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It is shown that when the dynamics of a system is dominated by narrow-resonance formation it

behaves like a noninteracting system with added species of free particles, corresponding to all the

quantum numbers and the statistics of each of the resonances. This equivalence, widely assumed and

used in practice, is established by explicitly constructing many-particle S matrices consistent with

unitarity that correspond to purely resonance-dominated dynamics. These are then used in the S-matrix
formulation of statistical mechanics to obtain the grand partition function, which is seen to reveal the
above result. In the following paper, operational criteria are presented for determining when in general
narrow resonances and loosely bound states may be treated as "elementary" particles.

I. INTRODUCTION

A popular notion, used in a variety of physical
situations, asserts that narrow resonances may
be treated to a good approximation on the same
footing as stable elementary particles. %'e are
quite accustomed to the idea of treating neutrons,
pions, muons, etc., all of which are actually un-
stable, as if they were "elementary. " It is as-
sumed that in a collection of such objects, each
species would obey its own separate statistics,
and that one can ignore any constraints of sym-
metrization or antisymmetrization between wave
functions of, say, a neutron and an electron. A
possibly more debatable example of such use
arises in certain calculations of the equation of
state of neutron-star interiors. Here, not only the
neutrons, the A, and the Z, but often also the 3-3
resonance (b.) is treated as a separate species.
This assumption alloms one to put, for instance,
a b and a nucleon in the same momentum state,
and leads to a great saving in kinetic energy at
high baryon densities.

Yet, all these unstable particles are also expected
to occur as resonances in the scattering of stable
particles. This is certainly true of the hadronic
resonance 4, which occurs in the Nw channel, and
presumably pions, muons, neutrons, etc. mould
also occur as resonances in the appropriate weak-
interaction scattering experiments, if one could
perform them. Thus, at least in part, the res-
onances may be composite objects. If so, one
would expect some constraint between their wave
functions, and those of the "constituent" stable
particles.

The difficulty is that we do not know at present
to what extent these resonances are really com-
posite or elementary. It would therefore be nice
to determine criteria under which narrow res-
onances may be considered approximately as
elementary, even if in fact they were fully com-

posite. Further these criteria, assuming one
can find them, should be specified operationally,
not involving ultimate knowledge of whether a
resonance is truly composite, elementary, or
both in any absolute sense. Finally, mhen a res-
onance may be treated as a separate elementary
species, one should be able to justify the neglect
of possible symmetrization constraints with its
constituent stable particles.

%e attempt, in this paper and the one following
it, to throw some light on these issues, along with
the corresponding problems for loosely bound
composite systems.

We begin in Sec. II by considering a collection
of two stable species, taking for generality one
as a fermion and the other a boson. %'e assume
that the two species interact only to the extent of
forming a narrow resonance. This specification
is made precise by giving a unitarily consistent
S matrix for the scattering of m fermions with n

bosons for all (n, m). Then, using the S-matrix
formulation of statistical mechanics, ' we calculate
the grand partition function Z for this interacting
system at any temperature. The reason behind
evaluating Z is that apart from giving all other
thermodynamic functions, it also resolves ques-
tions of relative statistics. Since all many-par-
ticle 8 matrices are seen to exist even when the
dynamics consists only of a narrow resonance, all
virial coefficients also exist. However, in the
limit of a narrow resonance, these virial coef-
ficients can be summed. The resulting contribu-
tion to the partition function is shown to be exactly
what a third ideal gas would give, if it had Fermi
statistics and the mass and quantum numbers of
the resonance. Note that for Boltzmann gases such
a proof would be trivial, since only the second
virial coefficient exists for a purely narrow-res-
onant scattering. This coefficient, given by the
Beth-Uhlenbeck formula' in terms of the elastic
phase shift, immediately reduces to an "ideal"-
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Boltzmann-gas term corresponding to the res-
onance. However, the questions we posed earlier
are meaningful only for (the more realistic} Bose
and Fermi systems, in which case the calculation
involves zll virial coefficients and is more com-
plicated.

In Sec. III we extend this result to cases where
such narrow resonances "scatter" with other nar-
row resonances or stable particles. Of particular
interest is the case where the scattering of nar-
row resonances with one another and with stable
particles is again dominated by narrow-resonance
formation. Such dynamics, dominated by tree
graphs involving a hierarchy of narrow resonances,
is used in both the dual models' and the thermo-
dynamic theories of elementary particles. 4 We
find that such dynamics can once again be replaced
by a sum of ideal-gas terms, one for each res-
onance.

Reconciliation of these results with the need to
symmetrize (or antisymmetrize) the constituents
of the resonance with other stable particles in-
volves the use of Levinson's theorem. The same
theorem also throws light on the status of "loosely"
bound states. By loosely bound states we mean
states bound by potentials whose strength and in-
verse range are small compared to the tempera-
ture and the density. These and related topics
form the content of the succeeding paper. It has
been presented separately in order not to drown the
physics there amongst the technical details of
narrow-resonance algebra in this paper.

(2.1)

and the S matrix

(p k iSipk&

= (p ' k '
~
1 - 2 vi 5(e + ~ —e ' —ur ') T(e + &u}

~ p k ),
(2.2)

where

M = mass of the resonance N*,

21'=(2v)'g'Q 5'(p+%) 6(e+(u-M),
(2.3)

and we will always use the combinations P, = (p;, e;)
and k; =(R;, &u;) for the four-momenta of neutrons
and pions, respectively.

We will work in the narrow-resonance limit, i.e.,
g' -0, when the width I' also goes to zero and the
amplitude in Eq. (2.1) is unitary. Also, since the
interaction in (2.1) is spin-independent, the "neu-
tron" is effectively spinless in our problem.

