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We investigate the interconnection between various “nine-quark” models of hadrons: paraquarks of
order 3, tri-“color” Gell-Mann quarks, our distinguishable three triplets with SU(3)' X SU(3)” symmetry,
and another version with SU(3)'XSO(3) symmetry. A natural framework in which to distinguish one
model from another is provided by a recent theorem by Ohnuki and Kamefuchi on the equivalence
relation between a para-Fermi field of order p and a Fermi field with a hidden variable which takes
on p different values. Owing to the difference in charge assignment that is natural to each model, the
e “e ~ annihilation ratio R [ = o(e*e —hadrons)/ o(e*e” —u'p7)] is equal to 2, 4, and 8 for para-
(color) quarks, our triplets, and (fractionally charged) triplets with SU(3)' X SO(3) symmetry, respectively.
The experimental data may be interpreted to favor distinguishable triplet models. We then study the
dynamics of superstrong interactions implied by the two versions of distinguishable triplet models, and
find the SU(3)" variety to be favored. Assuming integral charge and baryon-number assignment, we
discuss the gross mass spectrum of hadrons. Single quarks will have a mass of ~2 GeV, and decay
into ordinary baryons or antibaryons.

I. INTRODUCTION In the family of what may be called “nine-quark”

models,® there are many distinct models with

The three-triplet model*’? with double SU(3)
symmetry has had several rather successful ap-
plications in hadron spectroscopy and reactions.

In addition to allowing integral charges, symme-
tric baryon wave functions, and triality-zero
states saturation, the three triplets are compatible
with both the 7° -2y decay rates and the total

e* e” —~hadrons cross sections. The model has
also been widely applied with respect to the quark-
parton picture of hadrons as well as various the-
ories of unified gauge models.

varying degrees of similarities between them. The
paraquarks of Greenberg® consist of a single SU(3)
triplet of parafermions of order 3; if the Green-
component fields are to be taken as independent
fields, then this model contains nine quarks. The
basic features of our three-triplet model were
independently proposed by Tavkhelidze® (however,
without an explicit classification scheme).
Miyamoto® has considered slightly different in-
tegrally charged three triplets within the frame-
work of SU(9) symmetry. Yet another three-triplet
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model was proposed by Tati’ in which the quarks
are assigned a “spin” of magnitude one with the
symmetry group being SU(3) XSO(3). Recently,
Gell-Mann® has revived the paragquark model in a
version in which the Green index is called color.
In this paper we will discuss similarities and
differences between some of these models; in
particular, the SU(3)’x SU(3)” triplets, the para-
quarks or “colored” quarks, and the SU(3)’x SO(3)
triplets, which are an extension of the original
proposal by Tati. Crucial to oyr discussion is a
recent theorem by Ohnuki and Kamefuchi® con-
cerning the equivalence relations between a para-
fermi field of order p and a Fermi field with a
hidden variable which takes on p different values.
They have shown that different classes of equiv-
alence exist depending on the choice of types of

observables, consistent with the locality condition.

First, however, we mention the equivalence be-
tween Gell-Mann’s “colored” quarks and Green-
berg’s paraquarks of order 3 for the sake of com-
pleteness. As is well known, a para-Fermi field
¥(x) of order p is reducible in terms of its Green
components:

b
¥ =3 ), (1)

where the set of p Fermi Green components sat-
isfy anomalous commutation relations:

{9090, $ 2T ()} =6 (x-y),

{99, ¢ (y)}=0, (2a)
[0, ¥ BT (] =[¥ (%), $'2(3)]=0 for a+8.
(2b)

In the usual para-Fermi field theory, the para-
field operator y(x) is the one that has a direct
physical meaning. The Green component fields
{9 (x) are auxiliary mathematical quantities.

The anomalous commutation relations (2b) can
be removed by the Klein transformation K ,, which
converts 3 (x) into another set ¢‘*(x) satisfying
normal anticommutation relations.

Let

P Ox) =K 0 (%) , 3)

where

Ka=exp[i1rfi &7 (x) ¢>(7’(x)d3x] . (4)
y= o

The K’s then satisfy
(Ko ¢P(x)]=0 for a>8, "
{Kq ¢'P(x)}=0 for asp .

