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are distinct. This would be the case if states having
different SU(3)" symmetries (singlets, triplets, etc.)
are allowed to occur with finite energy. In this sense
the octet-gluon model belongs a priori to the distin-
guishable case, but it will not if all nonsinglet states
are somehow forbidden, a situation speculated or
desired by some people.
C. G. Callan and D. Gross, Phys. Bev. Lett. 22, 156
(1969).

SAN. Cabibbo and B. Gatto, Phys. Rev. 124, 1577 (1961).

This result may not asymptotically hold in a gauge
theory which incorporates electromagnetism.

2A recent report from SLAG [B.Richter, in proceedings
of the American Physical Society Meeting, Chicago,
1974 (unpublished)] strengthens the suspicion that 8
may indeed be rising with energy. If this is confirmed,
our estimate of p in Sec. IV will become less meaning-
ful.
See for example, G. R. Farrar and J. L. Rosner, Phys.
Bev. D 7, 2747 {1973).
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The five invariant amplitudes for electron-electron scattering to order e' are calculated using the
causal methods of source theory. The basis set employed, which is free of kinematic singularities and
zeros, consists of the Fermi invariants. The amplitudes are expressed in terms of double-spectral forms
with accompanying single-spectral forms which are determined by analysis of causal forward scattering.
The radiative corrections required for the analysis of polarization experiments are contained in these
amplitudes.

I. INTRODUCTION

Quite a number of fourth-order processes have
been calculated in quantum electrodynamics, in-
cluding the magnetic moment of the electron, ' pho-
ton-photon scattering, ' and Compton scattering. "
And some aspects of fermion-fermion scattering"
have been considered, among which is an investi-
gation of the hard-photon corrections' to electron-
electron scattering. Except for the unpolarized
differential cross section, ' the corresponding po-
larization calculations for electron-electron (pos-
itron) scattering have not been previously done.
Theoretically, it is of interest to know the invari-
ant amplitudes and to have them available for use
in higher-order processes. Besides, more can
be learned of the role played by dynamics in the
choice of a basis for the invariant amplitudes, Ex-
perimentally, with the advent of colliding beams,
a more detailed investigation of electron-electron
scattering is possible. In particular, the asymme-
try parameters derived from the invariant ampli-
tudes can be compared with experiment. Also, the
determination of production cross sections for had-
ronic states requires an accurate knowledge of the
purely electrodynamic processes.

Electron-positron scattering has been consid-

ered by McEnnan" within a context that attempts
to move beyond perturbation theory, to include the
effects of bound states and to eliminate the depen-
dence on an artificial photon mass. Barbieri
et al."have used dispersive techniques for the
"box diagram" in their recent calculation of the
magnetic moment and charge radius of the elec-
tron. However, explicit expressions for the in-
variant amplitudes or helicity cross sections have
not been presented.

The purpose of this paper is to calculate the
electron-electron scattering to order e4 and to
present the invariant amplitudes in spectral form.
An appropriate choice of a complete set of spinor
basis for these amplitudes is considered in Sec.
II. The general approach that we will use is the
causal methodology of source theory. " %e start
the calculation in Sec. III by considering four virtu-
al electron sources that are causally related (see
Fig. l). The removal of the causal restrictions
(space-time generalization) and the application to
free external particles (mass extrapolation) yields
the invariant amplitudes in double-spectral form.
To this must be added possible contact terms
which are themselves single-spectral forms. The
latter are determined by comparison with the caus-
al forward scattering amplitudes for the photon-
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exchange and electron-exchange channels which
are given in Secs. IV and V, respectively. The
contact terms are determined in Sec. VI. The
contributions due to vertex and vacuum-polariza-
tion insertions are considered in Sec. VII, while
Sec. VIII contains a few concluding remarks. Ap-
pendixes A, 8, and C deal with the integrals oc-
curring in Secs. III, IV, and V, respectively. Ap-
pendix D is concerned with a test of consistency
for the invariant amplitudes.