Turning to the many-particle T matrix, we make
a corresponding assumption consistent with Eq.
(2.1) for the v n amplitude. We assume that it
consists of, and only Of, diagrams where real
(or virtual) pions repeatedly form narrow elastic
N* resonances with other real (or virtual) neu-
trons. Unitarity forbids us from using a, two-par-
ticle amplitude of Eq. (2.1) without permitting

II. TWO SPECIES INTERACTING THROUGH

A NARROW RESONANCE

We mill calculate the exact grand partition func-
tion, from which other thermodynamic functions
can be derived, for the following system:

There are two stable species of particles, say,
one a boson and the other a fermion, each carrying
a separately conserved quantum number. To
facilitate discussion, let us call the boson a m,
carrying charge, and the fermion as a neutron (n),
carrying baryon number. Both particles are stable
in the absence of weak interactions. These specifi-
cations are just for convenience. Our results are
adaptable to cases of two fermions or two bosons,
whether or not they carry separate quantum num-
bers.

Let us assume that there are no m -n interac-
tions and no n-n interactions. Further, let the
m -n interaction be such as to produce Only a nar-
row 5-wave resonance (called the iy*) in the elastic
m n scattering amplitude, both on and off the en-
ergy shell. That is, let [see Fig. 1(a)]

Jp' BE 'i

(b)

FIG. 1. {a) Narrow resonance N* in the ~ n channel
and {b) its contribution to the lowest virial coefficient.
{b) stands for a Tt{8/BE)T form as occurring in Eq. {2.9),
where the horizontal line separates T~ from T and an
operation 8/SE is to be applied on the piece T below the
horizontal line. In this and subsequent diagrams, dashed
lines, regular lines, and double lines stand for pions,
neutrons, and the resonance N*, respectively.
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many-particle amplitudes as in Fig. 2(a). Thus
the T matrix for the scattering of 2 pions and 3
nucleons would be the sum of all terms of the type
shown in Fig. 2(a). [Note that several disconnected
pieces like this are also permitted. However, a
diagram such as Fig. 2(b) is not permitted since
two successive resonances occur between the same

I

v n pair. Since the resonance in Eq. (2.1) is al-
ready unitary in two-particle space, Fig. 2(b)
would lead to double counting. ]

Diagrams such as Fig. 2(a) stand here for terms
in a Lippmann-Schwinger expansion of the T(E)
matrix. To be precise, a diagram such as Fig. 3
stands for the expression

(2w)' g' 5'(p, + k —R„-p, ) (»)' g'5'(4+ p —4 —pl)
E —e, —[M'+(p, +%)']' '+iI'E —~, —e, —e, +is E —e, -[M'+(R, +p)']'"+iI"

(2w)'g'5'(%'+ p,' —R, —p, )
E —~, —e, —e,'+i@ E —e,' —[M'+(P, %+,)']"'+il' (2 4)

From this illustration, the corresponding expression for any diagram for the many-particle T(F} can be
written down, and the assumed dynamics of one narrow-resonance system is fully specified.

%ith this information, the full grand partition function Z can in principle be evaluated using the S-matrix
formulation of statistical mechanics. ' For our system,

PV 1=lnZ=lnZ + . ea "~"~'~2"2 dEe ~ Tr AS '(E) S(E)
9

uT nl, n2 (2 5)

where S(E) = I —2wi5(E -If,) T(E), +=free Hamil-
tonian, p, = chemical potential for the n, corre-
sponding to charge conservation, p,, = chemical
potential for the neutron, for baryon conservation,
A =boson symmetrization and fermion antisym-
metrization operator, n, (n, ) is the number of
pions (nucleons) in a state, and the subscript
c stands for the connected part of the combination
Tr [AS '(8/BE) S]. Note that two apparently dis-
connected pieces can be "connected" through their

final-state labels, thanks to the exchange operator
A. ' Z, in Eq. (2.5) is the noninteracting value of
Z for the two species, viz. ,

lnZO = V 2, In(1+exp{- p[(p'+m„')'/' —~]})d p

—V 2, ln(1 —exp(- p[(k'+m, ')' ' —p, ]j).
(2 5)

Given an ~ matrix for pg, pions and n, nucleons as
specified for all n, and n„all virial coefficients
in the double expansion in (2.5) exist. In the limit
g'-0, we show that these can all be evaluated
and summed.

[Incidentally, we have added an Appendix at the
end of the following paper, clarifying what the
9/BE means, given a general S-matrix element
as a function of several energy variables. In this
paper we have postulated 8-matrix elements with

/ / /

P) P~

(a)

FIG. 2. {a) A typical many-particle 8-matrix element
in resonance-dominated dynamics. This is a term in a
two-pion-three-neutron scattering. {b) A typical T-
matrix diagram not permitted since two successive
resonances occur bebveen the same ~ n pair. A unitary
resonance as in {2.1) already includes such iterations.

k P„ P,

FIG. 3. A contribution to the one-pion-two-neutron
T matrix, which stands for the expression in Eq. {2.4).
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lim . =0= 1
X+SR X+LE' X+LE

X —$6 X+'EC

(2.7a)

(2.7b)

while

6-0 X l~ ax X+sC

2vi
1 „(n+m —I)!

(') '" (n- l)~ (m-1)'

explicit off-energy shell (E) dependence, so that
B/BE is unambiguous. ]

To begin, note that every contribution to any
many-particle T matrix is, apart from momentum-
conserving 5 functions, a product of free Green's
functions 1/(E -H, +is), and "resonance propa-
gators" of the form g'/(x, +iI'} where x; are some
energy variables made up of E, the resonance
mass M, and the energy-momenta of other par-
ticles in the diagram. [See, for example, Eq.
(2.4).] Remember that I"~g' from (2.3), and that

for all integral n, rn&0. From this one can see
that all the T matrices vanish as g'-0, since they
all have g' dependence of the form

rr ~» x, +ir '

so does (B/BE) T(E) and, for that matter, T T
However, the combination T (B/BE) T from Eq.
(2.5) can survive since poles from x = ie and x = —ie
can pinch the real axis for some energy variable
x, giving a 5(x) as per (2.8). Note while using
(2.5) that in the combination

Tt (E) [5(E —H, ) T(E)],

when B/BE acts on the 5(E -H, ), that is to say on
n-particle phase space p„(E), giving

