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New Davis np differential cross-section data at 50 MeV are phase-shift-analyzed together
with the other world pp and np data in the laboratory scattering energy range 47.5 to 60.9 MeV.
Various combinations of the np do/dQ data, taken by groups at Davis, Oak Ridge, and Har-
well are included in the aua&ysis and are found to affect mainly just the phase parameter d(P, ).
We argue that the Harwell only, or HarweQ+ Oak Ridge+ Davis data analyses call for a
strong long-range potential such as might come from ABC (Abashian-Booth-Crowe} exchange,
while the Davis only or Davis+ Oak Ridge data a~~3yses are compatible with ordinary (non-
ABC) meson-theoretical models. We urge that more precise np absolute do/d0 data be
taken, to 1 or 2% accuracy, especially at far forward angles.

Recently the Davis group has reported on new
50-MeV neutron-proton differential cross-section
data taken at both forward and backward scatter-
ing angles 'These n. ew data are highly interesting
in view of a recent phase-shift analysis of the
world Pp and np data falling in the scattering en-
ergy range of 47.5 to 60.9 MeV. This analysis,
carried out by Amdt, Binstock, and Bryan' (hence-
forth referred to as paper l), included the new

Davis backward nP do/dn dat:a (which were then
available in preliminary form), but did not include
the new forward scattering data. The phase shifts
that resulted from this analysis were in good
agreement with meson-theoretical models' at 50
MeV except for the phase parameter 5('P, ), which,
being -3.5'+ 1.0', was five or more standard de-
viations above the meson-theoretically expected
range of —8.5' to —ll'. (We comment below on
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theoretically expected values. See also Ref. 2.}
The cause for the anomalous value of 6('P, ) was
seen~-' to be the Harwell np ab/dQ data taken at
47.5, 52.5, and 57.5 MeV. (These data are shown
in Fig. 3 of paper I and referenced in Table I of
that paper. )

We were surprised to observe, however, that
Reid's soft-core potential' fit this searched value
of 6('P, )= -3.5's 1.0'. Inspection of Reid's poten-
tial for the 'I', state reveals how this is possible.
This potential is shown in Fig. 1 along with the
one-pion-exchange potential (OPEP) and the
Lomon-Feshbach potentials (to be discussed later).
One may see that Reid's soft-core 'P, potential
has a marked attraction extending from 2 to 5 F
before finally going over to OPEP at larger dis-
tances. It is this attraction which gives the pos-
itive increment to 5('P, ) at 50 MeV. In paper I it
was suggested that this long-range 'P, attraction
in Reid's potential might be due to the exchange
of a low-mass neutral (I =0) scalar (/ =0') meson,
possibly the ABC (Abashian-Booth-Crowe) effect. '

Thus it was with considerable interest that we
viewed the new Davis forward-scattering dc/dQ
data. We decided to analyze the world nucleon-
nucleon data in the range 4V.5 to 60.9 MeV as be-
fore, trying various combinations of the new and
old np do/dQ data. It may be recalled that in ad-
dition to the Harwell and the Davis measurements,
there exist np da'/dQ data taken some years ago
at Oak Ridge'0 at 60 9 MeV in the backward-angle
region. We have listed these data in Table III of
paper I with the kind permission of the authors.
%b show in Table I of the present paper the result
of phase-shift-analyzing the data when Harwell
only, Davis only, Oak Ridge only, Davis+Oak
Ridge, and Davis+ Oak Ridge+ Harwell da /dQ
data are used together with the other kinds of
world nP data (o „, and P) and the world PP data.
The value of 6('P, ) for each analysis is plotted
with its error in Fig. 2. One will note from Table
I that the pp (that is, T =1) phase parameters are
remarkably stable from one analysis to the next,
and hence need not be discussed further. The
T=0 phase parameters, apart from 5('P, ), are
rather stable also (once c, is fixed at 2.78'; see
Ref. 11). Thus the differences in the np data boil
down rather neatly to differences in 5('P, ).