In terms of ¢{®(x), the commutation relations (2)
become

{60 (x), ¢ BT (N}=8,50(x-y),
{6/9(x), ¢P(N}=0.

The qb( ®)(x) fields, therefore, correspond to a set
of p ordinary Fermi fields. Gell-Mann’s “color”-
quark scheme is set up with three fields, gz, gy,
qg. These fields are taken to anticommute with
one another as well as with themselves,'® which

is tantamount to identifying the Klein-transformed
Green component fields ¢(®(x) as the basic con-
stituent (as well as current) quark fields.

Now we return to the Ohnuki-Kamefuchi theorem.
Denoting any observable by F(V;) defined in a
spatial domain V;, which is a Hermitian operator
and a functional of y(x) and ¢'(x) (x= V;), these
authors use, instead of the usual local commuta-
tivity,

[F(Vy), F'(V1)]=0 for ViNVy =0, (7

(6)

a stronger form:
[F(VI), ¢(x)]=0 for XQ V[ . (8)

Under the stronger condition, they have shown'!
that F(V;) must in general be a functional of
[0, 9], [¥(x0), ¥' ()], and [¢"(x), T ()]

(x,y = VI)-

Within this framework, the question of the equiv-
alence relations between a single para-Fermi field
of order p (PF field) and a system of a single
Fermi field with a hidden variable which takes on
p different values (F field) is investigated. Ohnuki
and Kamefuchi define three kinds of equivalence
relations:

(a) Stvong equivalence. PF field = F field for
all possible observations.

(b) Weak equivalence. PF field — F field for all
possible observations, but the converse is not
true.

(¢c) Local equivalence. PF field = F field for
observations of any subsystem of PF fields (clus-
ter property).

The Ohnuki-Kamefuchi theorem may now be stated
as follows:

(1) If all quantities that satisfy the locality con-
dition (8) are adopted as observables, i.e., func-
tionals of [, ¢], [¥',4"], and [y,4"], then the
weak equivalence holds true. The local equivalence
holds true provided that the total system is suf-
ficiently large compared to the subsystem in ques-
tion.

(2) If observables are further restricted to
functionals of [y, zp*] only, then the strong equiv-
alence as well as the local equivalence holdstrue.'?

Now an important point here is that the two dif-
ferent choices for the class of observables are
directly connected with two different symmetry
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groups among the (Klein-transformed) Green
component fields ¢(®(x). As pointed out by Ohnuki
and Kamefuchi,® we have

b

(B0, ¥ = [0, '],

o=1

W', v )= i [/ (), o7 (], (9

b
[9(®), $T )= [ (x), 6T (W)

o=1

and these relations are invariant under the gauge
transformations SO(p) defined by

, »
() =) £q59 P (%), £<SO) (10)
B=1

whereas the last relation alone, that is, [¢, '],
is invariant under SU(p) with g< SU(p). Hence all
the observables are either SO(p)-invariant or
SU(p)-invariant, depending upon the choices of
restrictions.

One should keep in mind, of course, that these
equivalence relations are between a single PF
field of order p and the system of a single Fermi
field with a p-valued hidden variable. When one
considers a system of N interacting PF fields™®
with the physical SU(3) symmetry endowed on
them, the Ohnuki-Kamefuchi theorem does not
imply a priori that the paraquark model of order 3
is automatically equivalent to the SU(3) x SU(3)
or the SU(3) X SO(3) scheme. What the theorem
tells us, however, is that the symmetry group of
gauge transformations among the Green compon-
ent fields ¢{®(x) is of the form of either SO(p) or
SU®).

II. NINE-QUARK MODELS

Let us now discuss the various “nine-quark”
models. These nine-quark models will have for
their respective symmetry groups either SU(3)

X SU(3) or SU(3) x SO(3) structure, where the first
SU(3) in each case is, of course, the usual one,
whereas the second groups [SU(3) or SO(3)] are
the ones for the symmetry of hidden variables.