T'(E) T(E),E p.(E),

the result is again zero as g'-0, because of
(2.Vb). Thus, Eq. (2.5) reduces to

In@=lug + es!»"~'»"2~ dEe Tr„„AB(E—H0) T (E) 5(E-Ho) —T(E)
2va - s

-CnI, n2

-=InZo+ g e8 "&"'+"2"2 b(n„n, ) . (2.9)

The physics of the singular nature of such a nar-
row resonance can be understood better by look-
ing at the lowest virial terms in the expansion
(2.9), corresponding to n, = n, =1. It involves the
elastic w n amplitude given in (2.1), which as
g'-0 vanishes everywhere in E, except at the
resonance energy, where it is finite. The same
is true of the cross section related to ( T(E) ~',
which also has a spike of finite height and decreas-
ing width as g'-0. Neither the cross section nor

I

the amplitude, if integrated over the energy, will
contribute anything. However, the partition func-
tion is an integral over S '(B/BE) S, which may be
interpreted as the cross section multiplied by the
"time delay" due to interaction. For a narrow res-
onance, this time delay clearly becomes infinite.
As a result, S '(B/BE) S develop enough strength
at the resonance point to behave like a 5 function
in energy. This is seen when b(1, 1) is obtained
by substituting (2.1) into (2.9). We get

b(1, 1) = . d'P dEe Be[2F(E,P)]'

where, analogous to the definition of the width F in Eq. (2.3), we define

2F(E, P) =g'(2v}'g 5'(R+p-P) B(e+~ —E} .

Then as g' [and hence I' and F(E, P}]go to zero, using (2.8),

I'E P
b(1 1) = 53(0) d~P dE e 8e ' 5(E —(M + P2)'~2 )I"

d3I
= V, exp[P(M'+P')' '].(2s)' (2.10}
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The result (2.10), where the resonance behaves
just like another free particle of mass M, is very
familiar. It is derived in Ref. 2 and is also easily
available from the old Beth-Uhlenbeck formula, .'
For a Boltzmann gas, this is the only contribution
in the narrow-resonance limit to the whole virial
series, and is the basis for the notion that narrow
resonances behave like stable particl. es. For a
realistic Bose or Fermi gas, all the higher virial
coefficients in the series (2.9} also exist and must
be calculated and summed. This is really the only
new element in our work in this section. As hoped
for, these higher virial contributions merely pro-
vide the "N* species" with the appropriate (in this
example, Fermi-Dirac) statistics. But this sim-
ple result evolves only after some interesting
cancellations between classes of diagrams, which
amount to a self-consistent change in the resonance
width in the presence of the medium.

To evaluate the higher virial coefficients, we
again rely on the identities (2.7) and (2.8). Every
n-particle T-matrix diagram, when put on the
energy shell [as required by the 5(E —H, ) in 2.9],
involves a product of resonance propagators
IIq g'/(x; + l&). Each x; is just E, —E;", where E;
is the energy of the m n pair forming that res-
onance and E" is the resonance energy for that
particular total momentum. The combination
T (8/SE)T will then be of the form

(2.11}

Note that the sum over state labels (phase-space
integrals} can be written as integrals over inde-
pendent pair energies x, and any remaining vari-
ables, with a suitable Jacobian. Apart from the
resonance propagators, T (s/BE)T involves mo-
mentum-conserving 5 functions, energy-conserv-
ing 5 functions, and Green's functions 1/(E Ho ie)--
whose imaginary parts again conserve appropriate
energies.

As a result of these 5 functions, two things may
happen to any given T"(S/SE)T contribution:

(a) All the energy variables x; and x, in (2.11)
get constrained to be the same. In that case (2.11)
has the form

,x, —&r ax, x;+ir'

which by (2.8) survives on integration over x;.
Such a diagram will thus survive.

(b) At least two independent x's remain in (2.11).
In that case, inthe expansion in(2. 11) at least one
of them (x,) will involve

or
x, -ir

g2

x, +iF

any of which make the integral over x, and hence
the contribution of the entire diagram vanish.

The interested reader can verify this argument
by considering some examples. A diagram such
as Fig. 3, when inserted either for T or for T
in T (&/&E)T will destroy that contribution. On
the other hand, the lowest virial coefficient b(1, 1)
survived since essentially only one energy reso-
nated [Fig. 1(b)] for a given total momentum in both
T (E) and T(E).

The criterion then is that only those contributions
to the n-particle [TrAT (S/&E)T], combination
survive in which all the resonance propagators
are constrained by energy momentum conservation
to be the same. This important technical criterion,
along with identities (2. 7) and (2. 8), uill be used
rePeatedly.

Before we collect all the terms that satisfy the
criterion and survive, let us start with a simple
example that does [Fig. 4(a)]. Its contribution to
InZ in Eq. (2.9} is

1 (2v)'g'5'(p, +k" —p' —k')

e, ~ ~ e, —(e, ~ e, — ") —e e' ~ ' —(M'+(e' )e')')"' —:)')

(2v)'g'5'(p, +k —p' —k')(-1).e. (. ..-.—., —..—.) . . ...„,. „.)8 +(() —[M +(p +%) ] +&F
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The minus sign arises because the p» p, lines have
been exchanged. Retain only the +is6(e, + ~ —e,
—~"}in the Green's function in (2.12). We will
come to the principal part in a moment. Note that

because of momentum conservation, all resonance
propagators are the same. Let %+p, =P and
~+ e, = E. Then the expression in (2.12) is merely

6 (0} g( „~~ -g( ~
(2v) g —f$(E 'P) 2Z'(E P)

2vf ~ [E- pV +5')"' - fr]' [E (I-)f' +I s)'" +if]' '
kg I

(2.13)

where 2I'(E, P) as before equals

Q 5'(ft'+p' —P) 6(e'+ (u' —E) (2s)'g'
k', p'

and

I

ability.
Similarly, the diagrams depicted in Fig. 5 will

give a term similar to (2.13) except that —&yz

will now be replaced by +iy, (E, ly, p, ) given by

2y, (E, P, p, ) = g 6~(k" +p, —P) 5(u" +e, —E)
2y„(E, 0, g, ) = Q e @'2 "2' 6'(fc" + p, —P)

k",p2

x6((u" +e, —E) (2v)'g' . (2.14)

kit P

e-8(~ -QI)
x 8( „„)(2v)'g' . (2.16)

It is clear from the identity (2.8) that as g'-0,
(2.13) will give a term proportional to 6(E —(ly'
+M')' '), which will survive upon integration over
E = u+e.