We observe in Fig. 2 that 5('P, } is most positive
for Harweli-only d'v/dQ data, most negative for
Oak Ridge-only do/dQ data, and in between for
Harwell+ Davis+ Oak Ridge, Davis only, and
Davis+ Oak Ridge der/dQ data. For comparison
we show several theoretical calculations for 5('P, )
over the 0 to 160 MeV range. First, there is the
one-pion-exchange contribution (OPEC), labeled
"w," which is obtained by just setting 5('P,}equal
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FIG. 1. Plots of nucleon-nucleon potentials acting in
the I'& state. Shown are the Beid (soft-core} potential,
labeled "REID(SC}," the Lomon-Feshbach (5.202% D
state) potential, labeled "LF,'"and the nonrelativistic
one-pion-exchange potential, labeled "OPEP." Param-
eters for OPEP are g~2 = 15 and m, = 138.1 MeV/c2.
The centrifugal potential for I' waves is also shown.

to OPEC in the 'P, state (called geometric unitar-
ization). Next, there is 5('P, ) predicted by a po-
tential model due to Feshbach and Lomon' (LF},
which potential includes one-pion exchange, two-
pion exchange, and p, &, and g exchange. Further-
more, boundary conditions are imposed on the
wave functions at short distances. Then there is
a model due to Binstock and Bryan" (BB) which in-
cludes one-pion exchange, two-pion exchange [with
both nucleon and &(1236) intermediate baryon
states] and p, ~, and e exchange. [The e is taken
to be a wide (I'=370 MeV) scalar (I =0, 4=0')
meson centered at 715 MeV. ] Binstock and Bryan
arrive at a phase shift by setting the real part of
the sum of diagrams equal to 5('P, ) (This is .an-
other form of geometric unitarization. } Finally,
there is Reid's model' [Reid (SC}], a phenomeno-
logical potential with free parameters adjusted to
fit each partial wave over the 0 to 350 MeV range,
with, however, the built-in condition that the poten-
tial reduce to the one-pion-exchange potential
(OPEP) at a sufficiently large distance.

Now one will observe that the Binstock-Bryan
and the Lomon-Feshbach 5('P, ) phase shifts co-
alesce to OPEC at low energy, and fan out at high-
er energies. At 50 MeV these models' 5('P, ) span
the range -9' to —10.4'. We would guess that this
range is typical for all meson-theoretical models,
especially if it is extended from, say, —8.5' to
—11'. Why we believe this to be so will be dis-
cussed shortly.

Unlike the meson-theoretical models, the Reid
soft-core model predicts a 6('P, ) that falls right
in the middle of the world-averaged prediction
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TABLE I. Phase-shift analyses of PP + nP data falling in the 47.5- to 60.9-MeV laboratory
scattering range; pp data used in analyses are those data listed in Table V of MacGregor,
Amdt, and %right (Ref. 20) falling in this energy range; mP data used are those 0„,and P
data listed in Table I of paper I, plus those np der/dQ data identified at the top of each of the
five columns: Harwell stands for Harwell do/dQ data at 47.5, 52.5, and 57.5 MeV, referred
to in Table I of paper I; Davis stands for the Davis do/dQ data at 50 MeV (Ref. 1); Oak Ridge
stands for the unpublished Oak Ridge do/dQ data at 60.9 MeV, listed in Table III of paper I
through the kind permission of the authors; Davis+Oak Ridge means that the combined Davis
and Oak Ridge do./dQ data were used in the analysis; Harwell +Davis + Oak Ridge means that
the combined Harwell, Davis, and Oak Ridge do/dQ data were used in the analysis. Because
of insufficient np data to determine e&, this phase parameter was set to the value predicted
by a potential model due to Bryan and Gersten (Ref. 11, fit C) at 50 MeV, namely„2. 78'. A

slope d5/dT ~b was assigned to each phase parameter searched, with the value taken from
the potential model of Bryan and Gersten (Ref. 11). The phase shift 6('So)„& was not separate-
ly searched, but rather set to 40.38' as in Table IV of paper I. Higher partial-wave phase
parameters not appearing in this table were set to the one-pion-exchange contribution value,
with g„2 =14.43, m~=135.04 MeV/c2, and nucleon mass =938.211 MeV/c2.