(i) The paraquarks or color quarks." In this
case, we have a set of three indistinguishable
SU(3) quarks; all their quantum numbers are to
be identical. The freedom provided by the hidden-
variable symmetry group is not explicitly made
use of. This model can be associated with either
SU(3) X SU(3) or SU(3) x SO(3) in the sense that
such an identification may be irrelevant. Either
case simply provides some unknown and/or un-
specified three degrees of freedom.!®* The model

consists of three indistinguishable sets of SU(3)

quarks with the electric-charge assignments

(Qy Q- 1: Q-1) =(%; "%’ _é)’ where Q=1 +%Y~
Now the 7°-2y decay amplitude is given by

F™(0)= (- a/2m) (25) V2 u*/f, , (11)
where
1@ -t(Q-1y
=Q-3 (12)

for each quark triplet with charges (@, @ -1, @ - 1).
In the asymptotic energy limit, the ratio R defined
by R=0,, (e*e” —hadrons)/o,,(e*e™ - pu*u) is
given by

R=R.=% (3+28)Q7, (13)

where s; is the spin (0 or 3) of the ith field. In the
absence of any integer-spin charged partons, this
ratio is

Rm‘-'z Qe2 . (14)

As is well known,® the paraquark or color-quark
model gives values of S and R three times those
for the Gell-Mann-Zweig (GMZ) quarks:

§=3S5y,=3@) =2,
R :3RGMZ=3(§-) =2.

(ii) Three triplets with SU(3)’ X SU(3)” sym-
metry. This is the case in which the para-Fermi
observables are restricted to the form [y, ¢'] only
and hence, with the strong-equivalence condition,
the SU(3)” degrees of freedom are equivalent to
the para-Fermi degrees of freedom.

As Ohnuki and Kamefuchi have noted, it is an
interesting feature of their analysis that the sym-
metry corresponding to this new SU(3) symmetry
can be derived as a consequence of the locality
condition. We make, however, a departure from
para-Fermi theories by allowing the observables
to distinguish between different components; dy-
namics is thus no longer color-independent. Since
ordinary hadrons (low-lying states) are assigned
to SU(3)” singlets only, one may identify the SU(3)
symmetry group of strong interactions with either
the diagonal subgroup of SU(3)’x SU(3)” or just
SU(3)’, depending on one’s point of view. In the
latter case, strong interactions are still color-
independent.®

As far as electromagnetic interactions are con-
cerned, charge quantum number is defined within
the diagonal SU(3) as

Q=I]+5Y +I1/+5Y" , (16)

(15)

which gives integral charges (1, 0,0,), (1,0,0,),
and (0, -1, —1) for the nine quarks. For the two pa-
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rameters R and S we find'"* '®
S=+3, R.=4. (17

The three triplets ¢!, t?, and t3 are shown in Fig.
1.

(iii) Three triplets with SU(3)’ X SO(3) symmetry.

With the gauge group between the ¢ (x) fields
chosen as SO(3) let us now consider another pos-
sible three-triplet scheme under the symmetry
group SU(3)’ X SO(3). Such a possibility was first
considered by Tati.” By assigning a new “spin”
of magnitude one to the quarks and assuming that
the two-body force is attractive for triplet states
and repulsive for singlet and quintet states with
respect to this new spin, Tati made the saturation
possible only for the j=3 decouplet and j=3% octet
of baryons.

According to the Ohnuki-Kamefuchi theorem
above, this is a rather distinct case in the sense
that the equivalence relation is a weak one, i.e.,
this model or, more precisely, the SO(3) degrees
of freedom are not equivalent to the para-Fermi
degrees of freedom, even though the converse is
true. The class of observables consists of all

possible forms [, ¢] and [y, y'] as well as [¢, y7].

We note, however, that the currents of type [¢, ¥]
and [zﬂ, zpf] carry charge and baryon number, and
hence would not be allowed to occur in a Hamil-
tonian unless, for example, they are coupled to
certain Bose fields which carry compensating
quantum numbers. Otherwise the para-Fermi
and colored quarks will be strongly equivalent.
The situation becomes different if we give up
indistinguishability. The SO(3) can be character-
ized by the presence of its generators in the
Hamiltonian rather than the currents [y, y] and
[sz, sz]. Let us then treat this case in the same
spirit as in our original SU(3)” model. Let L. be

JS3Y

L

\ Q=0
Q--1

FIG. 1. Quantum numbers of the three triplets in the
SU(3)’ x SUB)” model.

the three generators of SO(3) acting on the para-
Fermi degrees of freedom. The third component
L, will take eigenvalues 1,0, — 1. Let the electric-
charge operator be defined by

