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Operational criteria are presented for determining those bound states and resonances which can

approximately be included in the complete set of states in the S-matrix formulation of statistical

mechanics. The criteria depend only on the energy dependence of S-matrix elements, as compared to
the energy scales deterrmned by the temperature and density. They are thus expressible free of
nonrelativistic potential-theory language, and are hopefully valid for relativistic hadron systems as well.

As an application, it is shown that the b resonance can be effectively treated as an elementary species

under the temperature and density conditions encountered in neutron stars, awhile nuclei such as the

deuteron can be ignored to lowest approximation. Possible conflicts with the Pauli principle, as invoked

between the "constituents" of composite resonances and bound states on the one hand and free

particles on the other, are resolved.

I. INTRODUCTION

In the quantum statistical mechanics of a nonrela-
tivistic system, the grand partition function Z is
defined by

g T e-e(H-P)

where H is the total Hamiltonian. The value of p, ,
the total chemical potential operator for any given
state depends on all its internal quantum numbers,
and the trace is taken over a complete set (say,
the plane waves) of states of all possible numbers
of "elementary" particles. Once Z is known, the
thermodynamic behavior of the system can be
deduced.

The prescription in Eq. (l) is satisfactory for
most nonrelativistic systems of interest. For ex-
ample, in atomic systems at P '-=IT~ ionization
energy, free states of nuclei, electrons, and pho-
tons form a satisfactory complete set, with 8 mell
defined in that basis. In the MeV energy range
(nuclear physics), protons and neutrons instead of
nuclei act as elementary particles. %'bile 8 is not
so well knomn here, thanks to the complicated nu-
clear two-body force and uncertain many-body
forces, the choice of neutrons and protons as ele-
mentary particles with their respective statistics
is well supported by the structure of large nuclei.

Unfortunately, in relativistic systems, particu-
larly ones involving hadrons, there is no clear
knowledge of which particles are elementary or of
what the Hamiltonian should be in a basis con-
structed from them. Nor is it certain that either
"elementarity" or the Hamiltonian operator will
remain as viable concepts, if and when a fully
satisfactory dynamical theory of such systems be-
comes available.

It is therefore better, from the point of view Of

extending quantum statistics to relativistic sys-
tems, to use an alternate prescription for Z in the
place of (l). The S-matrix formalism of statistical
mechanics' provides a candidate. Therein,

lnZ=Q inZ&'(

(2)

The label i runs over all species of stable parti-
cles. The trace is taken over all plane-wave states
of every set {n,) with n, particles . from the ith
stable species. The other symbols in (2) are de-
fined in Ref. 1 and the preceding paper. '

Equation (2) is derived' from potential theory,
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where it is exact. Since it involves, first, all
stable particles with no distinction between ele-
mentary and composite ones, and second, the S
matrix instead of H, it lends itself to extension to
relativistic systems as well.

However, in practice, the exact equation (2) is
too cumbersome to use in its fullness for the fol-
lowing reasons:

(i) The summation i goes over all asymptotic
states, bound or elementary. Not only are free-
particle terms and S matrices of protons, elec-
trons, etc. to be included, but also those of l.arge
nuclei, the hydrogen atom, the uranium atom,
large molecules, and so on. Physically, one ex-
pects that this summation over an endless number
of loosely bound states should not be necessary at
some given finite T.

(ii) The summation does not go over unstable
particles. Even relatively long-lived particles
like the neutron enter Eq. (2) only as resonances
in the S-matrix contribution from stable particles.
Thus, formally, a gas of noninteracting neutrons
would have to be treated as an interacting system
of protons, electrons, and neutrinos. Similarly,
consider a gas of atoms at low enough temperature
so that only a few excited states above the ground
state are occupied. Because the excited atomic
states are unstable, they would occur in Eq. (2)
through complicated S matrices of e-P-y, or y-
ground-state scattering, whereas we know it
should be possible to treat the system as essen-
tially a noninteracting one, provided ideal-gas
terms for the ground-state and excited-state
atoms are used.

In other words, it would be better in practice to
approximate the exact sum over all stable species
(asymptotic states) in Eq. (2) by a reduced sum,
depending upon the temperature and density range
of interest. This approximate reduced sum should
exclude all "loosely" bound states (to be suitably
defined)„but should include certain narrow reso-
nances. %'e show in this paper that such a re-
placement can be done and provide criteria for
determining which resonances and asymptotic
states are "effectively elementary, " i.e., appear
in the reduced sum over states.

%e mill present the discussion in potential-
theory language, where Levinson's theorem is
valid. But the criteria obtained will be solely in
terms of the energy dependence of S-matrix ele-
ments. If this behavior of S matrices is available
from experiment, or from any other source, it
can be directly used in our results, regardless of
whether the underlying mechanism was potential
theory or not. The validity or the provability of
Levinson's theorem will not matter as long as S
matrices behave in a certain way. Finally, infor-

mation about S matrices will be needed only for
energies up to an energy scale determined by 4T
and the density, and not for all energies.

In Sec. II we develop these ideas for resonances
and also apply them to examples. It will be seen
that the narrowness of width is a necessary, but
not sufficient condition for treating a resonance as
if it were an elementary species. Not surprising-
ly, the additional conditions will be seen to be very
well satisfied for all ranges of temperatures and
density of interest, by pions, neutrons, A, Z, etc.
Thus the common use of these particles as ele-
mentary —even though they are unstable —is justi-
fied from our point of view for all statistical en-
sembles of physical interest.

More interestingly, we find that the 4 or 3-3
resonance can also be treated as a separate ele-
mentary particle for the conditions of temperature
and density encountered in neutron stars. It is
seen that this does not conflict with exclusion
principle between nucleons in the medium and the
nucleon "inside" the 4 resonance. Of course,
the large width of the & necessitates large correc-
tions, which amount to saying that interactions of
the 4 with the medium may be substantial (see also
Sec. IV).

