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%'e study the possibility of constructing an SU~(3}ISU(1}gauge theory of weak and electromagnetic
interactions consistent with experiment and allowing room for the incorporation of renormalizable strong
interactions. Greater than usual attention is paid to the stability of the Higgs potential and serious

difficulties are encountered. %'e argue that a satisfactory SU(3)~@U(1}model based on elementary

Higgs fields requires a global or discrete symmetry beyond SU(3} in the Higgs sector.

I. INTRODUCTION

Within the past few years the possibility of con-
structing a model of weak and electromagnetic in-
teractions based on gauge field theories has been
much discussed. ' Because of hadron spectra and

quark statistics it is widely accepted that the ele-
mentary hadronic constituents (quarks) appearing
in these models have, in addition to the familiar
SU(3), a "color" or SU(3)' degree of freedom. In

order to avoid strangeness-changing neutral cur-
rents one has in general either resorted to weak
currents that are not singlets under the SU(3)' or
postulated the existence of extra "charmed"
quarks. The first alternative seems to lead to in-
superable difficulties' if one ultimately intends to
use the color degree of freedom to construct a re-
normalizable theory of strong interactions. The
second alternative, as exemplified in the 4-quar-
tet' model, seems more reasonable but requires
the eventual discovery of charmed hadrons. If
these are not discovered in the near future it be-
comes interesting to ask whether a renormalizabl. e
scheme with room for strong interactions and con-
sistent with the experimental constraints on AS=2
processes and neutral currents can be assembled
without resort to charmed quarks. To this end we

have investigated SU» (3)I3I U(1) gauge theories of
weak and electromagnetic interactions in which the
basic constituents of matter are the usual three
Han-Nambu triplets. Previous theoretical work'
on this gauge group has avoided contradicting ex-
periment only by postulating ultraheavy vector
bosons (m = 10'GeV), which we feel are unsatis-
factory, ' and has not paid adequate attention to the
stability problem of the Higgs potential.

The SU», (3} U(1} gauge symmetry in principle
offers a possibility of explaining the Cabibbo angle,
in contrast to SU(2) U(l} models in which the
Cabibbo rotation is put in by hand. This possibility
arises from the existence of more than one
charged intermediate boson in the SU(3) U(1) mod-
el. The Cabibbo angle is related to the mixing
angle and mass eigenvalues of the p- and K*-type

gauge bosons in a way that depends only on ratios
of vacuum expectation values of Higgs fields. It is
possible that with the proper choice of Higgs mul-

tiplet(s) these ratios would be predicted, although
we have found no such suitable choice.

In Sec. II of this paper we discuss the conditions
on the gauge-boson mass matrix that will satisfy
all the experimental constraints, and in Sec. III we

address ourselves to the problem of constructing
a renormalizable Higgs potential that will provide
the specif ied mass matr ix. None of the previous
papers on SU(3)8 U(1) have constructed an adequate
potential, for reasons discussed in See. III. We

also have failed to discover a suitable potential,
and we present a theorem stating that a successful
implementation of an SU(3) S U(1) gauge model re-
quires global or discrete symmetries beyond SU(3)
among the elementary Higgs particles. The pos-
sibility exists, of course, that the real Higgs
scalars are composite particles instead of ele-
mentary fields appearing in a Lagrangian. In this
case the obstacles we encounter may not arise and

SU~(3)S U(1) might become a, very attractive mod-
el for weak and electromagnet:ic interactions.

II. PROPERTIES OF THE GAUGE-BOSON MASS MATRIX

l.„=Q 1|!»y„(1+y,)2A g» . (2}

The SU(3)' (color) index y is summed over to make
each current a color singlet. Y'„ is the U(1) cur-
rent, also a color singlet, whose exact structure
need not be specified here but is chosen to secure
the correct charge couplings of the photon in the
usual way. Given that there are three triplets of

In one-to-one correspondence with the generators
of SU~(3) S U(l) we naturally postulate a singlet and
an octet of gauge bosons W ' and W " (n = 1, . . . , 8)
whose couplings to the quarks are given by

+I 0 ~ (x gr yo ~ 0

g and g' are the gauge coupling constants, and in
terms of the elementary quarks
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quarks each transforming according to the 3 rep-
resentation of SUr, (3), the absence of Adler anom-
alies requires that there be an additional three
(anti)triplets of fermions each transforming ac-
cording to the 3* representation. %'e identify these
as the leptons and thus arrive at the quark and

lepton multiplets of Table I. The lepton couplings
to the gauge bosons are as in Eqs. (1}and (2), ex-
cept that the generators A' for the 3* representa-
tion are given by

A (3*)= -X (3a}

whereas

(3b)

being the usual Gell-Mann matrices for SU(3}.
The E', M', l, E', and 1.' are as-yet-undiscovered
leptons presumed to be very massive.

