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We examine massless pion-pion, neutrino-neutrino, and light-by-light scattering within the context of a

dispersion approach to the interaction of massless particles. We assume the existence of a fixed-t

dispersion relation with a finite number of subtractions for t (0, unitarity, crossing symmetry, and the

convergence of helicity expansions in the physical region. All three processes have a zero at threshold

in the forward amplitude; for massless pions it is the Adler zero and for neutrinos and photons it is a

kinematic zero. We demonstrate that the forward scattering amplitudes and total cross sections have the

asymptotic lower bounds IF(s, 0)I& const and cr„t(s)& const/s'. We obtain the same result for

scattering of neutrinos on electrons. We also generalize the upper bounds obtained by Dolgov,
Zakharov, and Okun for lepton-lepton scattering to massless n-~ and light-by-light scattering.

I. INTRODUCTION

It is well known that the asymptotic high-energy
bounds (in particular the Froissart and Sin-Martin
bounds on total cross sections) which have been
proved for strong-interaction scattering processes
from axiomatic field theory do not in general apply
to processes involving massless particles. Such
processes include weak and electromagnetic inter-
actions, as well as the theoretically interesting
interactions of massless pions. The difficulty of
course is that massless particles produce singu-
larities in elastic scattering amplitudes at t =0,
so there is no I ehmann ellipse. It has not even
been possible to prove in a rigorous way the exis-
tence of dispersion relations for those processes
for which exchange of a single massless particle
is ruled out by crossed-channel quantum numbers.
Nonetheless, it is interesting to ask what can be
learned about the high-energy behavior of cross
sections, when pairs of massless particles can be
exchanged, within the context of a dispersion ap-
proach to these interactions. In the last couple
of years some progress in this direction has been
made for the leptonic weak interactions by using
mild physical assumptions to limit the strength
of t-channel singularities. ' For example, Dolgov,
Zakharov, and Okun' have argued that the exchange
of any number of neutrino pairs can produce a
singular contribution to the s-channel absorptive
part of the (massless) lepton-lepton elastic scat-

tering amplitude which behaves at worst like t'lnt.
By noting that such a singularity is once-differen-
tiable and using the MacDowell-Martin unitarity
bound, '

dImE s, I ~ const x so, ,'(s),
t=o

they obtained the upper bound on the total cross
section for lepton-lepton scattering:

a, , (s) & constx s'~'.

Several authors' ' have improved this bound by
making stronger assumptions. Using a fixed-s
dispersion relation for s-positive and assuming
the two-particle intermediate state dominates the
t-channel unitarity condition, Dolgov, Gribov,
Okun, and Zakharov' were able to show that the
total cross section cannot increase asymptotically
as a power of s. This result was actually obtained
earlier by Rajaraman, ' who was to our knowledge
the first author to study asymptotic bounds for
neutrino scattering from a model-independent
point of view.

In this paper we consider elastic scattering of
massless particles, specifically pions, neutrinos,
and photons. Using even weaker assumptions than
those employed by DZO to obtain the upper bound
(1.2), we demonstrate that the forward amplitudes
for these processes (we specify particular helicity
amplitudes for y-y) must satisfy the asymptotic
lower bound
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lim IE(s, 0)I» const.
Is)

We then show that the total cross sections for
these processes are bounded below by

a„,(s)» const/s'.

(1.3)

(1.4)

II. ASSUMPTIONS

For clarity we list all of our assumptions in this
section. Let us first define a uniform notation for
all of the massless particle interactions we will
consider. For massless m'-I' scattering there is
of course only one elastic amplitude:

To be precise, the bound (1.4) holds in the neutrino
case for v-v or v-v scattering, but not necessarily
for both; for the photon case it applies to the scat-
tering of photons with either the same or opposite
helicities, but not necessarily both.