Next, we add to Fig. 4(a) a sequence of terms
[such as in Fig. 4(b)] where an arbitrary number
of noninteracting neutron lines are "exchanged'"
with the nucleon P, . This will only replace in
(2.13) the factor 2y„by a factor

2yN(E, P, p ) = g 5'(fc" +p —P) 6(&u'+e, —E)
k", Pp

e @'2»'(2v)'g'
x

g& &
(2 15)

2y„(E, P, p, ) is clearly just the "reduced" phase
space for two particles of energy-momentum
(E, P) weighted by the neutron occupation prob-

P, P,

Rather than evaluate these contributions separately,
we now identify a whole sequence of such diagrams,
which effectively involve only one resonance de-
nominator. These diagrams are generated as
follows. Consider Fig. 6, in which the shaded blob
on the right-hand side is iterated to give a se-
quence of T-matrix diagrams. As illustrated in
Eq. (2.4) for the case of Fig. 3, the precise alge-
braic expression represented by any T-matrix
diagram is defined. Now insert the shaded blob
in Fig. 6 into all the T (S/SE) T combinations de-
picted in Fig. V. In both Figs. 6 and 7, the non-
interacting pion (or neutron) lines are meant to
be arbitrary in number, beginning with zero, and
are exchanged with the k, (or P, ) line. Their effect
is merely to introduce the Bose (or Fermi} oc-
cupation probability in the phase-space integral
of the k, (or P, ) line. See, for example, Eqs.
(2.15) or (2.16) and Ref. 1.

Clearly, Fig. 7 represents a particular sequence
of terms in the series (2.9). While the notation of
Figs. 6 and 7 is rather compact, the reader should

Tt k .. k
P) k

p 'ik

/I,

p p, k p2 p2 P2' p~
k

(a) (b)

FIG. 4. Examples of diagrams which have only one
independent resonance energy, consequently surviving in
the virial series. Such diagrams mill end up reducing
the N~ width in the presence of other neutrons in the
medium.

k p„

FIG. 5. Corresponding examples to Fig. 4, but where
the pions are "exchanged. " These will help increase the
N* width due to the presence of other pions in the medium.
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/
/

/

k k' P k P

k

k

k) k~ p
I

I

I 1

l

FIG. 6. An iterative sequence which generates 7'-
matrix elements with only one independent resonance
energy. This exhausts all linked T matrices having this
property. %e use the phrase linked" to include trivially
disconnected pieces consisting of noninteracting lines
which are exchanged.

d

II (jE

P k 1 k

ki
+

have no trouble generating this sequence. A typical
term is shown in Fig. 8. Its contribution to Eq.
(2.9) has the form T,(E) 5(E H, ) (&/-SE) T,(E),
where T, (and T, ) are unambiguously defined by
the parts above (and below) the horizontal line in
Fig. 8. The simple examples we did earlier in
Figs. 4 and 5 also belong to the series in Fig. 7.

It may be checked that every term contained in
Fig. 7 involves resonance propagators in only one
independent energy variable, once full energy-mo-
mentum conservation is imposed, just as in the
examples (Figs. 4 and 5) we explicitly worked out.
[We continue to retain only the imaginary part
—iw5(E H, } in ever-y Green's function 1/(E —H,
+is) in the T matrices. It will be seen that these
alter the width I'. The real part of 1/(E —Ho+is)
will alter the resonance mass M by an amount
which vanishes as g'-0. ] Thus, every term in
the expansion of Fig. 7 will survive as g' -0.

So far Fig. 7 has not included "exchanges" of
spectator neutrons (or pions) with the initial P
(or k) line. Let us now add, for every term in
Fig. 7, also terms where either the neutron line
P or the pion line 0 is exchanged with arbitrary
numbers of spectators of the respective species.
Thus, in the place of Fig. 'l(a}, we use the whole
sequence in Fig. 9. Similarly, Figs. I(b) and l(c)
a.re expanded to include a trivially larger set when
either P or k is exchanged an arbitrary number of
times. Let us call the sum of all contributions in
Fig. 7 along zvith such exchanges as S. S does not

I

I

P, k4 k~ P~ P

FIG. 8. An example of a typical term contained in Fig.
7. This particular example is contained in Fig. 7(a).

k
/

/

P) P P4 Pp P

+ ~ ~

k„p
I

I

1

I

I

I

I

k p

k„k~ p

j

!
i +

I

I

k k, p

+ ~ ~ ~

include terms, where both P and k are exchanged
with noninteracting lines. %'e will sum those sep-
arately and they will be seen to provide the "sta-
tistics" for the N* species.

The set S has a simple sum, which has to be
obta, ined by examining the structure of a general
term such as Fig. 8, and evaluating it as we did
the simple case of Fig. 4. It can be seen that the
sum of all terms in 8 involving n resonances above
the horizontal line and m resonances below the line
(n=4, m =2 in Fig. 8) is

{a) (b)

FIG. 7. An iterative sequence for T~{8/BE)T obtained
by substituting the sequence in Fig. 6 for the shaded
blob.

FIG. 9. This is essentially the sequence in Fig. 7(a),
where, in addition, either-the initial neutron or pion
{but not both) is exchanged with an arbitrary number of
noninteracting spectators. A similar enlargement on
Fig. 7(b) and Fig. 7(c) is also to be made. The net sum
is called S.



10 NARRO% RESONANCES IN STATISTICAL MECHANICS 701

n ns 2»& ~ 1+&-B(e=&2&) 1 &-8(&d &&&) ( ) g [E (M2 +]$2)K/2 fF] n

p, 4

8(ej jl 2) @ 8(QJI jI 1)

(2.17)

where (P, k) and (p„k,) are just the labels in Fig. 7,

P = p + j(, E, = e, + (»„P,= lt), +k, ,

y„=y„(E,P, p,,) as in (2.15),

y, =y„(E,5, )(,) as in (2.16) .