In Sec. III we deal with loosely bound states,
once again giving operational criteria on S-matrix
elements to help weed out loosely bound states
from the sum in Eq. (2). An appendix, promised
in the preceding paper, is also provided. It clari-
fies the role of the 8/SE operation in Eq. (2),
which should be useful not only for the full under-
standing of these two papers, but for all applica-
tions of the S-matrix formula for the grand parti-
tion function.

II. RESONANCF. S

It might seem that the preceding paper (I) has al-
ready obtained the desired result as far as reso-
nances are concerned. It was shown that systems
which interacted solely through narrow-resonance
formation behaved as though there were an addition-
al species corresponding to the quantum numbers
of the resonance. The analysis there was, how-
ever, incomplete.

First, the narrow resonance in (I) behaved like
an elementary particle with its own separate sta-
tistics. This is puzzling, at least in potential
theory, where one would expect the resonance to
be a composite object whose "wave function"
should obey symmetrization constraints with its
constituent species. Second, the only condition on
the resonance required in (I) was that it be narrow
in order that it behave like a separate elementary
particle. But the narrowness of width does not



710 R. F. DASHEN AND R. RA JARAMAN 10

ensure elementarity. Even when the width is zero
(bound states), the object could be composite so
that some symmetry constraint may be expected
with respect to its constituent species.

These questions are resolved by appealing to
ideas that parallel Levinson's theorem, which pro-
vide an additional criterion besides narrowness of
width, for treating a resonance approximately as
an additional species in the sum (2).

To see this, let us return to the example in Sec.
II of the preceding paper, where ~ and & inter-
acted solely through narrow-resonance formation.
By this we meant that the m n amplitude consisted
of just one term corresponding to a narrow elastic
S-wave resonance,

for a system with no bound states. Our phase shift
Eq. (6) by contrast started from zero at threshold,
jumped to r around & =M, and stayed constant
thereafter. This was the cause behind the contra-
dictory result that the resonance behaved com-
pletely like an independent elementary particle,
even though it was composite.

Even if the dynamics is dominated solely by
narrow-resonance formation, the phase shift in
Eq. (6) is not an adequate representation of such
an interaction in potential theory. Let us replace
Eq. (6) by the phase-shift in Fig. 1(a), which has
just enough structure besides the resonance, to
satisfy Levinson's theorem.

Note that b, involves the function

where g' and I' tend to the limit zero. Corre-
sponding, unitarily consistent many-particle scat-
tering matrices were also then introduced, and
the virial series in Eq. (2) evaluated. Let us just
look at the lowest virial term, which depends only
on the two-particle r n amplitude. This term just
reduces to the Beth-Uhlenbeck formula, '

lnZ —lnZ = V e '""'"'6 (P)
d'P

0 (2x)3 2

+higher virial terms,

where

which is nothing but the change in the density of
states at c.m. energy & due to the interaction. '
The S-wave phase shift in Fig. 1(a}provides fo(e)
with two pieces, a positive f„(e) due to the reso-
nance which add& one extra state at & =M and a
negative Levinson compensating piece f z, (&),
which effectively removes one state from the ener-
gy region between e, and c~. (Such language,

de exp[-p(p'+ e')'"]—[5,(e)],
~ (2l+1) j. 2

where e and 5, (e} are the c.m. energy and phase
shift, respectively. Now, the amplitude Eq. (3)
corresponds to a phase shift

w )80-
V)

0
o SO-

M

C. M. E NERGY

5, (e) = 6,ow8(e —M) . (6}

When Eq. (6) is substituted in Eqs. (4) and (5), one
obtains an "ideal"-Boltzmann-gas term due to the
resonance as though it were stable. [The higher
virial terms from the many-particle S matrices
convert this to a Fermi-Dirac ideal gas as seen in

(1}, but let us stay with the lowest virial coefficient
for the moment. ]

In potential theory, however, our initial assump-
tion for the elastic amplitude Eqs. (3) or (6) is not
permitted. This is because of Levinson's theorem,
which states (where e, is the threshold) that

8-v[5(~) —5(e,)]= -v de —5, (e)
EO

=number of bound states

=0

(b)

FIG. 1. {a) A prototype phase shift containing a narrow
resonance at e = M, and minimal structure needed to
satisfy Levinson's theorem in the absence of bound states,
viz, 6(0) = h(~). (b) The difference in density of states
in the c.m. frame produced by this interaction, related
to the derivative of the phase shift in (a).
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while convenient for our purposes here, must be
used with care. There is no pole in the S matrix,
nor a negative-norm state corresponding to the
piece f~ W. hile fs which is due to a resonance
pole can be as narrow as it likes, the width of fr
is restricted by the inverse range of the potential,
as pointed out long ago by Wigner. ') When the
phase shift in Fig. 1(a) is substituted into the Beth-
Uhlenbeck formula [Eq. (5)], clearly three re-
gions of interest emerge:

(i) p '=kT«M. Here exp[-p(e'+Pm)'~'] is very
small throughout the energy region where scatter-
ing takes place and b, =0. This is the trivial case
when the system is not hot enough to provide ener-
gy for the particles to interact via the mechanism
in Fig. 1.

(ii) kT» e~. Here e ' is nearly unity through-
out the region where 5(e) exists. Thus

d, ()')=(edd(-d(P'+d')"'I&, =, —f &d(dd, (d))

=(ddd(-()(P' ~d')"*))f(f,(d, =) .f, (d))d'

=[ p[-P(P'+")'"B,=.[-5( .)+5(")]
(8)

The "extra state" picked up at & M is wiped out by
the negative contribution f~. This is just an ex-
ample of the general rule that at very high tem-
peratures, the effect of any potential disappears.

(iii) M& kT«e~, e, . This is the interesting
case where the Boltzmann factor e ' is sizable
near M, but vanishes near &,. Thus, the piece f~
is picked up in 6, but the Levinson compensation
fz, is not. Hence,

=edd[-l)()d' P')"') Jddf„(d)

= exp[-P(P '+ M 'P"j.
In this limited temperature range, we thus recover
the idea1. -gas term.