II. BASIS

Straightforward calculation yields eight types
of spinor functions. They are the five Fermi in-
variants" (P, denote momenta)

where

(2)

0 0 (4)

together with [suppressing momentum labels which
are as in Eq. (1)]

It is to be noted that only the first condition in-
volves kinematics and any linearly independent
combination of our basic eight functions satisfies
it. The question of wi~ether the last three condi-
tions are satisfied is determined by dynamics. It
is possible that the vector coupling of electrody-
namics picks out a different set than a pseudo-
scalar coupling (meson exchange) theory. It is not
even known if a single set would satisfy all the
conditions for every order of perturbation theory
because of this crucial dependence on dynamics.

We have considered a large number of sets and
quite a few are not allowed because of the above
conditions. The GNO set, for instance, has singu-
larities in the forward amplitudes for the photon
channel (Sec. 1V). However, this set has been
successfully used in the calculation of NN scatter-
ing. '" This then is an example of the interrela-
tionship between dynamics and basis sets. The
set comprised of S, P, A. , G„and G, has singular-
ities in the electron channel (Sec. V). The set em-
ploying S, P, A, T, and G, has no singularities,
but it fails the consistency check of condition (4)
(Appendix D).

The Fermi set satisfies all the conditions. In
order to obtain the simplest possible spectral
weight functions and contact terms we choose the
following linear combination of the Fermi set as
our basis;

I'; = V —T, V, P, 8 -P, A, +S -P .

where

1 0 1
As a notation, we have for i =1, for example
[momenta suppressed, cf. Eq. (1)],

gi'e will denote the Fermi invariants of Eqs. (1)
and (2) by T, V, S, A, and P, respectively.

It can be seen by the application of C, P, and T
symmetries that there are only five invariant am-
plitudes for which we must choose a basis. Of the
above eight functions almost any five are linearly
independent and thus can be used. One such basis
which has been considered is the Goldberger-
Nambu-Oehme (GNO) set" comprised of G„G„
G4, 8, and P.

There are a number of conditions an acceptable
basis has to satisfy. These are:

(1) The basis must be free of kinematic singular-
ities and zeros. '

(2) The resulting double- and single-spectral
forms must converge.

(2) The causal forward scattering amplitudes
cannot be singular.

(4) The contact terms determined by considering
either forward or backward scattering in the elec-
tron channe1 must be the same.

Having chosen our basis we must eliminate G„
G3 and G~ in terms of the I'; or equivalently the
F, . The momentum variables as presented in Eq.
(1) can be combined to form three orthogonal vec-
tors

S =P, +P, =P~+ P, ~

(not to be confused with the scalar S),

P2 =P2'

(not to be confused with the tensor T),

U=Pi -P2 =P2-P
which satisfy

S + T'+U +4m =0,
when the electrons are on the mass shell.
[Throughout the paper, the variables S, T, and
U will always be defined by reference to Eq. (1).]
Introducing a fourth orthogonal vector,
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and using the relations

(13)

m-'O, =-,'(T'-U') V ——,'S'A -m'P, (16)

»~ G, =«(U'+ T'}(V—T)+ «(O' —T",(P -S -A) .

It must be emphasized that the elimination of the
dependent spinor functions is done under the ap-
propriate causal conditions.

IfI. DOUBLE-SPECTRAL FORM

The causal process with which we begin is de-
picted in Fig. 1. The physical process is as fol-
lows: An extended (virtual} electron source (q, )
emits a free electron and a free photon. In the
intermediate stage, the electron is absorbed and
a free photon emitted by an extended electron
source (q, ) while the photon emitted by q, is ab-
sorbed and a free electron emitted by another ex-
tended electron source (q, .}. Finally, the newly
produced electron and photon are detected by an

1 1 1 1y"= —ySS" + yT T" + —yUU~+ —yLL~
$2 T2 U'2 L2 y

1
L2 yLyS yT yU

I2 S2 T2U2

we find'

m'G, = «S' T+ «(T' —U'}(S P) +-m' V, (15)

FIG. 1. "Diamond" process leading to double-spectral
fox'xQ.