Let us define a reduced width

-8(e-jI ) -8(~-jI )
o(E, P) =--,' Q 1- e(, ~ ) +

(&( „) 5((u+e-E) O'(P+j( —P) (2w)'g'
k, p

= [I'(E, P) —y„(E,P) + y (E, P) ] .
Thus'

ds E,-()(»-»&-&,)(2o E P„, {-fr»r+.)" ' ' (&r» —fr.)
[ { & &] [E (M2 +gP)1/2 fF] n ()E [E {M2 + gP)&f2 ~

F] m

Therefore

(2.18)

dsP dE, 8(» „»,) ---2o(E,P)
2mi . E —(M'+ js )"'—i(I' —y„+y,)

—2o(E, P)
[E -(M'+ F)'~'+&(I r„+r„)]2

Remembering that the only contribution, as g'-0 comes at E =(M'+P') &~', we see that I' in the denom-
inators, which equals I'(M) =N(M'+P)' ', P) can be replaced by Z'(E, P). Then

—2o(E, P)
i

" ' '
[E (M'+y )'s';a(E P)] [E (M2+y )&i'+,o{E P)]' (2.19)

Note that (2.19) has the same simple form as the
lowest virial coefficient evaluated in (2.10) cor-
responding to Fig. 1(b), except that the full width
I'{E,P) has been replaced by a reduced width
o(E, P). From its definition in (2.18), we see that
o(E, P) has a reduced-phase-space integral, where
the occupation probability of the neutron has been
subtracted, and that of the pion added. Such a
reduction in width due to occupied fermions in the
domain of decay and an enhancement due to oc-
cupied bosons mould be expected on physical
grounds, when an N* decays in a medium. Our
choice of diagrams contained in S conspire to
merely alter the width in a self-consistent way.
This is intuitively clear when a typical term in S,
such as Fig. 8 is redrawn as in Fig. 10. Figure 10
shows that all we are doing in the sequence S is to
expand the unitary series of the resonance in pow-
ers of the width 1, and antisymmetrize the neu-
tron and symmetrize the pion in the N* wave func-

s=»'(o& d'~fsE -"*-~ -~*&n(z (p', ~'&'&

&+8(jf&+jI ) y
- &-8(&'+P') ' '
(2(()' (2.20)

Thus, S merely reduces to the lowest virial term
e '" &' "2' f&(1, 1). In the narrow-resonance limit,
all the other terms in S, which are individually
nonzero and belong to higher virial coefficients,
simply cancel, leaving only the lowest contribution
in (2.10) due to the two-particle &( n scattering
[Fig. 1(b)] .

Let us now see what other contributions survive
as g'-0, other than S. It can be checked that

tion.
Finally, in the narrow (g' -0) resonance limit,

where all the widths I', y„, y„and o go to zero
anyway, this self-consistent change in width should
make no difference. This is clear from the fact
that as g' [and hence o(E, P)] -0, using (2.8)
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FIG. 10. This is Fig. 8 redrawn to bring out the rea-
son why such diagrams merely alter the width.
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only two types of diagrams remain:
(I) Diagrams where both the P and h line in Fig.

6 are exchanged with spectator particles. Remem-
ber that this was not included in S. Figure 11 gives
the sequence of such diagrams. Note that diagrams
such as in Fig. 12 will also individually exist, but
they add up to zero exactly for the same reason
that higher virial terms in S canceled. Thus the
two examples in Fig. 12, apart from the extra
exchanged pair which merely add a fa,ctor
e 8('&'

& "& "~' to both terms, are just two of the
higher virial terms in S, all of which cancel to
every order in ILI, , and p, . This leaves only terms
of the type in Fig. 11. The reader ean convince
himself that diagrams in Fig. 11, along with the
seciuence 8 [of which only Fig. 1(b) remainsI ex-
haust all "linked" diagrams which survive as
g'-0. By linked we mean that all resonances in
the diagram are manifestly connected by internal

k) p~

)

P~ P~ k~

k, p,
I

I

I

I

I

I

I

k) P)

P, P, kpp,

I

I

k~ Pq k, 9)

FIG. 12. The corresponding sequence for higher virial
terms of S. These, however, cancel for the same reason
that the higher virial terms in 8 canceled. See the text.

p, k) p~ k~
/ /

/ /
/ /

P, k, P, k, P,
/ /

/ /'

/ /
I

+ 0 ~ ~
I

k2 9, k) kz P~ k, p,

lines.
(2) In addition, one can also have unlinked terms

which are connected because of the permutation of
final-state labels, and consequently are permitted
in the partition function expansion. For appropriate
permutation of labels, these will also have only
one independent energy which resonates. See the
examples in Fig. 13. Note that the on-energy-shell
S matrix of two unconnected pieces is just a prod-
uct of the individual S matrices, each separately
conserving energy momentum. It can be seen
that, thanks to energy-momentum conservation,
all the resonances in Fig. 13 occur in the same
variable

{e,+~, —[M'+(p, +k, )'J' '+tI'j,
so that such terms will survive upon integration.

%e assert that diagrams exemplified in Fig. 13
and Fig. 11, along with the sequence S, exhaust
all possible linked and unlinked terms that effec-
tively have only one independent resonant energy
and therefore survive. To evaluate contributions
in Fig. 11 and Fig. 13, let us consider for example

FIG. 11. The sequence where both the initial pion and
neutron are exchanged with spectators, starting from the
primitive diagram in Fig. 1(b).