We remind the reader that the rigorously proved
lower bounds for the strong interacts. ons" are
much weaker:

IE(s, 0)I» const/s',

a„,(s)» const/s'
(1.5)

The improvements in the cases of interest here
result from the existence of the Adler PCAC (par-
tial conservation of axial-vector current) zero for
massless-pion scattering and kinematical zeros
for neutrino-neutrino and light-by-light scattering.

Experimentally, it is very difficult to observe
the scattering of massless-on-massless particles.
We examine the possibility of extending our results
to lepton-lepton scattering with at least one mas-
sive incoming lepton. For v-e scattering we obtain
(for certain helicity amplitudes) the same lower
bounds (1.3) and (1.4) as for v-v scattering. All
other lepton-lepton scattering amplitudes have
unphysical cuts which make our method inapplica-
ble.

%'e briefly mention the relationships among
threshold zeros, crossed-channel singularities,
and upper bounds on the asymptotic behavior of
total cross sections. We argue that the singularity
produced by exchange of massless pion pairs is no
worse than that produced by exchange of neutrino
pairs (t'lnt in the absorptive part), and that the
singularity produced by exchange of photon pairs
is even weaker (t'lnt). Thus we can apply the
methods of DZQ directly to obtain the same bound
(1.2) for v-v as for v-v. For light-by-light scat-
tering we obtain the improved bound

a...(s)&constxs' ' (1.6)

(0)»0

in the limit of zero pion mass.

Finally we discuss the relation of our work to
that of other authors. We point out that in a Regge
model for m-m scattering the intercept of the leading
Regge trajectory, i.e., the Pomeranchukon, must
be bounded below by

E u2, i-h; il. , A(s,-t) -=Fs(s, t),

E"",
t2 ~. v', ,t, (s, t) = FI.(s, t);

(2.2)

these are related to each other under crossing.
Finally for y-y we choose to consider the helicity
amplitudes

E. . . , (s, t) = E„"(s,t-),
(2.3)

FP. . .(s, t) = FI (s, t);

these too are related by crossing. Our scattering
amplitudes are related to differential cross sec-
tions by

IE(s, t)I'
dt s' (2.4)

Here and throughout this paper we ignore irrele-
vant constants. For all these processes we have

(2.5)

We assume that for each process the scattering
amplitudes Fs(s, t) and E~(a, t) are the boundary
values of a single analytic function E(s, t) with the
following properties:

(a) Analyticity. The forward amplitude E(s, 0) is
analytic in the entire complex s plane except for the
physical cuts s ~0 and s «0. Along these cuts

Fs(s, O)=E(s+ie, 0), s»0

F~(a, O) =E(s+ ts, 0), s «0.
(2.6a}

(5) Crossing symmetry. There exists a path of
analytic continuation in the complex s-t space from
the s-channel physical region to the u-channel
physical region.

(c) Reality. It follows from (a) and (b) that

E~(a, 0) =E(s —ie, 0), s «0,

E„*(s,0) =F(s —ie, 0), s»0;

so F(s, 0) is a real analytic function:

F(s, 0) = E~(s*,0).

(d) Polynomial boundedness.

IE(s, o)I& s",

(2.6b)

(2 7)

(2.8)

(e) I'oneard dispersion relation. From the pre-
vious assumptions it follows that F(s, 0) must
satisfy a dispersion relation with N subtractions:

E"(s t}=E'-(s t) =F'(s t)

For neutrino scattering there is one helicity ampli-
tude for v-v and one for v-v:
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II,"=r(s —s~} I" ds' ImE„(s',0)

( I)s II~r r(s —s~)
m

ImE (s', 0)
s +s (2.9)

where

0 for pions,
! for neutrinos,

1 for photons.

These expansions converge in the physical regions
-s ~t~O and -u~t&0, respectively.

(g) Unitarity. The scattering amplitude satisfies
the optical theorem in both s and u channels:

ImE(s+ fs, 0) =sos"'(s),

ImE(-s —i s, 0) = so~ '(s).
(2.11)

The absorptive parts of the partial-wave ampli-
tudes are positive-definite:

Imf '
s .„s(s ) & 0. (2.12)

(h) Zeros. The massless pion scattering ampli-

(f) Partial-ujave and helicity expansions.