J = (dk) 5((P, —k)'+ m') 6((P, —k)'+»')
x 6&(P„P, —k)-'+ g.') 5(k'+ p')

and

(19)

extended electron source (q, ). Under the causal
arrangement there is another process which is
just like the one above except with the intermedi-
ate sources (q„q, , ) interchanged. The second
process is to be understood to accompany all the
calculations of this section [except in the final re-
sult, Eq. (33)].

All physical information is contained in the vac-
uum amplitude which, for this process, is given
by12, 15

&O[O) ' ("' ' "" ( '(2)'
(2v)«(2w)«(2m)«(2w)«

x 5(P, P, -P, -P, .)Z&N-), (18)

(N)=&0, ( P, ) y'y" -[» v(P, k)-J y" t-, (P, ) g, (P, ) y'r. [» y(k -P-, ) Jy„a,(P, )) . (20)

Here, J describes the fact that the internal parti-
cles are on-shell (the photon has mass y. }, while
the notation & ) stands for an averaged value, that
is, J has been factored out. The kinematic vec-
tors are given in Eqs. (9)-(ll}with

P, --P, P -P, P -P
and we can define two variables, x and y, as

S'=-m'y, T'=-m'(x+4), U'= m'(x+y) .

(21)

The expression for U' actually contains addition-
al terms that involve the factor P,2+ m'. Since we
will eventually be interested in on-shell momenta,
we can simply make the mass extrapolation direct-
ly. This is admissible because no singularities or
ambiguities are encountered in this process. Us-
ing standard techniques '2' the calculation of 4
yields

1
2m' v~ '

L = y(x+4)[x(y -4x') —4z«J,

(22)

(23)

where

3=1
(24)

h
1 y(x+2)

1 2
[(x+ 2}y —2x]

———[(x+4)y'-(Sx +12x+16)y+ 8x(x+2)J
2

X4
+ 2 —[(x+3)y —Sx —8], (25)

where p= mX. Here is the only place where mass
extrapolation is not trivial. The factor of -i re-
sults from this extrapolation as discussed in Ref.
16. Using the integrals presented in Appendix A

and Eqs. (14)-(17), we find [cf. Eqs. (1) and (8)
for notation]
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1
[(x+ 1)y+2x(x+ 2)]x+p

A2 X4
+ — (y —4x —12)—

2 x+g x+g

4y 8x'
h3= (12y+ 8x)—

x+y y(x+y) y(x+y) '

3y 3d
k, = + — (y —2x -12)—

x+p 2 x+g x+g

k, =
2

—[(x'+2x —4) y+2x(x'+4x+2)]
1 y

g2
+ —[(4x+8}y —2x(x +4x+4)]

(26)

(2V)

5 = (x+4)(x+ y)'. (30)

-S =-(Pz+P, )2=m'y&4X',

and that associated with

%'e have retained the complete dependence on the
photon mass as the amplitudes are very sensitive
to it, particularly for scattering in the forward
direction.

%e now make a space-time generalization of
Eq. (18) by observing that there are two indepen-
dent mass excitations presented in Fig. 1, that
associated with

—T' = -(P, +P, ,)' = m'(x+4) & 4m' . (32)
+ —[(x+6}y —x' —6x —16], (29)

Therefore, the space-time-generalized vacuum
amplitude is'8

2 5

(0+~0 )=i 2 (dz)(dq)(dr)d(m'x)d(m y) ~ A, (q, m y)n, (g, m (x+4)}gh, G;(z, g, g)
i=1

{2 (y 4~2)1/2 1 5

+i, (dz)(dq)d(m'y) h, (q, m'y), q, ), Q y, G, (z, q, )=0)
j=1

+2
+ 2m2 (dz)(dP) d(m'x) 4,(P, m'(x+4)), ~, ,~, Q g; G&(z, q =0, r),

where

The last two terms are the contact terms in the
photon and electron channels, respectively, which
will be determined in Sec. VI. The region of in-
tegration for x and y is determined by the nonvan-
ishing of 4, that is

xy -4x'x -4x'~0. (35)

It might seem that the amplitude corresponding
to V is not acceptable because, for large values of
x, h2- —2x so that the spectral integral does not
converge. However, this is not the case because
the vector is antisymmetric. For large values of
x, the coup1, ing becomes local in the variable &

and the resulting quadratic structure of g(z+ —,q)
vanishes. Alternatively, in any application of Eq.