Har well Davis Oak Ridge

Harwell
Davis +Davis

+Oak Ridge +Oak Ridge

I =1 phase parameters

&('~0)PP

6(PO)

6 (3P ))

Q(Pg)

6( D2)

38.9' ~ 0.3

11.7 + 0.3'

-8.3' + 0.2'

5.9'+ 0.1

1.7 ~ 0.1'

-1.7' ~ 0.1

38.8' + 0.3'

11 6 +03
-82 +02

5.9'+ 0.1'

1.7 +0.1'

-1.8' + 0.1'

38.9'+ 0.3'

11.6 + 0 4'

-8.3 *0.2'

5.9 *0.1'

1 7'+ 0.1'

-1.7'~ 0.1'

39.0' + 0.3'

11.7' ~ 0.3'

-8.3' ~ 0.2

59 +01
17 +01

-1.7' + 0.1'

39.0'+ 0.3

117 +03
-8.3'+ 0.2'

59 +01
17+01

-1.7'+ 0.1'

n('s, )

&('P ()

&(D()

5 (3D2)

6(3D3)

62,4'+ 1.3'

03 +13
-6.9' + l.1'

112 +11
07 ~06

I =0 phase parameters ~

62.2'+1 2'

-7.0'+ 1.8'

-6.5'+ 1,l
99 ~15

60.2 +1.6'

-15.7 + 3.6'

—7 ~ 3 + 1.2'

6.8 +2.3'

0.4' + 0.6' -1.l' + 1.0'

624 +11
-7.5 + 1.8'

-6.3' + 1.0'

98 +14
0.6'+ 0.6'

62.4' + l.l'
-4.1 + 1,0'

-6.3' + 0,9'

10,9 +1,1'

10 +05

No. data

X /datum

204

0.89

139 138

145

0.95

165

0.92

217

233

0.93

~ The errors quoted for the I=0 phase shifts are considerably less than would pertain if ~&

were not fixed at 2.78', but allowed to vary over the entire range allowed by a p2 increase of
only 1 (approximately from -8' to 0') as discussed in Ref. 3. However, for the I =1 phase
parameters, the errors and values quoted are hardly affected by the constraint on e&.

(Harwell+ Oak Ridge+ Davis nP der jdQ data). The
Reid soft-core I)('P, ) is headed toward the OPEC
value for decreasing energy but achieves it only
at very low energy. Why this potential model gives
a 5('P, ) so much more positive than the meson-
theoretical models is perhaps best illustrated by
means of Fig. 1. As mentioned earlier, there is
a deep attraction extending out to 5 F before the
'I', potential finally goes over the OPEP. This
attraction is atypical of meson-theoretical mod-

els (e.g. , the Lomon-Feshbach potential shown
in the same figure) and occurs because of a term
in Reid's potential which goes as [exp(-2m„r)]/r,
characteristic of the exchange of a meson (or nar-
row resonance) of mass 2m, .

Such a long-range term is absent in meson-the-
oretical models and explains why these models
cannot fit 5('P, ) = -4' predicted by the combined
Harwell, Oak Ridge, and Davis (H+ D+ OR) nP
do/dA data. In meson-theoretical models, the
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longest-range term after single-pion exchange
goes approximately as (3m„) ' and not (2m, }-'.
This next-to-longest-range term is due, of
course, to two-pion exchange and goes = (3m, } '
because the amplitude goes as

0- H

0-4

dt p(s, t')/(t-t'),
t'=4fft 2

and in the absence of a sharp peaking of p(s, t ')
for t ' near (2m, }', gives an effective long-range
force necessarily shorter than (2m, }-'. Here t
is the square of the four-momentum transfer and
s is the square of the center-of-mass energy.