There is, however, no contradiction between this
apparent elementarity versus the actual composite-
ness of the resonance in potential theory. Notice
that this operational elementarity occurs only for
kT«&„&1,. The range &, to &I may be roughly in-
terpreted as the range of kinetic energy of the con-
stituents inside the resonance. This interpretation
is motivated by signer's time-delay argument that
in potential theory (-(8/&q)[5(q)] j &a, where a is
the range of the potential and q is the c.m. relative
momentum. In fact, for a square-well potential of
range a, the phase shift vanishes asymptotically

as

5((q)
constant

qc

Hence the momentum q~ (corresponding to the c.m.
energy el, ) at which 5,(q) returns to zero is indica-
tive of the inverse range of the potential, which in
turn gives the typical momentum of the constitu-
ents in the resonance wave function. On the other
hand, kT«&L. Thus, the typical momenta of the

and the neutrons in the medium which are of the
order of kT are much smaller than and do not over-
lap with the momenta of the constituent n and m

"inside" the resonance. This very qualitative ar-
gument has been provided only to help understand
why, in this limited range of temperature, even a
composite resonance is effectively elementary. If
the momenta of the constituents of the resonance
and the momenta of the corresponding free parti-
cles in the medium are in different energy range,
it is clear why neglect of symmetrization or anti-
symmetrization (the Pauli principle) between the
two groups is a good approximation.

Furthermore, while we have used the language
of potential theory and Levinson's theorem, oper .
ationally it is not necessary either that potential
theory be valid or that Levinson's theorem be true.
As long as the basic formula [Eq. (2)] for lnZ is
valid, and S matrices exhibit experimentally the
stated criteria, our results are valid.

This is because, as far as thermodynamics at
some temperature T is concerned, the behavior of
5(e) for e» kT does not make any difference. Its
effect on the partition function is damped out by
the Boltzmann factor exp[-P(e'+P')'"]. Thus, in
our example in Fig. 1(a), if the phase shift had not
fallen back to zero by & = & ~, but had instead re-
mained constant at m for &&M, this would make no
operational difference to lnZ for kT«&~. For
instance, if the dynamics underlying the resonance
had not been potential theory, then the phase shift,
having jumped up to m at &=c„, need never return
to zero. This could mean that the resonance was
"truly" elementary. In practice, one may never
know this information, inasmuch as scattering data
will be available only up to some finite energy.
However, for a system at temperature T, this
knowledge of absolute elementarity is not needed.
As long as the phase shift does not return to zero
at energies of the order of 4T, the resonance is
effectively elementary, regardless of what happens
at higher energies.

Thus, at least in the context of the lowest virial
coefficient b, and an elastic resonance-dominated
two-particle scattering amplitude, an operational
criterion emerges for when the resonance acts
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elementary: The phase shift should not have re-
turned to zero by energies of order 4'T. This re-
quirement has nothing to do with the narrowness
of the width I'. The smallness of I' is of course an
additional condition necessary for proving elemen-
tarity, as the proof in the preceding paper shows.

So far, the discussion was restricted to 6,. At
high densities, all the higher virial coefficients in

(2) also contribute. The principles outlined above
also apply to them, although the analysis is more
complicated since many-particle S matrices are
involved. The higher virial terms have the form

(10)

due to n interacting particles. Exchanges with
noninteracting lines have already been included~
in converting the Boltzmann factor e 8~'~ "~' into
Bose or Fermi occupation members {exp[P(e, -g, ) ]
~1}-x

As a result, the energy cutoff is determined by
these occupy, tion probabilities. For low-tempera-
ture systems involving degenerate fermions (as in
the case of a neutron-star interior), the Fermi en-
ergy E~ takes on the role that 4'T did in our earlier
discussion. Given the phase shift of Fig. 1(a), if
M& Ez& E„ the resonance will contribute as an
additional species. Assuming that Levinson com-
pensation does take place by some energy &1., we
see that the resonance will be canceled away at
high enough densities when E~& &I, .

It is worth mentioning that in neutron-star in-
teriors, the density is in the range of 10"-10"g/
cm', which corresponds to E„ in the range of hun-
dreds of MeV. The 3-3 phase shift' in mN scatter-
ing (see Fig. 2) rises from zero to x at the 4 reso-
nance energy E„=m~-m„-~„=150MeV. After
that, the phase shift remains essentially constant
near 180' for several hundred MeV, before inelas-
ticity sets in strongly, making the phase shift hard
to extract. Therefore at neutron-star densities
Levinson compensation does not take place and the
& can be considered as a separate species. Of
course, in reality the 4 is not narrow. Correc-
tions for this and for nonresonant m-N interactions
will have to be added on as pointed out in (I) and in
the Conclusion.

In discussing higher virial terms, this criterion
on the 2-body phase shift must also hold as ex-
tended to the many-body S matrices. In potential
theory, Levinson, 's theorem can be extended' to
many-particle S matrices. For a set of conserved
quantum numbers p. ,

1
de Tr,AS '(e) —S(~)

2m'

= -[number of bound states]„,

where & is the c.m. energy and the trace is taken
in the c.m. frame. The right-hand side is zero if

we assume no bound states, as in our example
here. Now, in (I) we showed that the resonance
behaves like an elementary particle with its cor-
rect statistics, provided the many-particle S ma-
trices are as defined in (I}. They were defined as
all possible graphs made of stable particle and
resonance propagators. This choice will not satis-
fy Levinson's theorem [Eq. (11)], as the two-par-
ticle example [which could be written simply in
terms of the phase shift in Eg. 6] showed. There-
fore, in addition to the piece Sz~

"~ defined in (I),
the n-particle S matrix must contain, in potential
theory, some Levinson-compensating piece S~"',
so that Etl. (11) may be satisfied. However, if
[Sz" ] '(8/se)[S~"~] exists only at much higher ener-
gies than [S~"'] '(s/s~}[S„"'], and if kT (or E~, in
the case of degenerate fermions) lies in between
these two energy regions, then, and only then,
will the result of (I) survive. In principle, this
will have to be verified operationally for every &-
particle S matrix —clearly impossible in practice.
However, it is reasonable to expect that if the
elastic 2-particle phase shift satisfies the stated
criteria at some 4'T and E„, the many-particle S
matrices, governed by the same dynamics, will
do the same.