(33), there will be two terms from 4,(t, m'(x+4))
that have a relative minus sign so that, once again,
the large-x behavior cancels. Thus condition (2)
stated in Sec. II must always be applied within the
context in which the spectral forms are to be used.

IV. PHOTON SINGLE-SPECTRAL FORM

In this section we will consider the causal scat-
tering process which arises from the causal ex-
change of two photons (see Fig. 2). The external
electrons are on-shell and the acts of creation
and detection of the intermediate photons are caus-
ally related. The corresponding vacuum amplitude
ls

(0,~0 )= —e' ', ", ', ", d&u, d&u, (2v)'6(P, +P, —k-k')(2v}'6(P, +P, . —k —k')

1 „0 1
xk ( P)y'y" -(,7"0 ~ ( P) 4(P)7'-y. . .F 0, (P )+(P-P ) (36)m-y a-p„ I /( 2 /

The kinematics is as given in Eqs. (9)-(ll). In
order to determine the contact terms, we can con-
sider any arbitrary scattering angle; for simplic-
ity we will choose the case of forward scattering

which is characterized by

&2=0.

As in Ref. 4, the momentum vectors and spinor
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functions are kept general and only the various
scalar coefficients are calculated in the forward
direction.

Following the same procedure as for the dou-

ble-spectral form, integrating over phase space,
and using the integrals given' Appendix 8, we
find

(0, 10 )= —wa' 1 (dP.) (dP, ~ ) (dP, ) (dP, ) (y -4&')'"
(2e)4 (2e)4 (2~)4 (2~)4 1/2

( 4)2 ( } ( 1+ 1' 2 2')

where

&& Q H( I';(P„P, ;P~, P2 ),

2) g g ~ 4 6 4(~ g) (2 X } 4+BR BX
& (2 p, )(1 jP)

y —4A.'+ X' y —2z' (y —2x')'

26
—~2+BR. 28+21-4144(2P)(1&)

y —4 y —2)P (y —2A,')~ (y 2')s

H, =(2+ X') y —28+18)P -4X'-X'+(8+X'), —l2(2 —z')' (2 —x')'
y —4A. +X y -2A.

2-si'+2~', (2-~')'
+ -4y+ 32 —20K' —20 ~

—12k,
y —2A.~ (y —2X'}' (39)

H, =By -48+BA' —Ba' —8(2+A' —d}, ~ + —+ 48(2 —x')' 32 2 —~'

y -4X~+ A.
~

y y —2X~

4+ A.
2 24k+, —8 — +48', ~~ L,

y y 2p (y 2A )

H, =(-2+X)y-4+10m -Bz -~ -~ (20-BZ —~'), , +122 2 4 6 2 (2 —z')' 4 —x'

y —4A. +A, y —2A.

(4o)

6 —)P+2x'
+ 16 -12m' -4, + 12'',

y -2A. (y —2A. )

~ „(2-X')' 4+ 32x' —18m', (2-X')(1-z')

(41)

2-~' 2-3~'+Bd, 8+26~' —16'', (2-~')(1-~')

(y -4)' '
y —2X'+(y —4)' '(y -4A.')' '

(y -4x')'~' y -2z'-(y -4)"'(y-4x*)"'

The threshold for this channel is 4X', for y & 4, the logarithm can be written as an arctangent.

V. ELECTRON SINGLE-SPECTRAL FORM

Here we consider the contribution to causal forward scattering resulting from electron exchange t,
'see Fig.

3). The vacuum amplitude is given by the expression

(0,i0 )=-e~
2

',
2

"4
2

',
2
', (u~dd~ (2w)'5( +PP, -P, -P, )( m)2' ( 6,P+,P. -P -q)(dP, ) (dP, ) (dP. ) (dP. )

1 1

(p ). „.(p ). „.y,(-,) r"r( rP)r"4.(,)-
"g, ( P, )r'r. l~--r(P +P ~ -P)jr„f (P
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FIG. 2. Causal diagram for the photon channel leading
to the photon single-spectral form.