Es (s, t) = g (2j + 1)f'„.„(s,I}d~, 1 +-2t

0

(2.10)

E~(u, t) = Q (2j+1)f', „„'„(u,.t}d',„,1+—,2t

tude must have a zero (the Adler zero) at the sym-
metric point s =t =0 in order that the forward
amplitude be finite. ' The neutrino and photon
amplitudes have kinematic zeros at s =0 and they
have no kinematical singularities. " The ampli-
tudes

M'"(s, t) = F (s, t)/s,

M&&(s, t) =F~~(s, t)/s'

are kinematically regular. For the purposes of
deriving our lower bound it is sufficient to know
that the forward amplitude has at least a simple
zero at s =0.

(i) Continuity. The real and imaginary parts of
F(s, I) are continuous functions of t in the s- and
u-channel physical regions.

Up to this point we have simply extended the
properties which have been rigorously proved for
the strong interactions to massless particle inter-
actions where they are not proved. The next as-
sumption is somewhat stronger.

j() Fixed-t dispersion relation. There exists a
real positive t, such that for -t, -t-0 the scatter-
ing amplitude satisfies a dispersion relation with
the same number of subtractions as the forward
amplitude:

E( ) p ( ( )); IIg= (s —sg) ds ImE (s', t)

II)=~(u —u, ) ds'

II = (s'-u)
ImE (s', t)

s -u (2.13)

f '„,Im'(s', t)dS'
0 -u

(2.14)

exist for -t0~t~O and all s in the cut plane. Al-

Here we must be careful because for 0 ~s'& -t the
absorptive parts in the dispersion integra1, s are
unphysical. Unlike the strong-interaction case,
there is no Lehmann ellipse, and so this interval
is not within the known analyticity domain in t of
ImE(s, t) In fact we .know that for fixed s there
should be a singularity starting at t = -s. In order
for the dispersion relation to make sense it is
clear that we must require that the integrals

I , ImF„(s',t)
ds I

0 s —s

though it is implicit in these statements that the
dynamical singularities arising from the exchange
of pairs of massless particles do not destroy the
threshold zero of the forward amplitude or produce
infinities on the s- or u-channel cuts, we make no
assumptions about the specific nature of crossed-
channel singularities. Our assumptions are thus
weaker than those used by DZQ to obtain the upper
bound (1.2), since they required in addition that
the absorptive part of the amplitude for lepton-
lepton scattering be differentiable at t =0.

III. LOVfER BOUND ON |Ffs,o) I

It is an easy matter to prove from our assump-
tions an asymptotic lower bound on the magnitude
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of the forward amplitude.
Theorem I.

lim lE(s, 0)l» const, c & args & v
(s)

(3»)

lower bound at least as good as (3.4). This proves
our theorem.

IU. LOVfER BOUND ON TOTAL CROSS SECTIONS

and there exist real sequences fs„j,s„-~as
n-~, and (s j, s —-~ as m —~, such that

l E(s„,0)l «const,

l F(s, 0)l «const.
(3.1b)

Proof. We follow essentially the standard proof
of the Jin-Martin lower bound, '" the improvement
being provided by the existence of the zero at
s =t =0. As is well known, a. function which satis-
fies a dispersion relation and whose discontinuity
along the cut changes sign a finite number of times
can have at most a finite number of zeros in the
upper half plane. The forward amplitude, having
only one such change of sign, easily satisfies
these conditions. We assume that the total cross
sections os"'(s} and o~'(s) are finite and nonvanish-
ing for 0& s &~, so the only real zero of E(s, 0)
can be at s =0 and it must be of finite order; by
(h) of Sec. II there must be at least a simple zero.
Let E(s, 0) have p pairs of complex zeros at points
s,. and s,*. , and assume for the moment a simple
zero at s =0. Define a new function H(s) by

( )
E(s, 0)

s g (s —s,. )(s —s,*)
j =I

The function H(s) has the following properties:
(i) H(s) is regular in Ims &0;
(ii) lH(s)l& constlsl" '~ ',

l
sl» s, large;

(iii) H(s) has no zeros in Ims «0;
(iv) ImH(s+ ie}&0 for all real s.