The 8" and 8" mediate strangeness-changing
neutral currents; however, these currents I.s& and

I.'„always couple to heavy leptons. Hence, there
are no strangeness-changing neutral currents ob-
servable at low energies. The E' and M' would,
however, eventually be produced in high-energy
neutrino reactions by neutral strangeness-changing
currents. They can also be produced weakly by
high-energy electron and muon beams via the
charged intermediate bosons coupling to I.„and

The E' and M', once produced, should decay
weakly into a, strangeness-1 hadronic state and a
neutrino or charged lepton. If the SU(3) U(1) is
spontaneously broken down to the electromagnetic
U(l) gauge symmetry, all of the nine intermediate
bosons will become massive except for one (the
photon) coupling to the charge current. In Sec. III
we will investigate various Higgs potentials to ac-
complish this and we search in addition for a mix-

TABLE I. Quark and lepton triplets required for an
anomaly-free SU(3}8U{1}gauge theory.

Quar ks Leptons

v "u g0

I 0

ing between the p- and K*-type gauge bosons so
that Eq. (1) rewritten in terms of the gauge boson
mass eigenstates becomes

(L»""cosy+ L'„"'siny)W„+H. c.
42

where

+ (L» cosy —L» s111y)V» + H.c.
W2

+g(L»W» + L»W»)+gjr» iZ„

g)
(8)g eyemg

1
W„' = ~ (W„""cosy+W'„"'siny), (5a)

V»' = (W „"'cosy —W'„*"siny) . (5b)

The photon is

(Sc)

a,nd B„,Z„are mixtures of 8''„, S'„, and S'„or-
thogonal to the photon; j~+' and j„' are the corre-
sponding strangeness-conserving currents.

To second order in Z, the effective P-decay in-
teraction is then

L„""cosy+L'„"'siny 1 cosy L'„"'cosy —L„""siny 1 (-siny)

Gp (L'„"'cos0c+ I.'„"'sin8c)e y„(l+ y,}r, .
W2

Thus, the Fermi constant and the Cabibbo angle
are given by

COS&c g COS P 81n P ('I a)

sin &c g' . 1 1
Gy ~ =—sin+ cosp 2 22 PSQP

where G~ is the phenomenological Fermi constant
and L9c is the Cabibbo angle. The mixing angle y

and all the vector-boson masses depend, of
course, on the representations chosen for the

Higgs bosons.
The interaction g(L'„W'„+ L'„W'„) could in general

cause bS=2 nonleptonic reactions of order G~
through the effective one-boson exchange interac-
tion

6 1 6 7 1 7
&err =g L» 2 e L»+L» e 2 I.» . (8)

m6 +q 2%7 +q

Ne avoid this disaster by requiring nz, =m„
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whereupon the effective interaction becomes

This combination is purely AS =0. Note that we do

not have to appeal to ultrahigh masses to suppress
AS=2 in second order. However, we must ensure
that the relation m, =m, is not a result of precisely
fixing the parameters in the Higgs potential or the

minimum point but is maintained over a finite
range of those parameters. Otherwise, renormal-
ization corrections to the Higgs parameters would

unbalance the relation, resulting in AS=2 transi-
tions of order G~e, contrary to experiment.

In this connection we should mention another pos-
sible problem in the SUr, (3}8U(1) gauge model.
Lee, Primack, and Treiman' have estimated the
AS=2 contribution from the fourth-order graph in

Z,.„, in which two charged bosons are exchanged.
Although this contribution is difficult to calculate
reliably, they estimate its order of magnitude to
be GF n in models with no charmed quarks. If the
SU(3)8U(1} gauge theory is otherwise satisfactory
our attitude toward this problem would be that the
form factors of the observed hadrons might make
these loop graphs so rapidly convergent that they
are actually of order Gz(a/m~'}, i.e. , G~' con-
sistent with experiment. For example, in the re-
lated process K& - p,

'
p. via double charged boson

exchange one can use the soft-kaon approximation
and the %'einberg spectral-function sum rules to
argue that the graph in question is of order G~' in-
stead of the G~n of the earlier estimates. %'ith

additional assumptions involving vacuum saturation
of the 4-current matrix element between kaon
states, the K„K, mixing can also be estimated to
be of order G~'.