FIG. 3. Causal diagram for a forward electron-ex-
change process.

The kinematic vectors are as given by Eqs. (9)-
(11)with the substitutions

P, i- -P2, P2- -P~

and forward scattering is characterized by

(46)

(45)

Therefore, in this channel, the energy variable is
T, with

—T' = -(P, +P, , )' = m'(x+4) &4m',

Again following the procedure of the double-
spectral form, integrating over phase space, and
using the integrals given in Appendix C, we find

x &, I'; P„-P2; -P, , P.. . (47)

where

4 12 4
3C x+X' x x+4

x+A,
A.

2+A. 2 —A,
+ + + 12 — lnZ,x x+4 x'

4 8 4+2A2
2 2 x 2 2 2x+ A.

4
12+4k'

1 Z

16
+ ——16 —

2 lnZ,
x x'

(48)

(50)

It is to be noted that in the above results some of
the coefficients behave as I/~'. In particular, one
of these terms is found in the vector amplitude
(K,), which again has a superficially bad behavior
for large values of x. In order for the final am-
plitudes to behave properly in the nonforward direc-
tion (that is, no worse than Ina'), these singular
terms must be exactly reproduced by the double-
spectral form. We will see this is indeed the case.

Qf course, the vacuum amplitude as given in
Eg. (44) is not complete. There is an additional
term of the same form as above except with P,—P, . Forward scattering here corresponds to
U'=0 and yields a, structure different from Eq.
(47) (see Appendix D).

12+4z' 12+8z'
2 + lnZ,x+ A. x Vl. CONTACT TERMS

4+ 2A.2 4 12X5= —6+ 2 +
x+A.' x+4 x

2+ 3A, 2 —A. A.
+ 4+ — + 12 ~ lnZ,

(53)

The double-spectral form with the accompanying
single-spectral forms [Eg. (33)] is the general ex-
pression for the vacuum amplitude. Therefore,
it must correctly describe the causal forward scat-
tering processes considered in Secs. IV and V.
Upon applying the appropriate causal and kinemat-
ic restrictions to Eg. (33), we find
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(dP, ) (dP, ) (dP, ) (dP, )
(2 )' (2 )' (2 )' (2 )'

5

xg x+4 x+y y'/' (y —4)'

&& r, (P„P„;P„P„)

dy 1 1
+

y4»4 hi +»/24 441/2 X» ~»( 1& 24 P»'4 2')
Iy x x+4) (54)

where

4d ~ x+A,
x = ~, y0=4A.~

x (55)

Here

~

—1, i=1, 2
8. =

)+1, i=2, 4, 5

( 56)

which is determined by the symmetry of the appro-
priate Fermi invariant. Since the vector and ten-
sor Dirac matrices are antisymmetrical, there
can be no corresponding contact terms in the pho-
ton channel. Comparison of Eq. (54) with Eq. (27)
and Eq. (4V) provides the following equations to
determine the contact terms:

VII. INSERTIONS

In the preceding sections we have been analyz-
ing the so-called box diagram. There remain
the contributions that arise from the remaining
processes in the electron channel plus the pole
term (single-particle exchange) in the photon
channel. These processes are depicted in Figs.
4 and 5. However, they just correspond to ver-
tex and vacuum polarization insertions into the
lowest-order interaction, which is given by

(«)(«') 4(z)r'qy" 4(z)

&D, (z —z')»i(z') y'q y„y(z'),

j./2

(y 4')1/24)2 y "dx 1 6))

7Z ' 44 *~ 4) where q is the charge matrix. The insertions" "
consist of, in momentum space [M'=m'(x+4}j,

and

+ (1+ 6») X» = -' » (5~) dMP~ f (x)
2 P+M

+ Xi &+j ~

0

Performing the necessary integrations we find

(56)
1 „. ~ " dM

+ o'" »k, —,, f,(x),
2n2 'm ak+M —ze

(64)

X] = 0, i = 1, 2, 3, 5

X.=-(y -4)+(2-&') f,
g;=0, z=3, 5

1 1z'
g = —y =-~= ————lnZ.