It follows" that H(s) is a Herglotz function, and so
must satisfy the bounds

(3.2)

const - IH(s)l«constlsl e &args & v —e. (3.3)

lim lE(&, 0)l» l
sl'~" «const

for e & args «v —e and on the real sequences fs„j
and fs j.

If F(s, 0) has a higher-order zero at s =0, then
we can always define a function H'(s) as

(3.4}

H'(s }=H(s)/s' . (3.5)

Here q is a positive even integer chosen" in such
a way that H'(s) is a Herglotz function. The pre-
cise value of q depends on the sign of the first
nonvanishing derivative of H(s} at s =0 and on the
order of the zero, but in any case we obtain a

In addition there exist real sequences (s„j,s„-™
as n-~, and (s j, s - —~ as m-~, on which the
same result holds. " Therefore

We will now prove from our lower bound on the
forward amplitude and the assumptions listed in

Sec. II the following lower bound on total cross
sections:

Theorem II. There exists a real sequence (s„j,s„-~as n-~, such that on that sequence either
o"'(s}or o"'(s) satisfies the lower bound

o„,(s„)=const/s„'. (4.1)

Proof. We assume the contrary, namely, that
both o~'(s) and o~t '(s) satisfy the upper bound

o„,(s) & const/s', s» s, (4.2)

1 "",ImE„(s',I)
(4.3a)

1 ",lmE~(s', t)
v 0 S —M

G (s, I) = I, (s, t) ~ I, (s, I).

(4.3b)

(4.3c)

Both integrals converge by assumptions (j) and

(4.2), and unitarity, which implies

l ImE(s, I)l «ImE(s, 0), s « t. -(4 4)

Since the scattering amplitude has no singularities
in the s plane other than the cuts s -0 and u&0,
the function

F~ (s, I) -=F(s, I) —G(s, I) (4 6)

is entire and polynomially bounded, and so must
be a polynomial in s:

N-1

F~(s, I) =g C,. ( I) s'.
i=0

(4.6a)

For simplicity we take E~(s, t) to be a constant in
s ~

F,(s, t) = e, ( I) (4.6b)

Higher powers of s would only improve our result.

with s large. This will lead to a contradiction.
For clarity we will first outline the argument.

Theorem I tells us that the forward amplitude
must satisfy a dispersion relation with at least
one subtraction. We will use the fixed-t dispersion
relation (2.13) and the assumed upper bound (4.2)
on the total cross section to show that for some
range of t, -t, &t~0, the magnitude of the non-
forward amplitude F(s, t) is bounded below by a
constant asymptotically. Then the total elastic
cross section is bounded below by const/s', and by
unitarity this violates (4.2).

Define the functions G(s, t), I, (s, t}, and I,(s, I)
by
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Then

E(s, t) =C,(t)+ l, (s, t)+ l, (s, t),

By unitarity and (4.2) the integrals

ImF„S',t ",ImF„S',0
8 -t 8

, ~imE~(s', t)~ ",ImF~(s', 0)
-t 8

g 8

(4.7)

(4.9)

converge, and it follows' that

lim ds', " ' =0, args go, (4.9a}, ImE„s',t
~s~ -t 8 —8

lim ' ds', ' =0, args w p. (4.9b), ImEi s', t

I sI S —g

In addition, using assumption (j}we have

lim
]sI ~~, ~0

ds', " ' = lim ds'ImFz(s', t) =0,, ImF„(s',t) . 1
S -8

(4.10)

lim ds', ~ ' = lim ds'ImF~(s', t} =0ImEi(s', t) . 1

I sI 0 s -u
i i

s

lim [E(s, t)~ = C,(t), args v 0, s.
l sl-"

(4.11)

