tg ( 3t)

[ ~t(E )]DI4

which plays an important role in the Pomeron
problem,

~(E„)E„"'-'
h[42'(E~)+ 42D'(E~)]]"'

and

~(E~) = ~s'(E~)/o'(E~) .

Expressing the l" "' '"' in terms of these allows
us to write

1/2 ~& 1/21' "(2„4;4,"i:, tt4. ', , 2,.), 2,,a.,& ",
i'*-="=-*'" 4.,..I —, ,

— 3„—3, , 4, 4. , j.
N N N N

(33)

using ordinary dimensional analysis. This last
observation means

9
I R N E 8R (38)

(P~ q& (hl Pg Z gs 43 & E14) y =E„ lnZ,
9

(39}

I
~+(n~~) E q g 8y„=E„ lnZ„, (40)

(34)

which will prove useful shortly.
The equations of the renormalization group follow

from the observation that the unrenormalized ver-
tex functions cannot know about E„, so

8
&=EN EN

9

BEN

(41)

P( Npsa;4) 0
9

NgE U
N

{35}

This translates, using (33), into the constraint on

I (e,fft;o)

8 8 8 9 8
Ez +p —+ps +f, +o——2(22+m)y —kyD

BE& bg BgR Ba 9 V

&&ri" '"(E„q;,S~,p„g,g„, n', v, E„)=0, (36)

(37}

where the various renormalization-group functions
are defined by

all derivatives to be taken at fixed xp Xp Qp',

z»', A, and dimension 0.
Several of these functions are dependent only on

the Pomeron parameters g and n', namely, P, y,
and t/u' Indeed si. nce they are dimensionless,
they are functions of g only. The evaluation of
these functions has been carried out in Ref. 3. Our
problem is to discuss the additional dimensionless
functions p„, yR, and a which depend on g, gR,
and V.

Utilizing the scaling property of the I' "' ' in
(34) we are able to trade off a derivative with re-
spect to E„for a derivative with respect to the
scale factor $:
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9 8 I f 8 8
P-(g) —Ps —o' I ——, , -o—+2(n+~h(g)+trR —I

~g ~gg ot ae e v

x I'"':"(«;,q„&~, , p, .g, g. , .E.) =0.

The solution of this equation is

(Ã& 'Ia~ (~)~Pg~k~g s~n v~~v)=i ' ' (+(~4s~ ~y~Py~ti'( t)~AR( t)~ & ( t)i v( t)~+a)
0

xexp df 1 —
p pl+ w p g I' ~JR'(g I' gR(~, v(f

(43)

(44)

=-p( (t)), (45)

l d5'(t) t;(o'(t), g(t))
a'(t) dt n'(t )

=~(Z(t)), (46)

where t=l nt. g(t), gs(t), . . . are solutions of the
characteristic equations

functions to high accuracy. Indeed the effective
coupling g (- t ) was shown to retreat to a small
coupling, of order (4 -D)'", as t —~.- This be-
havior indicated that perturbation theory might be
reliable for determining the infrared behavior of
the Green's functions.

In particular it was found that the functions y(g)
and f/n' were

df&(I )'
p, (g(—t), g, (t), v(t)), (47)

~(g) = 2Kg-' (50)

and

dv(t) o(g(t), g-&(t), v(t)), (48)

f/ o.'= -Kg',
mhere

(5&)

with the boundary conditions
v v" I"(2 -D/2)
2 4(2v)D (52)

g(o)=g, gR(o)=gR, ~'(0)=~', and v(o)=v

(49)

To leading order in e = 4 -D the function P(g) was
determined to be

Without knowing the detailed form of the P's,
y's, etc. , me, of course, cannot solve for the ef-
fective couplings g(t), slope o'(t), and slope ratio
v(t). Knowing the renormalization-group functions
in detail is tantamount to solving the whole Reg-
geon field theory. To make any progress one must
evaluate these functions in perturbation theory.
Many of the deductions about the form of 1" "' '
may transcend perturbation theory, but one is
forced to begin there. If one is lucky, then the
effective coupling constants g (- t ) and gs(- t )
entering in (44) will be small in the limit of inter-
est (]-0, t =in)- —~). If that is the ease, then
perturbation theory will receive an a Posteriori
justif ication.

P( g) —g (-'e =—6Kg'),

whose zero a.t

g, ' = c/24K (54)

determines the infrared behavior of Pomeron
Green's functions.