(59)

(60}

(61)

(62)

1
i 2 1/2( 4)1/2f (x)= (66)

1 t x+2 1 3x+4f,(x)=,/„„/, lnZ —2, (65)x+4

Once again, the vacuum amplitude given in Eq.
(54) is not complete. For the electron channel a
terminvolvingf' (»„PP,;2-P.-..P,) shouldbein-
cluded. A reasonably simple consistency check
on the amplitudes can now be made. An equation
similar to Eq. (5'l) is derived for this case by
comparison with the U' =0 results mentioned at
the end of Sec. V. In this way we confirm Eqs.
(61) and (62). The details are presented in Ap-
pendix D.

FIG. 4. Causal diagrams for the remaining electron-
exchange processes.
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1 1 1
+2 k2 m2 7l 2

dM2

t."M (67)

1 x(x+6) 1
3 (x+4)' x'"(x+4)'t' ' (66)

The resulting structure, to order n', can be
written in terms of the Fermi set except for the
charge matrix, q, which remains between the
spinors. This inclusion of q will be denoted by a
corresponding caret on the G;, that is, G; [cf. Eq.
(34)]. The insertions then yield

2

(O, IO )=i, (dz)(dq) d(m'x) n, (q, m'(x+4)}

I"IG. 5. Single-particle-exchange mechanism.

D~(s, t, u) = f,(x),4s

~ s=S, 'p& t=T, m g=U

VIII. CONCLUSIONS

(72)

(73)

x Q D,(s, t, u)G, (z, q, & =O),

(69)

where

Di='f2(x} D3=Ds=O (7o)

(71)D,(s, t, u) =-f,(x)+a(x)+ ———f,(x),
j.

The final result for the complete fourth-order
description of electron-electron (positron) scatter-
ing is given in terms of the vacuum amplitude con-
tributions of Eels. (33}and (69). The various
weight functions are given in Eqs. (25}-(29), (59)-
(62), and (70)-(73}. From the vacuum amplitude
the scattering amplitudes can be obtained in a
straightforward way, The invariant amplitude for
the electron-positron scattering process is

&4..., 1p o qllp 1&,, )=BING'(2w) 6(P, +P, P, P,-)(-deep, d&u, , drub, du, ,)'t'

(3R z u g~ g 'Y F( u p, g, u~ ~ '/ I ( u pj=l

(74)

where we have defined two probability amplitudes SR, and 3}l„which are [m's=(P, +P, ,}'; m't =(P, -P, )';
m'u =(P, —P, ,)']

h; 1 1 6;
SRJ = + +

v & s+ Y t+x+4 u+g+4
(y -4&')'" X; 1 + &, )its

( 4}2

1 8, d
2D, (s, t, u)

x't'(x+4)'i t+x+4 u+x+4 s+x+4

4~
t+y s+x+4 u+x+4 y' (y —4) t +y

X& 1 8
+x't'(x+4)'t~ s+ x+4 u +x+4

2D;(t, s, u)
t+x+4 (76)

In a subsequent communication we will apply the
above result to calculate the fourth-order helicity
amplitudes. From these amplitudes we will rede-
rive the unpolarized cross section. ' Also consid-
ered there will be the contributions due to soft-
photon emission.

It should be noted that throughout this work we
have treated the photon mass exactly. Except for
forward (backward) scattering or near threshold,

the factors that are linear or quadratic in A.
' can,

in fact, be ignored. However, there are situations
for which the exact dependence on A2 is crucial.
Qne illustration of this is the work of Ref. 11,
where it is shomn that the A. -0 limit is not uni-
form.