FIG. 13. Examples of unlinked contributions, which
are, however, connected by the exchange of labels. Note
that for the permutation of labels that connects such
diagrams, all resonances again occur in the same energy
variable. Thus every such contribution survives.
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n, = n, =2, when all terms of this type give

8(+A+ &C)+ 8(2)f I+2V2&
2i 2n'i ~

CD

x(was, -'/ff)(cps, -'iD),

x((aIS, I c)(DIS, lg) ), (2.21)

where labels A, 8, C, D stand for pairs of m n as
in Fig. 14. We have used the fact that the on-en-
ergy-shell S matrices factorize for disconnected
pieces —in this case into a product S,S,. We are
using in (2.21) on-energy-shell S matrices as well
as a derivative with respect to the total initial
energy. Reference 1 shows that this is equivalent
to the off-energy expression in (2.5) for unitary
S matrices. Since S, and S, each conserve energy,
it is clear for the particular set of exchanged

FIG. 14. The total contribution from two unliD&. ~
pieces.

labels in Fig. 14 that e„=eB=eD=ec. Further,
since each S matrix is a sum of two terms,

(i ~S)j) =5, 2vi5-(e, —e,) T.. .
Fig. 14 is a sum of 16 terms, of which Figs. 13(a)
and 11(a) are examples. But the expression (2.21)
equals

'*" '" ' g (A[S, '[B)( B[ S, ~C[))(g( C[ S, '[D) (D[S, [A)
AC B D

+ AS, 'B BS, C CS, 'D DS, A
8 D

8
2t 2m'

AC

where we have used

8 9 8

8(e„+ec) 28e„28ec '

Thus, Fig. 14 merely gives

1 -1
e '8&'A )" I I'2' A S ' —S A

a

2f 2' az

are (m —1)! permutations of the final nv pairs
that can keep m links "connected. " Summing (2.23)
over ~n, the number of m n pairs, we have for the
full expansion (2.9)

lnZ =!nZ + V In(exp(- [3[(p'+M')' 'd'P
(2v)'

—~ —! ]}+I) .

(2.22)

following earlier algebra.
Incidentally, the 1/2! in (2.21) is the usual

Boltzmann factor since there are two equivalent
pairs in Fig. 14, while the minus sign in front is
because a pair of fermions and a pair of bosons
have been exchanged in the final state.

Following the same method, it can be seen that
unlinked terms with n, =m pions and n, =m neutrons
will yield

Bl 1 d3+
m (2v)'V, exp(- Pm[(P'+M')'~' —i(,, —p, ]] .

(2.23)

The replacement of 1/m! by 1/m is because there

(2.24)

Al/ contributions to all the virial coefficients in
(2.9) have been included in (2.24). The entire
sequence of linked terms in what we called S,
merely readjusted the resonance width in a self-
consistent way, as shown in Eq. (2.19), giving us
back just the contribution of the lowest virial term
(2.10). This forms the m=1 case of the expression
(2.23). Unlinked terms with m pieces gave (2.23)
for the appropriate value of ~n, and the sum over
m yields (2.24). There are no other contributions
to any of the virial terms as g' -0.

The result (2.24) is exactly what one would desire
intuitively, viz. , that the interaction between the
w n system, in our model, is replaceable by a
third species of N* particles, with mass M, with
Fermi statistics, and a chemical potential g„~
= p., + ~, as required by baryon and charge con-
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servation. Apart from this constraint on the
chemical potential (which will determine the rela-
tive "density" of 1P' to those of n and m for a
given temperature, charge, and baryon number),
the N~ species is independent of the n and the m.

Its states need not be antisymmetrized in any
sense with those of the neutrons or symmetrical
with those of the pions. All this is true only in

our model of a purely narrow-resonance-dom-
inated dynamics —an assumption we examine in
the following paper.

III. A FAMILY OF RESONANCES

Vfe now extend these ideas to more general
situations. %'hen narrow resonances scatter with

other particles or other narrow resonances, we

show that the resulting contributions to the parti-

tion function Z behave as if the resonances were
elementary stable particles. Secondly, when res-
onances scatter with other particles and reso-
nances, only to produce yet other narrow reso-
nances, i.e., when all n-particle scattering hap-

pens through "tree graphs" as in Fig. 15, then

the full lnZ is just the sum of ideal-gas contribu-
tions with one ideal gas for each separate type of

resonance. Any specific process, such as Fig. 15,
contributes an ideal-gas term corresponding to
the super n-particle resonance from which all the

initial and final particles cascade.
%e prove these assertions for the simple ex-

ample of 3-particle scattering in a Boltzmann gas.
Let particles 1 and 2 interact only through a nar-
row resonance N,*„which in turn can scatter off
particle 3 (Fig. 15}. More precisely, let the
three-particle T matrix be given by

{1'2'3'
~
T(E) ) 123) =(27r)' 5'(P»+p3 —P,'2 —p,')

[~2+(gal ) ]12/ 2F»P31 ' }I »!Pl E ~ [(gf }2 +~2] 112

g'5'(5, —p,')
E-e, —PF+(P„)']"'+fr

Here, the resonance parameters', g', and I
are defined earlier (2.3), P» =(P», E») =p, +p,
and P,', =(0,'„E,', ) =p,'+p,'. The second term in

(3.1) corresponds to Fig. 16(b), where particle 3

does not interact at all ~ This clearly has also to
be included in T(E) if Fig. 16(a) is included. Be-
fore inserting (3.1) into the virial series, let us
examine unitarity for T(E). As g-0, T(E) van-

ishes, as per the identity (2.7). So does T (E).
Therefore unitarity reduces to

Now take, for example (3.2) as applied to forward
scattering. T (E) 5(E -B,) T(E) has four contribu-
tions (Fig. 17) where once again Fig. 17(d) van-
ishes as g-0. It is just the imaginary part of

Fig. 16(b). But the remaining terms [Figs. 17(a)-
17(c)] do not vanish as g-0. Following the simple
algebra of narrow resonances as in the last sec-
tion, it is easy to check that (3.2) merely yields,
when (3.1) is substituted for T(E) and the limit
g' -0 taken,

T (E) 5(E H, ) T(E) = 0 . - (3.2)

0 = Figs. [1"l(a)+ 17(b) + 17(c)]

=(2v)' 5'(0) 5(E„-[(5„)'+M']") (2v)4 '

(3.3}

x {P»,p, ~iv—i7~P», p,) +2m I
'd. ,'p' d,'P, (5P»p+, —P,', —p,') 5([(P»)'+M']'~'+e, —[(0,', )'+M']' ' —e,')

(&»pal 7
I p»ps) (&i2ps IHIP»ps}

It is not surprising that the relation T~ T =0 when

expanded yields the familiar two-particle unitarity
relation for r(E), on the resonance mass shell
E„'= (P„)'+5f'.