Q=I)+3Y'+L,, Y=Y . (18)
In contrast to the SU(3)’ X SU(3)” triplets, this
new variety of triplets have fractional charges;
the charges are (3,2 %), (4 -3, —3), and (-}, -4 -9%)
for t*, t%, and t°, respectively. All known hadrons
are assumed to be singlets with respect to the
SO(3). The meson and baryon states are given by

tf and ttt. The SU(3)’ X SO(3) contents of these
81- and 729-plets are

(3,3)x(3,3)=(8+1,1) +(8+1,3)+(8 +1,5) ,
(3,3)x (3, 3) X (3, 3)
=(1+2(8) +10, 1) +3(1 +2(8) +10, 3)
+2(1+2(8) +10, 5) +(1 +2(8) +10,7) .

For this model, the S and R take on the following
values:

(19)

S=+% and R,=8 . (20)
Summarizing, we have
0

Q=(I+3Y")+ S Ir+3Y" (21)
.

, para (color) quarks

%, R.=<4, for{three triplets with SU(3)”
) 3 ? 8, ?three triplets with SO(3) .
(22)

At this point it seems appropriate to discuss
the experimental situation. As for S, all three
models are satisfactory with respect to both mag-
nitude and sign. On the other hand, the experi-
mental value'” for R appears to be increasing with
energy, reaching a value =~ 5 at the highest avail-
able energy of 4 GeV. It may still be increasing.
One may question the validity of the supposedly
asymptotic formula at these relatively low ener-
gies. But if R should remain high at higher ener-
gies, distinguishable nine-quark models would be
favored over the para-Fermi model. (See Sec.

IV for further discussion.)

It is often argued that the ratio of structure
functions for electron-neutron and electron-pro-
ton inelastic processes also provides a test of
various models. Thus this ratio will be =%, =1
> L for the paraquark, SU(3)”, and SO(3) models,
respectively. Experimentally the lower limit
seems to be less than £ but consistent with the
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paraquark case. However, we should keep in
mind that the SU(3)” and SO(3) results are based
on the assumption that the nucleon is a pure sin-
glet. By breaking the symmetry, as we must in
any case (see Sec. III), the limit can be lowered.
The absolute limit in the SU(3)’ x SU(3)” scheme
is zero. (Another possibility would be that the
SLAC energies are still below the color threshold,
in which case all models give the same results.!®
See Sec. IV.)

[II. BARYON-NUMBER ASSIGNMENT

Let us next discuss the problem of baryon-num-
ber assignment for the triplets. In the case of
paraquarks or color quarks, the indistinguish-
ability of component fields necessarily requires
their baryon numbers to be (3, 3, 3), and further-
more excludes the case of SO(3) symmetry (weak
equivalence), as has already been mentioned. In
the case of distinguishable triplets, baryon num-
bers may be either fractional or integral. If bar-
yon numbers were fractional, the quarks would
be stable against decay into hadrons even if charges
were integral. Determination of the baryon num-
ber of a particle, however, is a much more dif-
ficult task than that of charge. (Imagine how one
can determine the baryon number of a nucleus in a
direct way.) Still, such an assignment goes against
one of the original motivations of the three-triplet
model. On the other hand, if both charge and bar-
yon number were integral, we would not have dif-
ficulty in explaining the nonexistence of free
quarks, because, being sufficiently massive, they
can decay into hadrons.

We consider here two examples of integral bar-
yon number assignment'’ 2+ 2°;

B=(0,0,1) (23a)

and

B=(1,1,~-1) for (¢%,¢%¢3). (23b)

Henceforth, we will use the notation {%, * to de-
note the three triplets. Each ¢ consists of three
components ¢t 7, where i refers to the SU(3)’".2!

In the case (23a), the quarks with zero baryon
number can only decay, if they can decay at all,
by emitting an odd number of leptons, which in
turn implies that they must carry lepton number.??
Presumably such an interaction is part of the
weak interactions, and the corresponding decay
lives will be relatively long (but shorter than those

of the strange particles because of larger @ values).