From Eqs. (7a) and (Vb) we see that the Cabibbo
angle is given by

sill"/ cost'(m v —mar ) (10)tan8c =
m „'cos y + m~' sin'y

The trigonometric functions of y as well as the
gauge-boson mass ratio mI, '/m„' will ultimately
be functions of ratios only of the Higgs vacuum

expectation values.
To summarize this section, we feel that SUr, (3)

SU(l) is a workable gauge group for unified weak
and electromagnetic interactions provided that

(i) W, and W, are physical (diagonalized) gauge
bosons and m, ' =m, ' over a finite range of Higgs
potential parameters and vacuum expectation val-
ues,

(ii) the physical charged vector mesons are mix-
tures of 8"'"' and 8' "' and have unequal masses,
and

(iii) the model should have only one photon (mass-

less particle) in the combination A„-W'„+ (I/&3) W'„

+A%~.

To have Higgs scalars which after spontaneous
symmetry breaking give rise to the above desired
features is a totally nontrivial problem.

III. THE HIGGS POTENTIAL

In this section we would like to study the general
properties of the Higgs potential needed to satisfy
the requirements listed in Sec. II. It is important
to note that although one is completely free to
choose which representations the Higgs scalars
belong to, once they have been chosen one must
write the most general (quartic) gauge-invariant
potential in order that the theory be renormaliz-
able. Otherwise there will in general be infinities
arising in the perturbation expansion that cannot be
absorbed into coupling-constant renormalizations.
An exception to this rule requiring the most gener-
al potential is the case in which one can impose
an additional discrete or global symmetry on the
total Lagrangian. Such an additiona1. symmetry
will be respected by the renormalization program
and maintained to all orders.

Similarly, it is essential as mentioned before
that the gauge-boson mass requirements elimi-
nating AS =2 in second order not be the result of
precise relations among the Higgs vacuum expec-
tation values or potential parameters. Such rela-
tions will in general be broken in renormalization.
Both of the above criteria are overlooked in the
most recent paper of Schechter and Singer, ' which
is otherwise somewhat similar to our work. We
have searched through all possible combinations of
low-lying Higgs representations (i.e. , triplets,
sextets, octets) and have failed to find a combina-
tion capable of guaranteeing criteria (i) and (ii) of
Sec. II simultaneously. Rather than explain one by
one why each possibility tried by us (or by other
authors) fails, we will present below our current
group-theoretical understanding of the obstacles.
%'e hope that our analysis will focus attention on
the root of the problems involved.

To begin, we note the obvious fact that if the
Higgs potential, V(Q), is invariant under transfor-
mations of some group G, every point in the rep-
resentation space moves along an equipotential sub-
space under the action of G. This can be stated in
a slightly stronger theorem:

Theorem l. If G is the largest symmetry of the
potential (including global symmetries and discrete
symmetries} and if X is a point in the Higgs repre-
sentation space that minimizes the potential, then

any other point A.
' is also a minimum point if and

only if X and A.
' are related by a transformation in

G. It is clear that if A' =GX, then V().) = V(X').



10 CONDITIONS FOR AN SUi(3)U(l) GAUGE THEORY

(
i a(x) ~ e) (12}

IV„'- W'„' =S'& (x)W„& + —e„o'(x), (13)

and local gauge invariance is ensured by the rela-
tion

(e'),.S'~(x) = [r(x) e~r '(x)], - (14)

S is a real, unitary matrix belonging to the adjoint
representation of SU(3). In the spontaneous sym-
metry breakdown the fields Q are assigned vacu-
um expectation values (Q & consistent with the po-
tential minimum and, from Eq. (11), the IV bosons
acquire the mass matrix

(i ')., g'& y"&(=e, e'},„ (15)

After symmetry breaking, the other minimum
points related to &P" & by SU(3) are no longer phys-
ically equivalent. ' Let us suppose, however, that
we had chosen other vacuum expectation values

& Q, & also consistent with the potential minimum

Furthermore, if 6 is the Igygegf symmetry, and

A. 'xGX, then V(X') equals V(X) at most for isolated
values of X and X'. Such an accidental equality,
V(&'}= V(&), depends on precise relations among
the parameters in the Higgs potential, which, as
discussed previously, will not be maintained in re-
normalization. In the context of gauge theories,
theorem 1 holds after one dismisses the possibility
of accidential equality.