We have already applied these ideas to the 4

200—
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FIG. 2. The zN phase shift in the 3-3 channel as a
function of lab energy in MeV. Note that the phase shift
rises rapidly due to the A resonance, and does not begin
to fall until 1, 000 MeV or so. Strong inelasticity makes
measurement of 5{&)harder at higher energies. The
graph indicates qualitatively that 4 is effectively elemen-
taryuntil kT or the Fermi energy approaches 1 GeV.
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resonance in neutron states. We found that the
elastic rN phase shift indicates that the treatment
of & as a separate species is valid at neutron-star
densities. As another example, consider the treat-
ment of pions, muons, neutrons, etc., as elemen-
tary although they are unstable. Strictly speaking,
the pion, for instance, mill first enter the virial
series [Eg. (2)] formally as a v-e resonance. Now,
the v-e scattering amplitude is expected to be very
small (of the order G~) except at total c.m. ener-
gy &=M, . At this energy, the v-e system wiB
resonate as a pion, with a laxge amplitude of order
unity. The phase shift, essentia11y zero for «M„,
will jump up to mat this energy. For E)M„, it is
again expected to vary slowly. Levinson compen-
sation, if it takes place at all, mill require ener-
gies of order 1/WG, which is about SOD Gev. No

system of interest has either a temperature or
Fermi energy of that magnitude. Thus, the pion,
to an excellent approximation, can be treated as
a separate elementary species in statistical en-
sembles of interest —as one has always done in
practice.

III. LOOSELY BOUND STATES

We now apply the ideas of the previous section
to discard loosely bound states, as defined below,
from the virial sum in Eq. (2). At the technical
level there is a difference between the way reso-
nances enter the problem as distinct from stable
states. The original formula [Eg. (2)] contains
no resonances in the sum over states. Resonances
enter solely through the S matrices. The techni-
cally involved analyses of the preceding paper
were needed to show that narrow-resonance-
dominated S matrices, when substituted in the
interacting terms in [Eg. (2)], lead to what looks
like an additional ideal-gas term with appropriate
statistics. This part of the work is not needed for
bound states in that Eq. (2) already involves all
bound and elementary states, both in the ideal-
gas term lnZ„as well as the trace in the S '(s/
8F)S term.

Instead, our purpose here is to show that the
effect of loosely bound states in both the ideal-
gas contribution lnZ, and in Tr[S '(s/se)S] are
canceled off by the low-energy structure of the
S matrices. The physical motivation for anticipat-
ing such a result is evident. For a thermodynamic
system where the temperature and density set up
some energy scale, one does not eXpect phenomena,
operating at a much lower energy range to be sig-
nificant. For instance, in a gas with kT = 1 keV,
one does not expect molecules or the hydrogen
atom to be present in sizable quantities. One
customarily ignores such loosely bound species

and their interactions with other particles in cal-
culating the equation of state. A less clear-cut
illustration arises higher up in the energy scale.
Nuclei„as, for instance, the deuteron or o. par-
ticles are not usually included in the set of states
considered in dealing with phenomena where kT
or the Fermi energy are in the hundreds of MeV.
Calculations of neutron-star interiors or thermo-
dynamic models of elementary particle physics
are examples of such phenomena.

But the S-matrix formula for the partition func-
tion in Eq. (2) involves both ideal-gas terms and

scattering contributions from all stable species,
including all bound states, however loosely they
may be bound. This is because Eq. (2) is meant
to be valid at all temperatures and densities. For
a given temperature and density range however,
it should be possible to show that comparatively
low-energy phenomena. including loosely bound
states can be neglected in Eq. (2). We show this
and present criteria stated entirely in S-matrix
language for determining what constitutes a loose-
ly bound state and when it can be neglected.

The results of this section will be analogous to
what we did for resonances in Sec. II, where the
effective elementarity of a resonance proved in
the preceding paper could be canceled by a Levin-
son compensation piece of the S matrix, provided
the latter existed and occurred at energies less
than kT and Fermi energies.

As before, we will work in potential-theory
language, but evolve criteria that depend only on
the observable behavior of S-matrix elements.
We start with two particles "g" and "5"which
scatter through a weak long-range S-wave poten-
tial V. Let the potential lead to one bound state
B„ofmass M and a phase shift 5(e). Generaliza-
tion to several bound states and all partial waves
is straightforward, but omitted here for simplicity.

To lowest order in fugacity (i.e. , the coefficient
of et"' "'1 }there are two contributions to lnZ.
One is the ideal-gas term due to the bound state
giving

Q4 3

V e '"o ' "&', exp[-P(P'+ M') ~
] . (12)(2w)'

The other comes from the scattering of g with 5
giving

li'e8~"''"", de exp[-p(P'+&')' *]
(2m)'

x ——[Ei(~)] .1 9

In potential theory, Levinson's theorem for this
example implies that
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[We ignore Castillejo-Dalitz-Dyson (CDD} poles.
If present, they would effectively add more elemen-
tary particles. ] Equation (14) tells us that the
phase shift will begin at n at threshold and go to
zero as E- ~. Let us suppose that the phase shift
is negligible beyond c = & I. If the temperature is
high enough, i.e., kT» e~, then exp[-P(P'+M')"']
and exp[-P(P '+&')' '] are not significantly differ-
ent from each other for all «&~. Thus, given Eq.
(14), the contributions Eqs. (12) and (13) cancel
each other. The situation is identical to the pre-
vious discussion of resonances, except that the
ideal-gas term [Eq. (12)] is already present in

Eq. (2} for a bound state, whereas the correspond-
ing term for the resonance arose out of the reso-
nance pole in the S matrix. Generalization of this
to higher virial coefficients follows along similar
lines as in Sec. II, and it is clear that for degen-
erate fermions, the Fermi energy &„ must be
much larger than &~ for the bound state to be can-
celed away by the phase shift. It is also clear that
our definition of a "weak long-range" potential V

giving a "loosely bound" state is a temperature-
and density-dependent definition, stated precise)y
by the condition kT» &~, or for low temperature
degenerate fermions, &~» &~. Note that the en-
ergy &I is defined here independently of potential
theory, as the point beyond which 5(e} is nearly
zero. Assuming that experiment does yield such
an &I, we see that the corresponding bound state
in that channel is canceled away by the scattering
for kT (or er)»e~.