In summary, we have calculated the invariant
amplitudes that contain all the polarizations infor-
mation to order a2. Our method has been to con-
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sider the causal particle exchanges that give rise
to the processes of interest. In particular, the
causal analysis of the "diamond" process begins
with all internal particles on-shell and all external
particles as virtual. There are two excitations
which are associated with physical exchanges of
an electron pair and a photon pair, respectively.
The use of the principle of space-time uniformity,
which consists of the removal of the causal re-
strictions and the application to free external par-
ticles, leads directly to the double-spectral form.
The contact terms that arise as the fields are al-
lowed to overlap are calculated by reference to
(on-shell} causal scattering. The remaining par
ticle-exchange processes are also presented as
spectral forms. This procedure is to be contrast-
ed with the more conventional approach of operator
field theory or the use of the Mandelstam repre-
sentation in conjunction with analyticity arguments.
It has been our experience that our approach is
at least as efficient as that of field theory if all
that is required is an unpolarized cross section.
But for detailed polarization information, the ap-
plication of spectral analysis is far superior. And

being more physically motivated the source-theory
derivation of these spectral forms is more straight-
forward than the S-matrix methodology.

APPENDIX B: PHOTON-CHANNEL INTEGRALS

The following integrals are used to evaluate Eq.
(36). As mentioned in Sec. 1V, we impose the for-
ward scattering condition

T =(Pi -PR) =0

on the coefficients. Defining

16wm4(y —4)'
] 4~

( 81)

x d(u, d(u„(2w)'6(S —k —ii'.)

a'= ~g' b'=01

(2 —)P}'c'=y —4+2K. —A,
~ —A.

'
4 -2L,

y -4A, +A4

d' = —.'(y —12+4'' —d}

(84)

(86)

1 1
m'+(P, —0)2 m'+(P, k)'—

(82)

where ~ ~ ~ =1 k" 0"k", we expand the tensors just
as in Eqs. (Al)-(A3}. The various coefficients
will be denoted with a prime, that is, K-K', etc.
We then find, in terms of the variable y [see Eq.
(21)J and function L [see Eq. (43)J,

K'=2(y —8+4x' —z')+ 2
(2 —~')'

y —4A2+A.4 '

APPENDIX A: DOUBLE-SPECTRAL FORM

INTEGRALS
8 1 (2 —z'}4 2z'

y 2 y 4/2 + gQ y
(86)

Here we present the averaged value of various
powers of the loop variable k" that occur in Sec.
III. In terms of the vectors 8, T, and U the var-
ious tensors are of the forms

f'= & (y+8 —8)+ ~ A'
y —4A, +A.~

4 —2x'

} (8't }

(1)=ff,

(k)=aS b +Tc+,U

(kk) = d SS + e TT +fUU + g(S T + TS)

+ h(SU+ US)+ f(TU+UT)+nl .

(Al)

(A2)

Then, in terms of the variables of Eq. (21), we

have, after mass extrapolation,

e/ i fI gI fl PPt —cl1

m 'n'= —2(y —4)+(y —2x') L.
(88)

(89)

R'=4 1-2

The above is for the first term of Eq. (36). For
the second part (P,—P, , ) we define the expansion
coefficients exactly as above except K'-R', etc.
We have

1 y —2z'C=—
2 x+y

1 1 ~ 10= —+ —PPE Pgq 8= Pl Plq
4 y

' &+4

1f =c — pl pl~ 6 =pep
x+y

m -' n = — [x( y —4x ) -4X J,
1 1 2 4

4 x+y

(A4)

(A5)

(A6)

(A 7)

(A8)

a'= 2g' f 0 )

5'= —2+4
y —2A.'

4 2 —A,

2)2 y 2/2 2

8'=1- —+ 1 — —,I,4 4-x' 2-z'
y y y-»'

(811)

(812)

(813)
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2 2 2-A.
y —2)P (y —2X')'

3 2 —X2 1 2+Z2
+ 1+

2 y —4 2 y -2A.24-z', 2-x'
+ A

( 2}2 2X
( 2 2}3 L2 (B14)

g"=h"=0 I, "=2C"2

2A.
m 2n" =-2+ 1+ lnZ.