From Theorem I and the fact that E(0, 0}=0 it
follows that

in all directions. Thus only the subtraction term
survives in the asymptotic limit:

W'e next show, following Cornille, ' that along
the real axis for s ~ s„s,large, (4.11) holds for at
least half the interval [-t„o],except possibly on
a set of arbitrarily small measure. For large
real s- ~ we already know that (l, (s, t)~-0, and
the only piece of l, (s, t) which may not vanish is

Co(G}t 0. (4.12}

(4.13)

To establish that C,(t)x0 for some finite interval
of t near the forward direction, it is only necessary
to show that C,(t) is a continuous function of t
The real and imaginary parts of the scattering
amplitude E(s, t) have been assumed to be con-
tinuous functions of t in the 8- and u-channel physi-
cal regions. In order that the dispersion relation
(4.7) be compatible with this requirement, C,(t)
must indeed be continuous in -to&t &0. To be
precise we can use the arguments leading to (4.19)
below to show that the measure of the set of points
(s}, s~s„onwhich a discontinuity in Co(t) at
some t=t' could be canceled by a discontinuity in

the dispersion integral is arbitrarily small.
Therefore, there exists a real positive t„t, -t, 0
such that

for fixed t, & t, . Let E be the set of points on which

@el,(s, t)
~

can be greater than (~ C, (t)~ —s}:

E = ((s, t)( s o-s„t e [ ti 0], IRe1, (-s, t)l - I C,( t)l -e }.

~

s' 'I, (s, t)~ & const. (4.15)

This is a consequence of the assumed upper bound
(4.2) on the total cross section. We can therefore
write an unsubtracted dispersion relation for the
function (-s)' '[2, (s, t)]':

(4.14)

Let E, and E, be the sections of E for fixed 8 and
fixed t, respectively. W'e can get an upper bound
on the Lebesgue measure of E, p(E), if we can
find an upper bound on the Lebesgue measure of

E, for all t H [-t„0].To do this notice first that,
for large ~s( outside the s-channel cut,

1 ",(s')'l'([ReI, (s', t)]' —[Iml, (s', t)]'}
I I

W g 2
S —8

(4.16)

Multiplying by (-s) and taking s- —~, we get

lim (-s)' '[l, (s, t)]' = —) ds'(s')'t'([ReI, (s' t)]' —[Iml, (s', t)]'] =0.
n at2

(4.17)
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Again using (4.2) we see that we can choose an

s0 large enough to make the integral

J

�de)(s)
}1/2 [1m' (s ( t}]2

S0

arbitrarily small. Then since for any finite s,
the integral

ds'(s')' 2{[Re7,(s', t)]2 —[Imf, (s', t)]']0 I I i f 2 h

l
/

t
2 ~ h

I
I

t
2

t2

is finite, in order to satisfy (4.1'I}we must have

(4.18)

(4.19)

Since the denominator in the right-hand side of
(4.19) is integrable for tK [ f„0],-we obtain the

upper bound on the Lebesgue measure of the set
ge

ds'(s')'/2[Ref, (s', t)]2 & const.I I ~
1

I

S0

Therefore the Lebesgue measure of Et is bounded
above by

1
11( ) ) cos2/1 g 1 -1/2 ~ )/2:-(/2, 1/2(COS i2

(5.1a)

E, (u, t) = 1
cos' -'{9,

1/2 1/2

Q d"1'/2, n(X)E)"/2..;1/2, (){& ')
fx = -1/2 8= -1/2

X g,'" 1/2(X) . (5.1b)

Here

section, from an experimental point of view it
would be more desirable to have a bound on a lep-
ton-lepton cross section with at least one massive
incoming lepton. Unfortunately, most lepton-lep-
ton elastic scattering amplitudes have unphysical
thresholds in the s- or u-channel, so the discon-
tinuity of the forward amplitude across the cut
does not satisfy the positivity properties we need
to get a lower bound on the forward amplitude.
This rules out e-e, p, -p, , e-Ij. , and v-p scattering.