Now, let us go on to evaluate the virial contribu-
tion to 1nZ due to the T matrix in (3.1). As in the
last section, the (8/SE) T(E) term will vanish due

to identity (2.7) leaving only the T (E) (8/SE) T(E)

term as in (2.9). For our scattering amplitude

(3.1), this gives three contributions, which can
again be represented by the same Figures 17(a},
17(b), and 17(c), with the understanding that 8/SE
acts on the lower part of each diagram. [Note
that Fig. 17(d), being disconnected, is not to be
included in the virial series. The ideal-gas term
due to the resonance N,*, is already present in the.
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2'

(b)

FIG. 15. Scattering of many particles through "tree
graphs" made of only narrow resonances and stable
particles.

lower (two-particle) virial coefficient in (2.10).]
The amplitude T(E) in (3.1) depends on E through

v(E) as well as the resonance propagators. When

B/BE operates on [5(E —H,) T(E)] as required in
the virial expansion, it will give terms where the

FIG. 16. The 3-particle 1' matrix where particles 1
and 2 can form a narrow resonance, which may (a) or
may not (b) interact with 3.

N,*, resonance propagator is differentiated and

other terms where the resonance propagator is
not differentiated. Let us begin with the former
set of terms. This contribution from Figs. 17(a),
17(b), and 17(c) to the virial series can be seen
to be proportional to

i&P»p, l
r —TlP»p, )+2v d'P,', d'p,'5'(P„+p, —P,', —p,')

5(E„'—[(P )'+M'])
123

x 5([(~ )'+M'] ' '+e —[(P' )'+M']'~' —e'}

&&&P p I
T'IPl, p,')&Pl p,'I~IP„p,) (3.4)

This is essentially the unitarity constraint in (3.3)
except for the extra factor 1/it' which occurs be-
cause the B/BE factor operates on the resonance
propagator. From (3.3) then, the contribution

(3.4) vanishes by unitarity, even though any single
term in it would diverge as I'-0.

We are left with contributions where B/BE dif-
ferentiates the product 5(E —H, ) 7(E), leaving the
resonance propagators alone. These clearly exist
only for Figs. 17(b) and 17(c). These give for fhe

virial series (2.5}

I

5'(0) (2w)'g'
Fig. 17(b)= . dEQ exp —P E-

&& 5 (P,', —P ) . —[5(E —E„—e,)(P,', p l7(E) lp„p)],12 12
~ +~p

where

x =E —[(P )'+M']'~' y = E' —[(P,',)'+M'] ",
and p, , are the three chemical potentials. As g'-0, this gives

Fig. 17(b) =
2

. dEexp —p E —g p, g p(-2wi) —[5(E-E„—e ) (P», p, l r(E)lP», p}], (3.5)
5'(o)

t33

where E»' is constrained to be (5»}'+M'. Similarly, Fig. 17(c) will yield, when B/BE acts on
5(E -H, ) r(E),

Fig. 17(c)=
2

. dEexp —p E —g p; p p 2w5(E —E» —e,) g p&P»p, l
r~(E)lP'»p')53(0)

&3 "3

x —[2v5(E +e, —E,', —e') 5 (P„+p —P,', —p~)(P,'2Psl r(E) lP, P,)],
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/4
(b) (c)

FIG. 17. The four graphs representing T~T corresponding to the two terms in Fig. 16 for T(E}. These same graphs
will be used to represent T~{,'8/ BE)1" as well.

where again (E»)' =(P»)'+M', E»' =(P»)'+M'.
In deriving (3.6), the resonance propagators have

been combined to form 5 functions in the variables

y and x, which restrict the pairs 12 and 1'2' to a
total mass M. The results (3.5) and (3.6) are just
what the scattering of particle 3 with a stable par-
ticle of mass M, momentum P», and chemical
potential p. , + p, , would yield. Now take the special
case when the N,*,-particle 3 scattering is itself
dominated by a narrow resonance N»*, (Fig. 18).
That is, let

(2w)'G'
(P»P3 I (E) I &»P3} E [5)I2 (g + $2] I/ 2

(3.7)

where

Z —= [(P»)' +M'] ' ' + e3 —[II '+(j~» + p, )'] '~' .

Integrating (3.8) over all variables except P»,
=P„+p, and E», =[(P»)'+M'] '~'+e„we obtain
when G' and y tend to zero, the result

(3.9)

with

P3

x5([(P„)'+M'] '~' + e, —SR) (2w)~G'.

Thus, the scattering through the "super" reso-
nance N,» again produces an "ideal-gas" term
corresponding to mass gg and chemical potential

Q 1 + Q2 + p3 in addition to the ideal-gas term cor-
responding to the two-particle resonance N,*,

present in the lowest virial coefficient.

Then, as G'-0, the virial contributions in (3.5)

and (3.6) follow the same pattern as the lowest
virial term in Fig. 1 and Eg. (2.10). The contribu-
tion in (3.5) vanishes due to identity (2.7), and in

(3.6) only the term where the derivative s/BE acts
on T(E) survives. The surviving contribution to
(3.6) is just

5' 0
2

. P «p —p([(F„)* nr']"'+, -Q q, }
[(2w)'G'] '(- 1)

X Q (» P3 P3») (z+ ~ )(Z .
)2

P12 '] 3

(3.8)
FIG. 18. The scattering of the resonance N&& with

particle 3 through another narrow resonance N&&&.
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These results have been derived only for three-
particle scattering of a Boltzmann gas. This was
just to keep the algebra simple. It is clear from
the proof that the generalization of Eqs. (3.5) and