It has been argued that uncorrelated two-pion
exchange nonetheless gives a strong contribution
to the 'P, state at 50 MeV, and perhaps ought to
be able to give a strong enough positive increment
to 5('P, ) at 50 MeV to fit the world data prediction
even in the absence of a strong 2m resonance near
280 MeV. It is true that uncorrelated 2m exchange
gives a large contribution to 5('P, ) at 50 MeV, and
furthermore even of the right sign; we show this
in Fig. 3. There the contribution of single-pion
exchange plus two-pion exchange as represented
in the Binstock-Bryan model" can be seen and
compared with the contribution of single-pion ex-
change alone in the 'P, state. At 50 MeV the 2m

contribution is + 4', a non-negligible amount.
%'hat we emphasize, however, is that when the
m+ 2m contribution is supplemented by short-range
processes to make 5('P, ) fit the data at higher
energies (330 MeV, 425 MeV, and even 142 MeV),
then 5('P, ) comes down markedly at 50 MeV as
well. Thus the Binstock-Bryan 5('P,} is seen to

0-8

8(p) 0

—12

-4

-16
0-8

0-20—

40 80

Iob

120 160
MeV

FIG. 2. Plots of 5(~P&) vs energy over the 0- to 160-
MeV laboratory scattering energy range. Several ez-
perimenta1. values for 6(P&) are shown at 50 MeV. These
result from phase-shift-analyzing the world pp data,
the world np P and a„, data, and selected np do/dQ data:
H corresponds to including only the Harwell np do/d Q

data, D to including only the Davis da/dQ data, OR to
including only the Oak Ridge dfT/dQ data, D+ OR to
including only the Davis+ Oak Ridge do/d Q data, and
H+ D+ OR to including all the np da/dQ data. Also
shove are the experimental values for 6(~P~) at 25, 95,
and 142 MeV predicted by the Livermore group (Ref. 20).
Several theoretical curves are shown. These include
the one-pion-exchange contribution (OPEC), labeled
"~,"where 6( P&) is set equal to OPEC with g~ = 14.9
and m„= 135.04 MeV/c, the Lomon-Feshbach model
(5.202% D state), Ref. 8, labeled LF, the Binstock-
Bryan model, Ref. 12, labeled "BB," and the Reid soft-
core model, labeled HEIO(SC), Hef. 7.

-16

0-20-
80

lab

120 160
MeV

FIG. 3. Plots of 5(~P&) vs energy. Experimental phase
shifts as described in the caption of Fig. 2. The theo-
retical curves include one-pion-exchange contribution
for d( Pt}, explained in the caption of Fig. 2 and labeled
&, the one-pion- plus two-pion-exchange contribution,
labeled m+ 2~ and described in Ref. 12, and the &+ 2&
+ p + ~ + c contribution, labeled as such and also as BB
here and in Fig. 2 and described also in Hef. 12.
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come down to -9.0' at 50 MeV when the short-
range p, &, and e exchange forces are added to
achieve a fit to the data (curve 88 in Fig. 3). The
reason that the 2w continuum contribution is con-
siderably reduced by the short-range forces is
that the 2n continuum forces are not Shat much
more long-ranged than the p, cu, and e forces—
perhaps (3m „) ' compared with (5.5m, } '. The
only way to raise 5('P, ) well above OPEC at 50
MeV and keep it there after adding strong short-
range forces to bring 5('P, ) down at 425 MeV is
to add an attraction of such long range that the
+, p, etc. repulsive potentials cannot touch it
(cancel it). This is just what Reid has done in
the case of his soft-core potential model. The
(2m „) ' potential, evident in Fig. 1, is strong
beyond the range of the p and + repulsive poten-
tials. These latter potentials extend at most out
to 2.0 F, as shown, for example, in Fig. 1 of
Ref. 13, or better yet, Fig. 3(a) of Ref. 14.