At any rate, we should expect a production of at
least two leptons per nucleon when a nucleon
breaks up into free triplets. In this connection,
one may mention a recent proposal by Kalbfleisch

and Fowler? in which the B =0 triplets are actually
identified with the electronic and muonic leptons
(augmented by new neutrinos to complete two trip-
lets). A difficulty with their model is that the
leptons could not be easily contained in a hadron—
the same old difficulty in nuclear g decay that

was to be overcome by the Fermi theory. Further-
more, they would also have strong interactions
just as our triplets do.

The case (23b) looks less drastic, if only slightly.
The B =1 quarks can decay into baryons, and the
B =-1 quarks into antibaryons. Such processes
can go only through violation of the SU(3)’ X SU(3)”
symmetry. For this purpose, a piece in the
Hamiltonian which transforms like (3, 3) and (3, 3)
of this group will do because the transition is
(3,3) or (3,3)~(8,1). A more general alternative
is (3, 3) x (3, 3) and its conjugate. This latter
choice can cause transitions to (10, 1), (10, 1) as
well.

If the symmetry-breaking Hamiltonian transforms
like (3, 3) +(3, 3), it is precisely the Okubo-type
~T3 (octet). With (3, 3)x (3, 3) we get also T3
(27-plet). The octet-dominance assumption will,
however, lead to the prediction that ¢~ 10 or 10
will be suppressed. The simplest such example is
an off-diagonal mass term

a(t1Cyst3+t2Cyst3) +b(¢3 Cygt3 +t2Cy t3)+H.c.
(24)

Here C is the charge conjugation matrix: C =£°€.
Octet dominance means a =-b. With this pertur-
bation, the basic chains of transitions will be
tltt (L)~
E2 =2 (L3t~ 2% (25)
t3~(f' or £3) -T2 .
Thus the decay is of first order for ¢' and ¢?, and
of second order for ¢3, with respect to the sym-
metry-breaking interaction (24). Of course it must
be accompanied by emission of mesons in addition.
Equation (24) is constructed in such a way as to be
invariant under the diagonal isospin SU(2) of SU(3)’
X SU(3)”. Since baryon number is related to Y”
we cannot have diagonal SU(3). As far as the decay
modes are concerned, then, these triplets would
look like A*, Z*, and E* resonances in the case
of ¢! and t?, and A* and Z* resonances in the
case of ¢, Alternatively, we could take the bar-
yon-number assignment to be (1, -1, 1) or
(-1, 1,1), but the isospin would not commute with
baryon number in these cases.?* In principle there
is nothing wrong with it. If, however, Eq. (23b)
is adopted, we may also say that the Gell-Mann-
Okubo breaking of SU(3) down to SU(2) is a natural
concomitant of the baryon-number assignment,



and the latter may in fact be the cause of the
former, as was suggested before.!+?

Another interesting point is that Eq. (24) is an
extension of the observables of the type [, ¥] and
[¥7, "] in the para-Fermi theory that belong to
SO(3)=~SU(2). It is therefore not surprising that
we can have a diagonal SU(2) but not SU(3).

IV. SYSTEMATICS OF SUPERSTRONG INTERACTIONS

Within the framework of triplets with integral
charges and baryon numbers, we will now specu-
late on the dynamics of superstrong interactions
that make the ordinary hadrons possible as bound
states of the triplets. Such an attempt was already
made by one of us some time ago,? so we will first
recapitulate the basic results below, during the
course of which the merits of the original three-
triplet model compared to the other models will
become apparent.

As a working hypothesis we assume the super-
strong interactions to operate in the SU(3)” space.
For example, they may be mediated by an octet
of vector-gluon gauge fields (some of which will
carry charge and baryon number). But in order
to make things tractable we simplify them dras-
tically, and express the total energy of a system
of quarks as the sum of their rest masses and
pairwise static interactions, the latter being con-
sidered as coordinate-independent. From our
experience with the quark and parton models, this
may not be as bad an approximation as one might
think offhand. At any rate, the energy E is ex-
pressed as®* %

8
E=Nu+ig®) > A"

n>m i=1
=Npo+38°Cy(ly,1,),
L s (26)
Bo=H=128%Cy(1,0)
=u-38°.