Our immediate aim here will be to locate zeros
in Ps which have dP/dgs & 0 and will thus determine
the infrared behavior of the Pomeron-Reggeon
Green's functions. We must first determine the
various renormalization-group functions in per-
turbation theory. To this end me begin with the
lowest-order correction to the Reggeon propagator
I' ' "~ as shown in Fig. 5:

III. INFRARED PROPERTIES OF THE
RENORMALIZATION -GROUP

EQUATIONS

In the discussion of the purely Pomeron field
theory" it was suggested that an expansion of the
theory around D =4 space dimensions mould pro-
vide a method for estimating the Pomeron Green's

E:,q

f, p 8-E, p-q

FIG. 5. The lowest-order correction to the H,eggeon
propagator.
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Pg {g P ) 8 'QRp P
( )D+] d Q d+ g 2 g g (

O.p &Rp -2 g
[~(n, '+ o.„,')] " (2 —,'D}—(I—,'D) —n,'+ o „'

and

&R = -4&@R,2

4K, v
&II (Ez)= o'IIO I+2 Dg2gII

v = — [4gs v g(l + v-)] .Kv 2 2

1+v

Utilizing our normalization conditions this yields

1 K

see this we note that in the neighborhood of
(gs„v, ) Eqs. (4 t) and (48) can be linearized and
written

dZ
—,= -&(gs„v,)Z,

with

gs (t ) —."~,

It is clear at this stage that the presence of the
two dimensionless parameters gR and v= nR /n'
will complicate life a bit.

In order to Obtain pR we evaluate the graphs
shown in Fig. 6 at the normalization point given
in Eq. (29). After some algebra we find for tiR

from these graphs

There will always be a matrix B such that either

0
{67)

or

2
E 2 V v

PR = —gR —+gg —4KgR
4 1+v 1+ v

4Kgsg(3+ v)

1+v (61)

BAB
1

and in the latter case A. , =~, =-A.. Now write W =BE
and find

We now desire to extract from the characteristic
equations (45)-(48) the large-t behavior of g (t),
n'(t), gs(t), and v(t}. In other words, we must
search for the fixed points of these equations. We
have already indicated that the fixed point of the
equation for g(t) occurs at g=g, . We may use this
value of g in the equations for gs(t) and v(t ) when

analyzing their fixed points. They then become a
pair of coupled equations in two variables. To
analyze them it is convenient to introduce the
matrix

and

N, (t }= H;{0)e-'1'

W, (t}= W, (0) e

when (67) holds, or

W, (t ) = W, (0}e

w(t) = [w(o}—tw, (0)]e-",

{69}

(70)

(71)

~(gs, v) =

ePR aI3

BgR 8 V

Bg Bg

BgR 8 V
lays

(62)

Then the necessary and sufficient conditions for
the point (gs„v,} to be a stable fixed point are

PR (gR i~ Vg) =P(gII g, Vi) = 0 (63)

and

Reh. ; &0,

where the XI are the eigenvalues of A(g«, v, ). To

IQ(

I"IG. 6. The graphs needed to evaluate the renormal-
ization-group functions in lowest order of perturbation
theory.
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when (68) is true. In either case there is a stable
fixed point, W, (t)-~, only if the eigenvalues have
positive real parts.

Three stable fixed points emerge from this anal-
ysis

Case I.

for Pomerons and J= as(0) for Reggeons. Whether
or not the actual value of e needed for physics,
namely e =2, is indeed small enough, is certainly
an open question at this juncture.

%e are now prepared to solve the characteristic
equations for large t. To leading order in $ =e'
one finds

gn, =g,/2,
{73)

g (-t),
I( t) ot C ( c(ff I

(78)

(77)

V~=0;

Case II.

as in the straight Pomeron problem, and

gR(-t), =.g~i, (78}

and

g=gg )

gal =g+ =gi(~& —a)

v(- t), =„vC, f,

In these formulas C and C, are constants which
depend on the renormalized parameters v, g, and

g~. Their evaluation is outlined in Ref. 3.
The explicit values of s(g, ) and &u(g, ) are

Case III.

gn i = g'- = -gi( ~~+ a)

V~=oG.