(3.6) where a narrow resonance scatters just like
a stable particle, and of (3.9) where a super res-
onance formed out of lesser resonances again gives
an ideal-gas term, to more than three Boltzmann
particles wil1. be straightforward. One must
merely keep track of all connected and discon-
nected pieces of the S matrix, and the width of
any given resonance will have to include the phase
space of all the channels connected to it. General-
ization to Bose or Fermi systems will of course
be complicated. In Sec. II, where scattering took
place only by forming one type of two-particle
resonance, we saw that certain exchange diagrams
exist in all virial coefficients. The only "direct"
diagram in that case was Fig. 1(b), which would
have been the sole contributor had the particles
obeyed Boltzmann statistics. In the boson-fermion
case dealt with in Sec. II, the exchange diagrams
required a considerable amount of diagrammatic
analysis and narrow-resonance algebra. But the
net result was simple and physically reasonable.
The higher exchange terms merely altered the
width self-consistency to account for the fact that
the resonance decays in a medium, and provided
the resonance "particle" with approximate sta-
tistics. The many-particle dynamics of Sec. III,
when applied to Bose and Fermi systems, will
again yield a family of exchange diagrams in higher
viria1. coefficients. But we hope the reader will
be convinced that their effect will once again be
to merely provide the appropriate statistics to all
the resonances.

~V. CONCLUS&ON

We showed in See. II that a narrow elastic res-
onance in a m n channel behaves like an elementary
particle with Fermi statistics. It is clear that
this result is more general. If the initial stable
particles were both bosons or both fermions, the
corresponding changes in sign of exchange dia-
grams would ensure that the resonance is a boson.
Inelastic resonances will again give the same re-
sult. Suppose a resonance had two decay channels.
(This cannot happen in the examples of Sec. II
where "n" and "m "had separately conserved
quantum numbers, but it can if w' were included. )
Let the N* decay into nm and nw m'm . Then the
N* ideal-gas term will arise by including both the

nm and the nm m'm states in the initial and inter-
mediate states of Fig. 1. Both these states have
the same chemical potential, and are both to be
included in the width of the N*, Thus, our result
that narrow resonances act as a separate species
generalizes to all choices of quantum numbers,
for elastic and inelastic resonances.

In both the previous sections, we always started
with idealized many-particle scattering ampli-
tudes —those involving only narrow resonances.
Thus the elastic two-particle amplitude in Sec. II
had only a pole at the resonance energy and nothing
else. This is not to imply that any real system
has such simple dynamics. In fact, as we discuss
in the following paper, such a simple amplitude is
forbidden in potential theory.

To the extent that a real system has wide res-
onances, nonresonant scattering in addition, or
no resonances at all, its thermodynamics will
have to be calculated the usual hard way. This is
obvious and not germane to our interest here.
Instead, we wanted to verify the notion that to the
extent that scattering in some case of interest is
dominated by narrow resonances, it could be re-
placed by additional ideal-gas terms with the quan-
tum numbers of the resonances. This is one con-
crete way of stating the vague equivalence of nar-
row resonances with stable particles. We found
that in fact such a replacement can be made in
precisely the way expected intuitively.

When a resonance is wide, as eornpared with
kT (this is so for the n, resonance in neutron
stars), then two types of corrections need to be
made. A trivial correction is that expressions
such as I'/[(E —fi') (E + fI')] cannot be replaced by

w5(E) and will have to be integrated more accu-
rately. More seriously, the vast families of dia-
grams and contributions we discarded will now

contribute. An example is a process such as that
shown in Fig. 3, which can be considered as re-
peated resonance particle scattering. For a wide
resonance (large coupling g'), such scattering will
become important and will have to be corrected
for. This is of course very difficult in practice,
but estimates are being made in neutron-star cal-
culations involving the 3-3 resonance L to correct
for 4-n and 4-4 scattering. '
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Operational criteria are presented for determining those bound states and resonances which can

approximately be included in the complete set of states in the S-matrix formulation of statistical

mechanics. The criteria depend only on the energy dependence of S-matrix elements, as compared to
the energy scales deterrmned by the temperature and density. They are thus expressible free of
nonrelativistic potential-theory language, and are hopefully valid for relativistic hadron systems as well.

As an application, it is shown that the b resonance can be effectively treated as an elementary species

under the temperature and density conditions encountered in neutron stars, awhile nuclei such as the

deuteron can be ignored to lowest approximation. Possible conflicts with the Pauli principle, as invoked

between the "constituents" of composite resonances and bound states on the one hand and free

particles on the other, are resolved.

I. INTRODUCTION

In the quantum statistical mechanics of a nonrela-
tivistic system, the grand partition function Z is
defined by

g T e-e(H-P)

where H is the total Hamiltonian. The value of p, ,
the total chemical potential operator for any given
state depends on all its internal quantum numbers,
and the trace is taken over a complete set (say,
the plane waves) of states of all possible numbers
of "elementary" particles. Once Z is known, the
thermodynamic behavior of the system can be
deduced.

The prescription in Eq. (l) is satisfactory for
most nonrelativistic systems of interest. For ex-
ample, in atomic systems at P '-=IT~ ionization
energy, free states of nuclei, electrons, and pho-
tons form a satisfactory complete set, with 8 mell
defined in that basis. In the MeV energy range
(nuclear physics), protons and neutrons instead of
nuclei act as elementary particles. %'bile 8 is not
so well knomn here, thanks to the complicated nu-
clear two-body force and uncertain many-body
forces, the choice of neutrons and protons as ele-
mentary particles with their respective statistics
is well supported by the structure of large nuclei.

Unfortunately, in relativistic systems, particu-
larly ones involving hadrons, there is no clear
knowledge of which particles are elementary or of
what the Hamiltonian should be in a basis con-
structed from them. Nor is it certain that either
"elementarity" or the Hamiltonian operator will
remain as viable concepts, if and when a fully
satisfactory dynamical theory of such systems be-
comes available.

It is therefore better, from the point of view Of

extending quantum statistics to relativistic sys-
tems, to use an alternate prescription for Z in the
place of (l). The S-matrix formalism of statistical
mechanics' provides a candidate. Therein,

lnZ=Q inZ&'(

(2)

The label i runs over all species of stable parti-
cles. The trace is taken over all plane-wave states
of every set {n,) with n, particles . from the ith
stable species. The other symbols in (2) are de-
fined in Ref. 1 and the preceding paper. '

Equation (2) is derived' from potential theory,