Thus if 5('P, ) really falls in the range —8.5'
to —11', we argue that the existing (non-ABC)
meson-theoretical models are correct (at least
roughly), whereas if 5('P, ) is really —4' or even
more positive, then we argue that a strong 2m en-
hancement or resonance with a mass near 2m „
is called for.

It happens that the ABC effect is just what is
required to fit the H+ D+ OR data, and would be
a reasonable supposition if it were verified, for
the ABC effect represents two pions resonating
(or at least interacting strongly} in the 8 state,
with I =0, and such a resonance gives rise to an
attraction. The ABC mass is about 2m, and so,
to lowest order, gives rise to a Yukawa attraction
-g»c'[exp(-2m, r)j/r, just as required by Reid's
soft-core 'P, potential. The ABC effect also has
the right isospin, for had it been 2 (the other iso-
spin allowed for 3 waves) it could not be emitted
or absorbed by nucleons.

A glance at Fig. 2 shows that the Davis+ Oak
Ridge np dv/dQ data favor the non-ABC

meson-theoretical models somemhat more than
the Reid model, but the error bar is very wide. "
The Harwell data favor a long-range force of even
greater strength than that of Reid's soft-core 'P,
potential, and presumably caB for an 8-wave re-
sonance of mass 2m „and moderately strong cou-
pling to the nucleon.

Which is correct'P One way to find out is to
search for a low-mass I = 0 S-wave n m resonance.
This has been done, and is being done. Some
authors claim to have seen such a low-mass re-
sonance or enhancement, but only in complicated
systems" "(baryon number 2 or 3). In the sim-
pler reaction m+ 6'- m+ m+X, mhere it should def-
initely show up, no 8-wave resonance has been
seen at low dipion masses. Such a resonance has
shown up near 700 MeV (it is the s}, but this is
much too high an energy to account for the 5('P, )
phenomenon at 50 MeV. Thus current particle
data" would not favor a 5('P, ) as high as —4'.
[The fact that a long-range attraction has not
shown up in the other P-wave phase shifts, the
I = 1 6(sP,}, 5('P,}, and 5('P, ), does not speak
for the existence of a low-mass dipion either,
as such a meson should give somewhat equal at-
traction in all P states. j

It is worth noting that the trend to a more posi-
tive 5('P, ) than predicted by non-ABC meson the-
ories is also evident at 25 MeV. We have plotted
5('P, ) at that energy in Figs. 2 and 3, along with
this phase shift at 95 and 142 MeV. These phase
shifts have been found by the Livermore group"
and agree with other groups' determinations. "
Are the nP der/dQ measurements at 25 MeV also
somewhat in error?

Clearly a new and more precise measurement
of np do/dQ is called for at 50 MeV, and probably
at 25 MeV as well. Absolute measurement of
der/dQ at far forward angles to 1 or 2% accuracy
would be highly desirable, as explained in papers
I and II. It may also be possible to refine some of
the existing c'v/dQ data. ""
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I = 1 state are identical in pp and np scattering. [Some
d('20) pp ~p splitting is assumed, as noted in the
caption of Table I.] Now, we have found (Ref. 2) that
a moderate splitting of the pp and np values for b(PO),
d pPf), and 6 ( Pt), say, ap phase shifts uniformly 2
more positive than the pp phase shifts, permits d( P&)
to search to a value about 6 more negative. This,
then, puts i)(Pi) in accord with the non-ABC theoretical
models. d('Pt) at 25 MeV could be lowered similarly.
But is 2' a reasonable splitting for triplet P waves?
Also why is there no need for splitting at 95 and 142
MeV, where d(Pt) is more in accord with non-ABC
theoretical models? Certainly the axnount of pp-np
splitting to be reasonably expected for P waves needs
additional investigation.