(75)

z(g, ) = I+Kg,' = 1+~+a,
and for Case I

and

~(gz) =&gz = ac ~

(80)

(81)

Notice that in each case the fixed point of the di-
mensionless coupling constants is of order V e .
Vhth precisely the same force as in the Pomeron
problem one may argue here that for small values
of c the use of perturbation theory to calculate the
renormalization-group functions is quite justified.
Furthermore, for small c, perturbation theory
may be used to give a reliable estimation of I "' '"
on the right-hand side of (44) in the regime $-0.
In other words, we have a perturbation scheme to
calculate the renormalized Pomeron-Reggeon
Green's functions in the neighborhood of t = u(0) = 1

while for Case II and Case III

(83)

and

~(g,) = -&(4g, ' —g, ')
=-—,

' e(2vW2).

(84)

(85)

%ith these results in hand we can investigate the
constraints on I "' '"' which follow from the solu-
tion to the renormalization-group equation as
given in Eq. (44). First note that

0

exp dt'[I —~(n+m)y(g(t'}) —kyz(g(t'), gs(t'), v{t'})], = (C )
"' '~ (C )

-t

where Cz and C& a.qe two more constants depending on g, g„, and v. Now we learn that for small E; and

8) and fixed q, and p,

(E;,q~, ~ I"~, ~

i-(ff+ m) y(g»r2-kg~(g, .tf~, , t, ) -~&g, )a ~ 2-m-~-2k)t'4
)( n+ m)/2 (C )k E'y Yg

D ( 2-tf -m-2k)/4
N

-&(g j) t ~
& q) 'qg ~(E I )

, vC~ gi gzi
~

(87)
a& N N ]
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where me have introduced the total energy

(88}

as a scaling variable. These scaling laws follow
immediately from the solution to the renormaliza-
tion-group equations combined wifh the dimension-
al analysis contained in Eq. (33).

Unfortunately these scaling rules are much less
powerful than those which obtain in the Pomeron
field theories. ' There the total energy E entered
the unknown scaling function only in conjunction
with the inner product of momentum vectors.
Here, however, because of the behavior of v($)
as $-0, it enters in a second fashion. This means
that we can conclude neither very strong general
results about a renornialized Reggeon trajectory
from the form of I' ""~nor, strictly speaking,
the strong general scaling laws for Reggeon-
exchange amplitudes —both these nice features
mere present in the Pomeron problem.

This, by the way, appears to be the essential
point of departure of our results from the work of
Gribov, Levin, and Migdal. ' Although their meth-
ods are quite different, it would appear that they
did not take sufficient account of the role that the
dimensionless ratio v= az'/a' plays in the anal-

y 81s.
%e are able to go slightly beyond the present

stage by combining the scaling result in Eq. (87)
with the expansion in e. The next section is de-
voted to this.

IV. THE RENORMALIZEQ REGGEON TRAJECTORY

In this section w'e will concentrate on the re-
normalized inverse Reggeon propagator I' "'".

v(t}= ve (89)

(90}

For Cases II and III where v, =~, it is convenient
to take the initial values to be g=g„g„=g„and
v» 1. Then to leading order in c and 1/v

4Z
(t ) 9)(g 9N +I 9 9 (1 e 9)(g9)9)

(v(g, )
(91)

g (t ) g
9 (e -)(f 9))t e -9)(F9N)gD
v

where (9)(g,) is given in Eq. (84) and

t((g, ) = 4 &(~g, ' -g, g, ), (93)

DK( 8,g' —8g, g, g, ') . - (94)

In all cases g(t}=g, and a'(t) = o('e ''"".
It is clear that with these values for the charac-

teristic functions Eq. (87) can be written in the
form

In order to obtain the sealing function 40 0..as a
power series in a it is necessary to obtain solu-
tions to the characteristic equations which are
valid for all values of t, not just for t-~. Fortu-
nately, we are free to choose the initial conditions
so as to simplify the calculation.

First, consider Case I where v, =0. Here it is
convenient to start with the initial values g=g„
g„=—,'g„and v«1. Then morking to leading order
in e and v, one finds for all values of t

0 I

l)' "(9,9',g„(( „9,9' )=(( 999I ( 9y(„)(9 (- l) + 9, , (-9) (O(9') (99)
N N

for all values of t. Since g, and g„, are of order ~'" one can obtain 40 and 4, by calculating i F""to
second order in perturbation theory. From Eqs. (55)-(59) we see that

p ~2 g
(96}

For values of t=ln(-&/EN) for which e
~
t ~«1 one

can equate powers of e in Eqs. (95}and (96) to
find

490(x, y) = —(1+xy), (97)

e4(x, y9) =4',~ 1+ 1-ln 1+ . (98)1+y $ 1+y

Then by considering values of t for which e~ t
~
»1

one sees that to order e

0-tp - t 4,
0 tp - t

+&4, , 9 —t)