Before proceeding further, note that the D func-
tion is defined in S-matrix theory by

D(a+i}I)= 1 ——exp ——, . de', (l5)
M 1 5(e')

—t -g'g

where, in our case there is one bound state at ~

=M. It obeys

I ~ S-1(&) -2iEi(e}D(e+ j )

,D(e —iq)

where for simplicity we continue to work with only
one partial(S)wave. Now, if &(&)=—0 for e& &z, then

constant

Further, if }},(r) is the scattering solution in the

presence of the potential V, and yo(r) is the free-
particle solution then

O, (r =0)
rP (r =0) ID(e) I

-j. for &»&L.

Finally, the density of states in the c.m. frame
p(&) in the presence of the interaction V and p, (c)

in the absence of V are related by

p(e) —p (e) =- —[o(e)1
m Bc

(19)

de 8 Tr —,20
0 0

where H0=K+ V,~ and K=K, +K&+K, =total kinetic
energy operator. Note that since V~ by itself can-
not lead to three-particle-connected diagrams for
the particles a, b, and c, H0 instead of E can be

so tha, t for & & e~, p, (e) =p(e). In other words, the
extra (bound) state created by the potential V at
& =M is compensated by an effective loss of a
state in the region between threshold and c~.

Keeping these assorted facts in mind, we pro-
ceed to a more interesting case, where there is a
strong short-range force operating, in addition to
the weak long-range force V that resulted in the
loosely bound state. If the only interaction had
been V, it is reasonable to assume that for 4'T
» c~ the higher virial terms in the expansion
would also add up to zero along with possible (if
any} many-particle bound states bound by V. But
if there is a strong short-range potential U in ad-
dition, its effects on Tr[S '(8/Se)S] will survive
even for kT» &L, where &I, corresponds to V.

Nevertheless, if our assertion that loosely bound
states do not matter at high kT is valid, then the
scattering of the bound state B~ with other par-
ticles due to the strong potential U should be can-
celed away by some pieces of the many-body scat-
tering of the constituents a and & with these other
particles. Ne demonstrate this for the three-
particle case.

Consider two particles a and b as before, inter-
acting through V~ and producing the bound state B~,
along with scattering states. Consider another par-
ticle c, which scatters with a and b, and w'ith 8,~

through a strong short-range potential U. Let the
scattering due to U take place only when the par-
tic1,es are at a short distance from one another
(short, as compared with the range of V„which is
of the order of 1/&I, ).

Let us then collect contributions to the virial
series (2) proportional to exp[/(p, ,+ p}, + p, ,)].
These clearly involve the scattering processes
(abc —abc), (B„,c-B~, c), (B~, c —ai}c}„and
(abc- B~, c). The resulting contributions to
Tr[S '(8/se)S], are schematically shown in Fig. 3.
Since, for simplicity, we have designed V~ to act
only between a and &, there will be no connected
three-particle diagrams involving V~ alone.

Following the method used in Ref. j. for deriving
our Eq. (2), we note that the diagrams in Fig. 3
arise from
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used in Eq. (20) as the unperturbed Hamiltonian.
Following the methods of Ref. 1, Eq. (20) can be
related to

Bab

x O'„S '(&u) —S(u) 4
C

Bab Bab

where

4„=4(c,f, p)

(r )e-~P'ache'P'~c for

lg (r )e-'~'"~e'P'" for e=M

and

(21)

(22a)

uP = (p'+m, ') + (p'+ e') . (22b)

In Eq. (22), g, ,(r ) are the scattering solutions in

the relative coordinate of the pair (ab), with e the
c.m. energy and i denoting angular momentum
quantum numbers. P(r ) is the bound-state solu-
tion. Clearly, @„are the complete eigenfunctions
of zero total momentum of H0=E+ V, including
states composed of the bound pair 8~ and the free
particle c. In Eq. (21), S(&u) is defined by'

S(e) = 1 —2wf(~ —H, )T(&u),

T(~) = U+ . T(~),
1

0

(23)

where H0 is in the over-all c.m. frame. Now,
since U is a short-range strong potential com-
pared to V, one can use the impulse approxima-
tion on the T(~) in Eq. (23) to write

T(&u)= U+ . T(u)). (24)

In this approximation, T(~) is approximated by the

scattering matrix due to U alone. The presence of
V is of course felt by the fact that the states 4
are eigenstates of K+ V. In other words, our ap-

0 b c

I'IG. 3. The four contributions from Tr[S ~(B/Be)S)
giving the coefficient of explP(p, + p~ + p, )] in the strong
short-range force U, while the dashed lines are final-
state interactions due to the long-range force V, which
also binds the bound state B,~ (double line). At high
temperatures (see text), the four terms add up to just
the short-range S-matrix effect, taken between plane-
wave states of a, 5, and c.

proximation consists of saying that V gives rise
only to "final-state interactions, " changing the
plane waves of the pair (ab) before and after scat-
tering into scattering states (and the bound state)
of the potential V. Such approximations are fre-
quently used, for instance, in, the high-energy
scattering of hadrons with nuclei.