Here u is the mass of a free ¢t or ; N is the total
number of {’s and ’s; the \’s are SU(3) matrices
in the SU(3)” space for individual constituents
(Gell-Mann’s A; or — A¥, depending on whether
they refer to t or t); g? is an effective interaction
strength having the dimensions of energy; u, is
the bare mass of a quark which also serves as its
effective mass inside a hadron; finally, C, is the
quadratic Casimir operator of SU(3)” for the entire
system, given by the formula

Coll 1) =5 (2 +1,0, +1,7) +(2, +1,) 27)

for a representation D(l,,7,). Its values are listed
in Table I.

A remarkable feature of the formula (26) is that
it only depends on N and C,. For SU(3)” singlets
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TABLE I. Eigenvalues of C,(l,l,).

Representation Dimensionality C,
D(0,0) 1 0
D(1,0) 3 i
D(1,1) 8 3
D(2,0) 6 s
D(3,0) 10 6

D(0, 0), which we expect to correspond to ordinary
hadrons, the total energy is simply equal to the
sum of the effective masses of the constituents,
whereas nonsinglet SU(3)” states will have an ex-
citation energy proportional to C,. The former
property is what has been known empirically for

a long time. In fact we may set

tho=0.3 GeV

since the lowest baryons and mesons (0™ and 17)
should have average energies equal to ~3u, and
2u,, respectively.

At this point we will make a digression and ask
what will happen if the other models discussed
earlier are adopted. First, the para-Fermi or
colored-quark model will allow only a neutral
SU(3)” singlet gluon field. The resulting interac-
tion is repulsive between quarks and attractive
between quark and antiquark, but it does not have
a saturation property, at least in our approxi-
mation.

Next take the SU(3)’ x SO(3) version of the three-
triplet model. We have an SO(3) not because we
allow [y, y]- and [, ¢']-type currents, but because
we allow three real gluon fields coupledto[y'®, ¢?] -
type currents. We get a formula similar to Eq.
(26), with C, being replaced by the one appropriate
to SO(3):

C,=1(+1), 1=0,1,... (28)

for a representation D(!). This can account for the
stability of baryons, as was noted by Tati, but it
cannot distinguish between quark-quark and quark-
antiquark interactions. For example, ¢! pairs
will be degenerate with ¢ pairs. (The situation
is analogous to the 7-7 interaction through a p
exchange.) From this point of view the Tati model
is inadmissible unless additional mechanisms are
invoked.

Let us therefore come back to the SU(3)” model,
and examine the SU(3)” nonsinglet excitations.
The first thing we would like to point out is that
the octet t7 states, which are the first excitations
of the ordinary mesons, are already unbound,
i.e., unstable against decay into single quarks,
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by an amount 3 g%. This suggests that in processes
such as e*-e¢~ annihilation, nonsinglet excitations
start taking place around two quark masses. Now
the available data indicate that R reaches 4 around
E =3-4 GeV. Equating E with 2u, we thus find

p=1.5-2 GeV (g?=1.8-2.6 GeV), (29)

a rather low value.?® However, in view of what
we have said about the decay characteristics of
single quarks, a value of 2 GeV, say, would not
necessarily be ruled out. A similar point on exotic
hadrons has been made by Freund® in a different
context. Taking u=2 GeV, u,=0.3 GeV as a tenta-
tive choice, we then predict the mass systematics
of hadrons as given in Table II.

From Table II we draw the following conclusions:

(1) The lowest SU(3)” nonsinglet excitations are
single quarks, ¢, f (fermions) at 2 GeV, and di-
quarks (¢t), (ft) (bosons) at 2.3 GeV. They can
be produced in the e*-¢~ annihilation, for example.

(2) The lowest nonsinglets states in the baryon
sector that can be created in hadron-hadron col-
lisions are a (tt¢) octet at 4.7 GeV, and a ¢ +(tt),
(ionization into a quark and a diquark) at 4.3 GeV.
According to our assumption (23b), ¢ will have
baryon number +1, (¢¢), will have 2 or 0. These
nonsinglet baryon states are above the present
SLAC energies. If this is taken seriously, the
present SLAC data on e-p scattering will not be
true asymptotic results. An increase in the cross
section will be observed as we go above the thresh-
old for nonsinglet excitations.?®

(3) The “exotic” meson (¢¢f) and baryon (¢t tt7)
configurations begin to appear at 1.2 GeV and 1.5
GeV, respectively. These are SU(3)” singlets, but
contain 27-plets and others in the SU(3)’. So far

TABLE II. Predicted mass levels.