(99)
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The properties of the Reggeon trajectory can
now be read off. In Case I, where v, =0, there is
a zero of I ""when xy+ 1 is close to zero, so

ns(-71) = ns(0) —P'(C C„os')+O(eg'). (100)

That is, the trajectory remains linear but has its
slope renormalized. This is an attractive result.
In Cases II and III the renormalized pole appears
at

(101)

In this case, the trajectory is not analytic at
t = -p' =0. In fact it has an infinite slope there.
This less attractive result is very similar to the
behavior of the Pomeron trajectory in the pure
Pomeron field theory. Which of the three fixed
points actually controls the infrared behavior of
the theory depends, of course, on the input values
of g, gg, and v.

V. DISCUSSI.ON

In this paper we have examined an interacting
field theory of Pomerons and Reggeons to discover
how their interaction modifies the input form for
the Reggeon singularity in the angular momentum

plane. We considered in detail here the case
w'here the input for both the Pomeron and the

Reggeon was a simple linear trajectory. Our main
result is that in the infrared limit [Pomeron angu-
lar momenta tend to one; Reggeon angular momen-
ta tend to ns(0); all t 's small] there are three
stable fixed points to the renormalization-group
equations evaluated in lowest order of perturba-
tion theory for the triple-Pomeron and Reggeon-
Reggeon-Pomeron couplings. The instruction
that this may be a sufficient order of perturbation
in which to operate comes from the observation
that each of the coupling constants at the stable
points is small in Beggeon space dimensions near
four. All our results then were cast in terms of
an expansion about D =4.

For each of these stable points we were able to
derive general scaling laws for the renormalized
Green's functions. These do not coincide with the

scaling rules found by Gribov, Levin, and Midgal. '
The essential reason for this appears to be their
neglect of the behavior of the ratio of renormalized
Reggeon and Pomeron slopes in the infrared re-
gime.

By exploiting these scaling forms and utilizing

our & expansion, we found the renormalized Reg-
geon trajectory for each stable point. In one case,
this yielded a linear trajectory with a renormalized
slope. In the other two cases, however, the tra-
jectory was more severely modified and acquired
an infinite slope at t= 0. One's natural preference
is for the linear trajectory with small corrections.
Unfortunately, since in the pure Pomeron prob-
lem" the trajectory developed a cusp, one is
forced to contemplate the singular alternatives.

The scaling rules derived here are not suffi-
ciently strong to enable us to predict the behavior
of amplitudes involving Reggeon exchange as was
possible for the Pomeranchuk singularity. By
treating the problem in the e expansion, however,
we can make some statement about the zero mo-
mentum transfer amplitudes. From the graph in
Fig. 7, which gave the leading behavior in s for
the Pomeron case, we discover for a Reggeon of
signature T„

T»(s, 0),~ P„Ps(e ' " ' +ra) s"s'" (lns)»,

(102)

where y& = + when the trajectory is linear and
ps=(9+4&2)/12 in the other cases. The correc-
tions to this leading term are certainly something
that we have little confidence in. However, it
seems quite safe to conjecture that they are (a)
negative in sign at t=0 and (b) down by (lns) ~

where P= & as in the Pomeron case. Estimates
based on rather cavalier treatment of the scaling
laws bear this out.

We would like to end on a guardedly optimistic
note. The calculations presented here will clearly
be modified in detail, but are rather the same in
procedure for any Reggeon field theory consider-
ation of Pomeron corrections to a given Reggeon
exchange. Our detailed conclusions in this paper
have rested rather heavily on the expansion of the
theory about D =4 dimensions. Recent calculations
to higher order in e =4 -D in the Pomeron prob-
lem" indicate that the convergence of such an
expansion is problematic. This suggests one look
for theories which are effectively free in the in-
frared limit" and require no e expansion. An

attractive example of such a renormalization-
group bootstrap is found in Ref. 8 and interestingly

FIG. 7. The leading contribution to the AB -AB elastic
amplitude due to Reggeon exchange corrected by Pomeron
interactions.
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enough has much the same general appearance as
the results of Qribov et al. ' It seems very worth-
while to examine the possibility that a 0- t type
trajectory can be realized by Reggeons in inter-
action with Pomerons of the same variety. %'e

shall return to this matter.
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