On substituting Eq. (23) into (21), there are as
usual the linear terms (8/su)T and (8/Bu)T" and
the bilinear term T (S/S~)T. We will use off-
energy-shell T matrices as defined by Eq. (23}
and the off-energy-shell derivative s/s~. The
equivalence of this to using on-energy-shell T ma-
trices and derivatives has been discussed in Ref.
1 and in the Appendix of this paper. Consider the
linear term in Eq. (21), given by

«g exp{-f}(p"'+~')'"~p,(~) —, (&t, ,„pl T(~)+ T'(~)l ~,, ;, p&l. . (25)

Here p, (c) is the density of scattering (plus bound)
states in the c.m. frame of the ab channel. %'e

have included for notational simplicity, the bound
state P(@=M) as we'll in the set {P,,j in Eq. (25}.
Thus, p, (e) contains a 5 function at e =M for the

appropriate angular momentum index i.
Now, we note the following facts:
(a) The subspace of fixed P and p remains in-

I

variant under the action of the potential V~. There-
fore for any operator Q,

0„;p 0 0„;p)v; &)
f

«P&oc i, pl @lo'„„p&p;(e),

where pP(e) and go, refer to the free system (ab)
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in the absence of any potential.
(b) The expression in Eq. (25) is not quite the

same as in Eq. (26) when we set Q=—(S/Se)[T(~)
+ T (~)] because of the Boltzmann factor exp[-P(P '
+ ~')'"] which depends on e through Eq. (22b).
However, we are working at high temperatures,
where P&1«1, &I being as defined earlier for the
ab system. Thus for e«i, the factor exp[-P(P'
+~')"'] is insensitive to & and can be pulled out of
the integral.

(c) This cannot be done for e & P» e~, but in
this region, the short-distance behavior of iy, ,, (r)i
approaches that of the free solution i rP, ,(r}i, as
shown in Eq. (18). Since T is a short-range effect

(arising in the impulse approximation solely due
to U), its matrix elements thus do not distinguish
between g, and $0, for large &. Thus, for e» e~,

(d) Finally, for e» &I„ the density of states
equal, i.e., p, (&)=p';(e) [see Eq. (19)].

Combining these arguments, it is clear the con-
tribution in Eq. (25) equals to a good approxima-
tion, when P&~«1,

V ( 2')-d'P d'P
d p[-P(P + )" ] p, „p —(T T ) P. ..p p, ( ).2 2 1/2 0 (28)

Clearly, Eq. (28) is the result one would have ob-
tained had there been only the short-range inter-
action U and no long-range V, or the bound state
B,~. Both the matrix element and the sum over
states in Eq. (28) involve only free-particle states
of a, 6, and C. The presence of the bound state in.

the initial (final) state has been canceled by the
presence of low-energy final-state interactions in
the initial (final) "abc" state.

This effect can be stated in purely S-matrix
language. Consider the scattering process abc
-abc, whose scattering amplitude 7(tu, &, &') will
be a function of the total c.m. energy ~ and the
initial (final) subenergy e (e') of the pair (ab) in
their own c.m. frame, apart from other variables.
If there is a loosely bound state in the ab channel,
then the amplitude 7(~, e, e') will have a pole at
e =M and &' =M and significant structure for &', &

& &„ the threshold. But beyond &', & =&i, where
ei, is as defined before, r(&u, e, c') will become
smooth but continue to grow and be sizable due to
the short-range interaction. Now the function
f(~, ~, e') = D(e)7'((u, e, ~-') D(&') with D(e) as in Eq.
(15) will be smooth even in the low e( ei region.
The pole at ~ =M in 7(&u, ~, e') will be canceled by
the zero of D(e), as will the low-energy structure
and the pole at &' =M.

Operationally, if the three-particle (abc) ampli-
tude v'(&u, e, e') and the two-particle D function ob-

tained from the phase shift exhibit these proper-
ties, viz. ,

(i) D(c) is nearly unity for e) some ei, and is
zero at e =M,

(ii) 7(~, c, e') has a pole at &=M and consider-
able low-energy structure up to & =&~, which,
however, smoothens out for some range of e& &~,
and

(iii) the product D(&}v(u, e, e')D*(e') is free of
the pole at &, &' =M and is smooth starting from
threshold,

then the situation is identical to what we described
earlier in the language of potentials and wave
functions. Under these circumstances our anal-
ysis indicates that the bound state can be ignored
for kT» e~. Only the scattering of @bc-abc
need be considered, and that too with a reduced
amplitude r(~, ~, e')=D(e) 7(~, e, c') D(e'} Note.
that z(u, ~, c') will just be the extrapolation of
the observed amplitude 7(~, e, ~') from high values
of & and &' smoothly to low values. The consequent
neglect of low-energy structure is canceled by the
neglect of the bound state and its scattering.

So far we dealt with terms linear in T and T
since the effect in question is easiest to demon-
strate there. A similar analysis is possible on the
bilinear T (S/S&u)T term as well, as we briefly
sketch below. It has the form

V(27) d P d pd p [ g ]4' (2 w)' (2w)~

(29)
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Much of the argument works in the same way as
for the linear term. Once again, for large e (or
e'}, the free and interacting wave functions P, ,
and &, , have the same short-distance behavior
which is all that matters for the T generated by the
short-range U. Similarly p, (e) and p, (z') approach
the free density of state functions po(e} for e& ez.
Thus, for large & and &', the effect of the inter-
action V disappears from Eq. (29) for each e and

For small &, since P&L, «1, the Boltzmann
factor is insensitive to &. So is the energy-con-
serving function 5(&u —~'), as long as ~ and ur'

(which are the over-all c.m. energies of all three
particles together} are large compared with &z.
Apart from the low-& region then, al? the argu-
ments used for the linear term are applicable
here. The scattering and bound states due to V„
can be replaced by plane waves.

Even for low ~, the error due to the neglect of
the bound state and the final-state V interaction
should tend to cancel. We content ourselves in-
stead by observing that for high temperatures, the
low-~ (order c~) region is a small part of the effec-
tive phase space. Further, T (e /S&u)T is expected
to be small in this region. This is because T is
due to a short-range force. It will be smooth in
&u for low ~, and T (S/&~) T involving the deriva-
tive of the imaginary part of T will be even smaller
than (S/&+)(ReT) occurring in the linear term.
Therefore residual effects due to the neglect of V

in the low-~ region will not affect the contribution
in Eq. (21) much.