For v-e we can obtain essentially the same re-
sults as for v-v by choosing the right helicity
amplitudes. %'e take

u (&) = «u (&&) & (4.20)
-t

1

Now let a be the set of values of s, s~s„for which

p. (E,) is greater than t,(2, say. We have

2st
cos8, = 1 +

(
—,),e

s+t+u =2m, 2,
(5.1c)

g(E) f dsp(E, ) g(u) —', (,.

Combining (4.20) and (4.21) we arrive at

(4.21)
and the crossing angle X is given by"

(s + m, ') (u + m, 2) —4 m '
(s -m, ') (u -m, ')

const
V (&)+

( )1/2f ~ (4.22a}

The same reasoning can be applied for s- -~.
If p is the set of values of s on the negative real
axis, defined analogously with the set &, then

const
I (P)

( )1 /2f (4.22b)

for s~s„except on a set of very small measure.
This contradicts our assumption (4.2), so the
theorem is proved.

V. MASSIVE LEPTONS

Clearly l1(&) and p, (p) can be made arbitrarily
small by choosing s, large enough.

Finally we can use the unitarity condition on the
complements of the sets & and P to obtain for both
g "((s) and g"((s)

g„,(s)-g, , (s) - t dt, ' (4.23)~
E(&, &)[2 const

I

2m~ t
(s -m, 2)(u -m, ') '

-2m, [t(su -m, ')]'"
slnx =

(s —m, 2)(u -m, ')

(5 2)

We have defined Fs(s, f) and F~ (u, t) in such a way
that they are the analytic continuations of each
other under crossing and can be taken to be the
boundary values of a single analytic function
E(s, t), just as for the v-v case. The amplitude
E(s, f) has no kinematical singularities (the half-
angle factor has been removed) and has a kine-
matic zero at s = m, 2.10

In the forward direction cos8, =1 and cosy = 1,
so X =0 and we obtain

«~0

lcm E(s —,0) = E1/2, (2.„,„,( u, 0)
«~0

on the right- and left-hand cuts, respectively. %e
can thus carry through the same arguments used
in Sec. II to show that

While it is theoretically interesting to have a
lower bound on the neutrino-neutrino total cross

lim ~F(s, 0)~ ~ const
s

(5.4)
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in complex directions and on real sequences (s„},s„-~as n-~, and fs }, s - -~ as m -~.
To get the lower bound on the total cross section

is just a little more difficult than before. The only
problem is that for t w0 the amplitude on the left-
hand cut is a linear combination of four helicity
amplitudes and we can no longer use the unitarity
condition in the simple form (4.4). We must now

replace the assumed inequality (4.2) with the three
inequal lt les

constso",/2, /2(s) =1m E;/, , /, . „,1/2(s, o}&

-1/2, 1/~( }1 1/2, 1/2( }1 1/2, -1/2(s}

must obey the lower bound

o„,(s }=const/s' .

(5.10)

(5.X X)

By exactly the same reasoning we can establish
that at least one of the following total cross sec-
tions must also obey the lower bound (5.11):

1/2, -1/2( } -1/2, -1/2( } -1l2,1/2(

These results apply equally well for electron or
muon neutrinos and for electrons or positrons.

const
1/2, 1/2( } 1/2, 1l2; 1/2, 1/2( & S

(5.5a) VI. THRESHOLD ZEROS, CROSSED -CHANNEL

SINGULARITIES, AND UPPER BOUNDS

ON TOTAL CROSS SECTIONS

(5.5b)

const
1/2, -1/2 (S } 1/2, -1/2; 1/2, -1/2 (

By noting that for large s the rotation matrices
approach

d», l (X) =cos2X-1,

m, e-t
d-I/2, 1/2(X) s1n2X

(5.6)

we see that if on the left-hand cut lImE(s, t)l
~ const/lsl, then one of the following possibilities
must obtain:

limF / / . / / (s t)l const/lsl

lImE1/'2, -1/2; 1/2, -1/2(s t)l - constlsl,

llm E,";,„,„,,» (s, t) l

~
,const,

llmE1/2 —1/2 1/2 1/2(s, t}l - const.