APPENDIX D: CONSISTENCY CHECK

(C6)

f'= —3+

1I —QI

2-A, A,
1 3

y —4 y -2A.2

I ) I 0

(B15)

(816)

2 -)P
m 2 rs'=y -4 —2 1-X2

2 I-
y —23.2

(BlV)

APPENDIX C: ELECTRON-CHANNEL INTEGRALS

As mentioned at the end of Sec. V the right-hand
side of Eq. (44) should be supplemented by a term
of the same form except with P,—P2I The nec-
essary integrals are the same as those in Appen-
dix C except now in the definition of ( ~ ~ ~ } P, is
replaced by P2I Denoting the expansion coeffi-
cients by K", etc. , and using the forward scatter-
ing condition U' =0 appropriate for this term, we
find

For this channel we require the integrals of var-
ious tensors involving the momentum of one of the
exchanged electrons, p". Defining

( ~ ~ ~
&

= 16xm'x'i'(x+ 4)'I'

x d(4)(, d(d, (2v) 5(T -p —q)

1 1

(P, -P)'+ u' (P, -J }'+ '

K"= 4 1
1nZ b" = 2K" c"=0x+ 2%2

x2+ —+ -- 2, lnZ,x+ 2x' x (x+ 2z')'

2(x'+ 3x~'+ 3m')

x(x+ 2x'}'

3x+ 6A.2 x'
44' 4(*+24')' ]

(Dl)

(D2)

(D3)

where =1,P",p "P', we expand the tensors just
as in Eqs. (Al)-(A3) except we use K-K", etc.
Using the forward scattering condition [Eq. (46)],
the variable x [Eq. (45)], and Z [Eq. (53)], we
find

K"= ——2 2 gII 0 Q
II K/I

1

x+x2 '

1 1 ' 2xx'+ 2X'
+ 1 —

2 lnZ,I+4 x+2~'
I x +4x

3 x'+ 6xx'+ 6z'
x x'(x + 2X')

g"= 2a" h"=l"=0

(D5)

(D6)
1 1c"-—+ —in& d"- —' f" (C3)

1 1 1 2 1 2-g2 )P
+ — + — lnZ,

2A. 2 x+)P x+4 2 x+4 x

6 1 1 1 1 2'f"= —+, ——,—3 —+, lnZ, (C5)2g 2 x+8, x x

2(xz'+ 8),
x(x+ 2x') (D'1)

The additional contribution to the vacuum ampli-
tude has the same form as Eq. (4V) except for the
following replacements: I',(P„P„P...P, ,)--
-I",(P„P,,; P...P-, } and -X;-K;, which are
found to be

3 —2A +2k, 3 2

x (x+2''}' x+2m' x+4

1 4/2 2/4+ 2/6 2)P + j4 1 4/2 1 4p„2

( + 2* (" 22 ) ("+24 ) 2(*+24 ) 4 —24' 2("+4) 4 —24* )

12 —6z'
X2=2+ 2 +x+ 2A.

—6+ x' 12m' —6d —10+ 1Vx'
+ + -8 lnZ,

x (x+2K ) x+2K.

(D6)

(D9)

24 24 p„2 24g2
K, = ——+ 2, + + +

( 2,}, lnZ, (D10)
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12+6x' 6+ z' 12m'+ 6d 6 —z'
X4=-2+ + — +»+, 1nZ,x+ 2X' L x (x+2K. ) x+ 2A.'

3 -2A +2A4 3+6K. 2
x (x+2A. ) x+2k. x+4

Sz' 1 —2'+ 2z' 2x'+ 7x' 1 4z'
x' 2x (x+ 2z')' (x+ 2~')' 2(x+2'') 4 —2~'

4x'
2(x+ 4) 4 —2x'

(D11)

lnZ .

(D12)

Likewise, for the electron channel we must add a
term to the right-hand side of Eq. (54), with

I;(P„P~; -P~i, P-~ )- I'(P„P~i-; P, -, P~) and

y '-(x+y) ' in the double-spectral-form denom-
inator. Since the two terms for the electron chan-
nel have different structures, the contact terms
g, must also satisfy the following equation [cf. Eq.
(66)1:

v& ' x+y

Indeed Eqs. (61) and (62) are recovered. Since
P,—P, , relates backward scattering to forward
scattering and vice versa, the above test can be
viewed as a consistency check for the amplitudes
between the two processes.
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