More complicated examples, where more than
three particles scatter and with bound states in
more than one pair, can be similarly treated in
principle, although the analysis will be more com-
plicated.

We conclude with one example —the deuteron.
The corresponding phase shift in the I=O, J =1
S-wave n-P scattering is shown in Fig. 4. The
phase shift starts at 180' and falls off to zero by
about 300 MeV. One can therefore certainly ne-
glect the deuteron together with the triplet S-wave
&-P scattering for kT» 300 MeV, or more inter-
estingly for &~& 300 MeV for cold degenerate nu-
cleons. One might have expected the deuteron to
be canceled out at lower temperatures or density,
viz. , of the order of 10 MeV which characterizes
nuclear binding. This is partly a question of how

Fig. 4 is interpreted and how much is retained as
residual "strong short-range" &-P interaction.
The phase shift in Fig. 4 initially falls very rapid-
ly, a trend which if extrapolated would give 5(&) =0
well before 100 MeV. Thus, the interaction can be
considered as due to two paris —one which is rela-
tively weak and long ranged and is responsible for
nuclear physics and another which leads to the non-

IV. CONCLUSION

Our principal aim in this paper and the preceding
one was to show how, in a purely S-matrix formal-
ism of statistical mechanics, certain narrow res-
onances and stable states are effectively elementa-
ry, depending upon the temperature and the den-
sity. The main conclusion-that certain narrow
resonances can be included, while all loosely
bound states can be excluded from the complete
set of states-should come as no surprise. Phys-
icists have customarily been using such a restrict-
ed set of species, both stable and unstable, for
any given situation. But the justification for this,
particularly for unstable objects (resonances),
has been vague. We hope our work makes it less
so. Vfe have also offered operational criteria,
based only on 8-matrix elements which are in
principle measurable, for determining the elemen-
tarity of a ghren resonance or stable state. For
resonances, this gave us a condition not so widely
appreciated hitherto, viz. that narrowness of width
alone does not ensure elementarity which requires
a further condition on the S matrix in that channel.
Even when the resonance was narrow and satisfied
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FIG. 4. The n-p phase shift {see Ref. 8) in the deuteron
channel, which starts at 180' and falls to zero around
350 MeV. Note the steep fall at low energies, which, if
extrapolated would have given a zero phase shift at
nuclear-physics-type energies {well below 100 MeV).

zero phase shift beyond, say, 50 MeV. The for-
mer, along with deuteron, may be neglected for
kT or &~ larger than tens of MeV, but the residual
n-P scattering at higher energy must be retained
in evaluating the partition function.

This at least qualitatively justifies the customary
neglect of the deuteron and other nuclei as indepen-
dent species in evaluating equations of state of
neutron-star interiors.
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the conditions of Sec. II, we saw that all the work
of the preceding paper was needed to show that the
S matrices implied by such a resonance result, to
all orders in the virial series, in an ideal-gas
term with the correct statistics.

An interesting question remains, which has noth-
ing to do with elementarity or compositeness.
Once all the resonances in the dynamics (satisfying
the criteria of Sec. II) have been pulled out as ad-
ditional ideal gases, one might ask how much re-
sidual interaction remains. Ideally it would be
nice if "elementary" resonances saturated the dy-
namics, in which case the system would be effec-
tively a sum of ideal gases. For a gas of hydrogen
and photons at a temperature of an eV, if one in-
cludes apart from photons and the H ground state,
also the H excited states (which are actually reso-
nances) in the set of species, one finds the dy-
namics very well described by the resulting "ideal
gases. " Whether this is even nearly true for had-
ronic systems is not clear, although dual models
and thermodynamic models of particle physics
work on that assumption. In neutron-star interior
calculations, the use of 4 as a separate species
(which we have justified} certainly absorbs a great
deal of the n-N interaction. However, considerable
amounts of n-N and NN interactions still exist be-
sides 4 formation, not to mention the interaction
of the 4 with itself and with other particles. For a
dense system, the effect of such nonresonant inter-
actions continues to be a difficult problem to solve.
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x Tr„AS '(a)) —S(&u,', , (A2)

S((u) = I —2vi5((u-H, )T(cu) . (AS)

The sum Q„ is over channels, each containing
a given number of free stable particles with to-
tal chemical potential p,„. The trace Tr„ in Eq.
(A2) is to be taken in the c.m. frame, i.e., over
a complete set of states with zero total space
momentum in the channel n.

Customarily, one takes this trace in the mo-
menturn basis

T $3 p (A4)

We will start here with a different description of
states, in order to resolve unambiguously the
operators S/9 &a and 5((((-H, ) in (2„(P). I et us de-
scribe each state in the channel in the c.m. frame
by variables (e, $), where e is the total energy in
the c.m. frame and {$}stands for all the remaining
variables needed. Since all subenergies in the
c.m. frame can be scaled by e, the set {$}can be
dimensionless. For example, a two-particle
state in the c.m. frame can be described by

(e, 8, P), where Q and 8 denote the direction of the
relative momentum k. Such a choice for {$}is not

unique, nor need it be dimensionless. One could
have labeled the two-particle state, for instance,
by (E, 6 8, EQ) or (6, k~, kq).

It is true that the energy derivative of the on-
shell amplitude

APPENDfX

lnZ —lnZo = V 3
e'8" ~ a„P), (Al)

where

We make some remarks here on different ways
of using the basic equation (2). Some of what fol-
lows is contained in Ref. 1, but in a somewhat
compact form. A little elaboration may be helpful
to anyone wishing to use Eq. (2) in practice, and

to readers of this paper.
Since the S matrix has no dependence on the total

space momentum, except through the 6 function
conserving it, Eq. (2) may be rewritten as'

de d$ p q, $).
0 ~mOO

(A5}

$ stands for several variables $('~(~~ ~ ~ t'~ (s =2
for the two-particle example), but in Eq. (A5) and

below, we denote it by one variable ( to save
space.

Now, Eq. (A2) can be rewritten in a variety of
ways, for instance,

depends on the choice of the set {$}.But we will
see that the final answer Eq. (A2) does not.