Quark content SU(3)” dimensionality E (GeV)

t,(t) 3, (3) 2

3 2.3
6 4.9
8 4.4
+t,t+E 4

(L) 8 4.7
(tt); +t 4.3
t+t+t 6

(tttf)
(t£FE)
(tEtt)
(tEtE)

(ttttt)
(LEtLE)
(etttt)
(ttttt)

1.2
5.0
2.9
5.5

1.5
5.3
3.2
5.7

DW o+ O W oo

there is no firm evidence for such exotic states.

These figures are based on the simple formula
(26). It ignores, for example, the mass splitting
among different representations of the diagonal
SU(3), the Gell-Mann-Okubo type breaking of SU(3),
a dependence on spin and orbital configurations,
and possible three-body interactions. The last
effect may be represented by adding to Eq. (26)

a term proportional to the cubic Casimir operator
of SU(3). It goes without saying that these esti-
mates are extremely crude, and should not be
taken as more than a qualitative guide.

A few remarks may be in order about charge
and baryon number in relation to the superstrong
interactions discussed in this section. As far as
these interactions are concerned, we are dealing
here with the case of a priori distinguishable trip-
lets.?® It is theoretically possible, however, for
the electromagnetic (and weak) interactions and
baryon number to be incapable of reading the
SU(3)” quantum numbers. Thus the triplets are
fractional, and the experimental consequences of
Sec. II will be the same as those in the paraquark
model. The main problem in this type of model
is how to make the quarks unphysical, namely,
how not to create single quarks even at very high
energies.

On the other hand, the integrally-charged trip-
lets combined with an SU(3)” octet of elementary
vector fields mediating the superstrong interac-
tions cause a new problem in that these latter
fields are also charged and will affect the e*-e~
cross section, the Callan-Gross relation®® in deep-
inelastic scattering, and other phenomena unless
they are sufficiently massive so as not to be ex-
cited in the present energy range. As a matter of
fact, the ratio R will rise linearly with the square
of the center-of-mass energy in the case of vector-
meson production.®' It should be interesting to
see if R will keep rising above 4,3% and if there
will be a serious deviation from the Callan-Gross
relation at higher energies.

V. SUMMARY AND DISCUSSION

In the first few sections we have examined the
intrinsic similarities and differences among four
versions of the nine-quark model. Each may be
characterized by two different criteria: distin-
guishability of the three triplets and the under-
lying gauge group [SU(3) or SO(3)]. If the triplets
are indistinguishable, the para-Fermi- and color-
quark versions are strongly or weakly equivalent
with each other depending on whether the group is
SU(3) or SO(3), which in turn depends on the nature
of admissible observables (Ohnuki-Kamefuchi the-
orem). If charge- andbaryon-number-carrying cur-
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rents (~[y, ¢] and [¢",4"]) do not occur in the
Hamiltonian, the case of SO(3) is excluded, and

the para-Fermi and color theories become strongly
equivalent.

In the case of distinguishable triplets, the SU(3)
and SO(3) versions lead to different natural charge
assignments, as well as different superstrong
interactions.

Experimental data on e*-e” annihilation cross
sections tend to favor distinguishable triplet mod-
els over indistinguishable ones. When the dynam-
ics of superstrong interactions is taken into ac-
count the SU(3) version [SU(3)’ X SU(3)” symmetry]
is definitely favored over the SO(3) version [SU(3)’
X SO(3) symmetry] because the former can account
for the saturation properties of superstrong inter-
actions.

In later sections we have therefore explored in
some detail the consequences of the model based
on SU(3)”, taking full advantage of the fact that
the quarks may have integral charges and baryon
numbers, and therefore may freely be produced.
The e*-e” annihilation data fix the mass of free
quarks to be around 2 GeV, whereas the bare mass
is 0.3 GeV. A simple mass formula then enables
one to predict the gross mass spectrum of hadrons
under the superstrong interactions. Carrying
integral baryon numbers, these quarks will be
able to decay into baryons or antibaryons (or into
leptons if zero baryon number is assigned), via
a symmetry-breaking interaction. This will make
the nine quarks look like ordinary hadrons. In
proton-proton collision, the threshold energy for
production of single quarks and diquarks will be
5-~6 GeV in the center-of-mass frame.