Ignoring for the present the singlet gauge boson,
which does not affect our conclusions, we would

like to propose the following crucial theorem:
Theorem 2. If the highest symmetry of the po-

tential is SU(3) the gauge boson mass (squared)
matrix is diagonaiized by an SU(3) transformation.

This theorem is important because if as in the
present model we have eight gauge bosons the mass
eigenstates could in general be related to the origi-
nal eight by any unitary 8-by-8 matrix, i.e., by any
element of the group U(8). Theorem 2 states that
the possible mixing among gauge bosons is severe-
ly restricted by the symmetry of the Higgs poten-
tial. Before discussing the present consequences
of this theorem, let us examine the basis for its
truth.

Let us examine the SU(3} gauge-invariant kinetic
term in the Higgs Lagrangian

&H, g =[(sp5)a fuego-IVp')Aa]

x [(eq 5~~ —ige~~wq)p~], (11)
e" being a representation of the SU(3) generators
in the Higgs representation space, and Q~ being
the Higgs field. Under a local SU(3) transformation

0 —4" =r(x) a%a

and therefore related to &Q') by an SU(3) transfor-
mation. Let us further suppose that the mass ma-
trix induced by the choice &Q, & is diagonal:

(i .') s = (i 0'} 5 s

=
& e'."&[e,e'}..& V."& .

If as we have assumed &P, &
= r „&Q"&, since

r'e r = e~(s-')~"

(i:)., = &e"&].», e'},.& e &(s-')""(s-')"

=S""(V') (S ')"
Thus the gauge-boson mass matrix is diagonalized
by the SU(3) transformation S. Theorem 2 is thus
easily proven, subject only to the assumption that
there exists a minimum point &$0& for which the
gauge-boson mass matrix is diagonal. For all the
representations we have studied this condition is
met, but it remains a, possible loophole through
theorem 2.

The relevance of theorem 2 to SU(3) 8 U(1} gauge
theories is as follows. Any SU(3) transformation
that mixes the p' and K*' members of the gauge
boson octet will necessarily mix the p', ~', and
K*' members also. The transformation that ac-
complishes criteria (i) and (ii) (mixing p' and K*'
but leaving Kg' and K~' unmixed) is therefore not
in SU(3). The addition of the U(1), of course, does
not affect the K* mixings at issue here. Thus, if
we wish our diagonalized gauge-boson mass matrix
to satisfy criteria (i) and (ii), we must have a
larger symmetry than SU(3) (global or discrete) in

the Higgs potential and this larger symmetry must
be preserved at least to first order in the renor-
malization.

The natural suggestion at this point would be to
assume that the Higgs mesons fall into a single
SU(3) octet. The most general quartic potential
invariant under SU(3) is then also invariant under
O(8), and we then have a suitable pseudosymmetry.
Unfortunately, the octet Higgs representation does
not constitute a realistic model because of charge
constraints on the fields. The integrally charged
lepton triplets require the octet part of the photon
to be mixed with the singlet 8"„, which cannot be
accomplished with only octet Higgs representa-
tions.

We have also tried unsuccessfully to implement
criteria (i} and (ii) by imposing various discrete
symmetries on the Higgs potential. It is our opin-
ion therefore that theorem 2 constitutes a serious
obs tac le to the construe tion of a satisf actory
SU(3)S U(1) gauge model.

The possibility always exists, as mentioned in
Sec. I, that the spontaneous symmetry breaking
must be implemented in the way of Nambu and
Jona-Lasinio by composite scalars rather than by
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elementary Higgs bosons. The theorems of this
section then dissolve in our sea of ignorance about
composite Higgs particles. This point of view,
however, does not seem to be a practical attitude
towards the problems we have encountered.

studied in detail the Higgs sector. We have found
no combination of low-lying Higgs representations
capable of producing the required gauge-boson
mass matrix and we have summarized the difficul-
ty in two group-theoretical theorems.

IV. CONCLUSION

In this paper we have discussed the general fea-
tures of SU(3)3 U(l) gauge models satisfying ex-
perimental constraints. We have avoided the ten-
dency of other workers in this gauge group to pos-
tulate ultraheavy vector mesons and we have
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