For a given choice (e, t'), let p(e, $) denote the
density of states We. include in p(e, $) appropriate
step functions to specify, if necessary, the finite
range of any $ variables. Thus,
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„(y)=—f Xassxy[-y(sp p')'"1, [(ax[ys.X)xy( )[)

2m
dtt) exp[-P(aP+ P')'"], »» Im Tr„A g [2vif)(ty) H,-) T(&u)]"—

r= j.

=-yp —f « f a(( sxyf-y(a' p')'"1[, 'p)„, ) p(a, t)tts( I([XX( )a[ps(sa (()-X( )a] ~a['t-)'. ,

(A6)

This form shows clearly how a„(P) is to be evalu-
ated. Only on-shell T matrices T(e) occur and
can be inserted from a theoretical model, or
directly from experiment. The energy derivative
has been removed by integration by parts. The
choice (e, $) for state labels is not necessary in

this form. If the T matrix were more natural. ly
available in terms of, say, the momenta of all the
particles, then Jded) p(e, () in Eq. (A6) would be

merely replaced by Eq. (A4), with e =P~e, .
Equation (A6), however, involves an infinite

series, which can be quite complicated to evaluate
and sum. In some cases (as with the preceding
paper I), it might be easier to revert to Eq. (A2},
which is at most bilinear in T.

The linear term in T (and T ) in Eq. (A2) is
simple. Upon inserting Eq. (A3) into Eq. (A2), we
see that this linear term is

4
—.— dv exp -P + + P '~ —Tr„A5 & -&0 T cg + T

d«d$exp -P «'+P' '" p«, $, »» «, $ A T «)+T «} «, $, . A7

The energy derivative again does not appear in
Eq. (A7), and any on-shell T matrix can be sub-
stituted into it. In fact Eq. (A7} is just the first
term in the series in Eq. (A6).

In the remaining term in Eq. (A2), energy de-
rivative of the T matrix is unavoidable and cannot
be integrated away by parts. Two possibilities
arise. One may wish to use a theoretical model
for T(&u), which gives an explicit off-energy-shell
behavior of T(ty)) with respect to (t). This was the
case in the preceding paper. Since ~ in such a
case has nothing to do with state labels, the oper-

ation (B/B(d)T(co) and the result for a„(P) are trivi-
ally independent of the choice of state labels.

However, if one wished to use on-shell T ma-
trices only, the

[~(ru -H,)T ((y))](B/B(a)[B((u H, )T(&u)l-

term in Eq. (A2) must be rewritten in terms of
T(e) This has b.een done in Eq. (3.40) of Ref. I
(see also their erratum). That equation when
written more tully in terms of state labels (e, ()
can be shown to be

4ms„(y)-(XX)= . f «sxp[-y(a' ~ p')"*1

4y 4g A p «shy «hy T «) «ho p «yea
C

Note that in Eq. (A8), B/Ba acts on the full energy
dependence of (e(~~ T(e)~ eg, ) or (fgt~ T (e)~ e(3),
not distinguishing between the energy dependence
of the operator T(e) and that of the states. A

phenomenological expression T(e, $,$,) extracted
from data can therefore be substituted for
(e$, ~

T(e)~ e(,) in Eq. (A8), if one so wished.
It is understood that the derivative B/Be is taken

keeping the other variables $, and $, fixed. If one
had used some different set of variables, this
partial derivative in general would be different.
But we will show that this difference cancels out
in the result for a„(P).

First, the derivatives of the density p(e, g) will
cancel out from Eq. (A7). Such terms have the
form, in self-evident notation,
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8
~1 ~2 ~l 12 P2 21 I 1 12P2 218& 86

sp, (T „—T„) „sp, (T „—T„)
86 21M 86 2%4

4m'
A d),N2exP -P E + P P ~, $, P ~, $2)

x A(et',
I
T (~)I~),}—(&(, I T(&)I &t'&) . (All)

=0

upon using the unitarity relation

T jf ~ T jj ~2%g ding Tjjf PP T jfg

(A9) Now suppose we had used a different set, say
(e, $,) for the labels of the intermediate state. As
long as the transformation $2-(2 did not depend on
t

&
8/su

I &

-- 8/Be I f and the transformation will
leave Eq. (All} unchanged. Otherwise,

= -2wf )) d(, T'„p,T„. (A10)

The term bilinear in T thus reduces from Eq. (A8)
to

(A12)
8 8

+ /1
8$

g
86

g 8$
2 2

where e is some function of e and $2. Then the
change in Eq. (All) is proportional to

d),d)~p(e, (,)P(e)2)& T,2 T2, — T ~ T„I 2 t 2 2
!
~

I~ ~
1~

~

~
~ I ~ ~

~

~
~ 2 I8)2

=0

d(,dfm&p(&(~) T2,P(&& $,)T,n
- Tn, p(e, $„)T

2 - n=2, e fixed tR —n=2, e fixed

d),d), ap(e)2)
(

.
)

(T 2„-T,„-T „,+ T„,)„=,

using the time-reversal-invariance property T~
= T„,. Therefore, even an &-dependent change of
variables from (e$, ) to (e, $,($„e)jwill not affect
Eq. (All).

To illustrate, consider a two-particle amplitude,
usually written in terms of c.m. energy c and mo-
mentum transfer A as T(e, n, ). This should first
be rewritten in terms of separate initial- and final-
state labels. For these we could choose, for in-
stance, (e, 8„&t&,) and (e, 82, P, ) or (e, e 8„eg,) and

(&, e82, &p, ). Correspondingly, the amplitude will
have different functional forms related by

T(~& 8i& 4x& 82& 4a) = T(~
& «» ~4'» ~ 82& d &II'a)&

clearly,

8 8—T 4 —T
8 4 ee

E 62&6 42

Nevertheless, if T is unitary, either set of vari-
ables can be used in Eq. (All} to give the same
result. Along with the linear term Eq. (A7), the
prescription for obtaining the virial series using
on-shell amplitudes is thus unambiguous.
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