Some of the theoretical problems that have not
been discussed in this article are (a) weak inter-
actions, (b) the relationship with duality and the
dual resonance model, (c) the relationship with
gauge theories, and (d) the possibility of a renor-
malizable field theory. To cite an example, the
dual-quark-model interpretation of strong inter-
actions would have to be modified if single-quark
production were allowed.

As for simple tests of our basic assumptions,
we would like to remark that the naive interpreta-
tion of the parton model, or the concept of quasi-
free partons, is more natural in our model than
in the case of fractionally charged, unphysical
quarks because we do not have to invoke final-state
interactions in order to produce hadrons. Thus in
deep-inelastic e-p scattering, for example, we
should expect to see under proper kinematic con-
ditions jets of nucleons and mesons arising from
the decay of the parent constituents which are
characterized by a set of quantum numbers and a
mass of the order of 2 GeV. According to our as-
sumption about the baryon number, Eq. (23b),
there should be roughly comparable amounts of
nucleon, antinucleon, K and K components, their
ratios being calculable from the composition of
the proton. Predictions would be, in general, dif-
ferent and more complicated if the quarks were
unphysical.3®

Other tests we have mentioned in earlier sections
are such possibilities as color threshold effects
in e-p scattering above the SLAC energies, a
violation of the Callan-Gross relation, and an in-
creasing R with energy, the latter two being due
to charged vector gluons.

*Preliminary results of this paper were presented by
one of us (Y.N.) to the Tokyo Symposium on High Energy
Physics, 1973 [Report No. EFI 73/24 (unpublished)].
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The five invariant amplitudes for electron-electron scattering to order e* are calculated using the
causal methods of source theory. The basis set employed, which is free of kinematic singularities and
zeros, consists of the Fermi invariants. The amplitudes are expressed in terms of double-spectral forms
with accompanying single-spectral forms which are determined by analysis of causal forward scattering.
The radiative corrections required for the analysis of polarization experiments are contained in these

amplitudes.

I. INTRODUCTION

Quite a number of fourth-order processes have
been calculated in quantum electrodynamics, in-
cluding the magnetic moment of the electron,' pho-
ton-photon scattering,? and Compton scattering.®**
And some aspects of fermion-fermion scattering3+¢
have been considered, among which is an investi-
gation of the hard-photon corrections’ to electron-
electron scattering. Except for the unpolarized
differential cross section,® the corresponding po-
larization calculations for electron-electron (pos-
itron) scattering have not been previously done.
Theoretically, it is of interest to know the invari-
ant amplitudes and to have them available for use
in higher-order processes. Besides, more can
be learned of the role played by dynamics in the
choice of a basis for the invariant amplitudes. Ex-
perimentally, with the advent of colliding beams,

a more detailed investigation of electron-electron
scattering is possible. In particular, the asymme-
try parameters® derived from the invariant ampli-
tudes can be compared with experiment. Also, the
determination of production cross sections for had-
ronic states requires an accurate knowledge of the
purely electrodynamic processes.

Electron-positron scattering has been consid-

ered by McEnnan'® within a context that attempts
to move beyond perturbation theory, to include the
effects of bound states and to eliminate the depen-
dence on an artificial photon mass. Barbieri

et al.'* have used dispersive techniques for the
“box diagram” in their recent calculation of the
magnetic moment and charge radius of the elec-
tron. However, explicit expressions for the in-
variant amplitudes or helicity cross sections have
not been presented.

The purpose of this paper is to calculate the
electron-electron scattering to order e* and to
present the invariant amplitudes in spectral form.
An appropriate choice of a complete set of spinor
basis for these amplitudes is considered in Sec.
II. The general approach that we will use is the
causal methodology of source theory.'? We start
the calculation in Sec. III by considering four virtu-
al electron sources that are causally related (see
Fig. 1). The removal of the causal restrictions
(space-time generalization) and the application to
free external particles (mass extrapolation) yields
the invariant amplitudes in double-spectral form.
To this must be added possible contact terms
which are themselves single-spectral forms. The
latter are determined by comparison with the caus-
al forward scattering amplitudes for the photon-