(5.7b }

(5.7c }

(5.7d)

By unitarity the inequalities (5.7a) and (5.7b)
clearly violate (5.5b) and (5.5c), respectively. In
addition, if (5.7c}or (5.7d) were to hold on a set
of non-negligible measure, then (5.5b) or (5.5c)
would again be violated because

oue t'sl ~ dt, ;, )l
1/f22 & 1/2 5 j

-tp S2

) d I I
™ F1/2, w 1/2: 1!2, ~ 1/2 (S ~

I}I

-tp s2

(5.8)

d" ImF(s, t) l

COnat && SV1oi (S ),
8=p

only if

{6.& }

By studying diagrams for lepton-lepton scatter-
ing, DZQ have argued that the exchange of neutrino
pairs can produce a singular contribution to the
s-channel absorptive part which behaves at worst
like t21nt. Their argument uses the kinematic
vanishing of the (massless) lepton-lepton scatter-
ing amplitude at s = t =0; given the existence of the
Adler zero, it can easily be seen to apply to mass-
less pion scattering as well. For light-by-light
scattering there is a double zero in all helicity
amplitudes at s = t =0; the discussion of DZO leads
us to conclude that the exchange of photon pairs
can produce a t-channel singularity which behaves
at worst like t' lnt. It is in fact well known that
the exchange of photon pairs produces a weaker
singularity than the exchange of neutrino pairs.
In coordinate space the exchange of photon pairs
corresponds to the 1&'r' Van der Waals potential,
whereas the exchange of neutrino pairs corre-
sponds to a I/r' potential. "'

To get an upper bound on the lepton-lepton total
cross section DZO noted that a singularity of the
form t'lnt is once-differentiable at f =0. Assuming
that the absorptive part of the full amplitude is no
more singular than the contributions of individual
diagrams and that for t ~0 the amplitude satisfies
a dispersion relation with a finite number of sub-
tractions, then the first derivative of the disper-
sion integral must exist. This can be consistent
with the MacDowell-Martin unitarity bound, '

Therefore for large enough real s, lsl ~ so, and
-t, ~ t &0 the a,ssumptions (5.5) imply

v""(s)& const~ s'" {6.2)

lImE(s, t)l(const/lsl . (5 9'i

The rest of the proof proceeds just as in Sec. III,
and we find that at least one of the three total
cross sections

Ke see that the same argument applies equally
well to massless m-m scattering, and so the upper
bound (6.2) should hold in that case as well.

For light-by-light scattering we expect the ab-
sorptive part to be no more singular than t'lnt,
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and hence twice differentiable at t =0. By the same
reasoning as before we see that the dispersion in-
tegral should now be twice differentiable, which
is compatible with the MacDowell-Martin bound
(6.1}only if

vP (s) & constx s'" . (6.3)
It is reasonable to expect that the bounds (6.2}

and (6.3) should be able to be improved. In a sense
the singularities t'lnt and t'lnt are almost twice
differentiable and three times differentiable, re-
spectively, and so a good guess would be that (6.2)
and (6.3) could be improved to at least

o",.', (s) ~ constx s'", (6.4a)
o'&& ~ const&& s'" . (6.4b)

Indeed, DZO were able to obtain (6.4a) by a
slightly less rigorous argument than that leading
to (6.2). Choosing a simple exponential form for
the t dependence of the absorptive part in the dif-
fraction peak region, they calculated the singu-
larity of the amplitude produced by the shrinkage
of the diffraction peak which, by unitarity, must
accompany a power-law growth of the total cross
section. Requiring that this singularity be no
worse than that produced by the exchange of neu-
trino pairs, they obtained the bound (6.4a) on the
growth of the total cross section. We remark that
the same argument applied to light-by-light scat-
tering gives the result (6.4b).

It was also pointed out by DZO that in order for
the bound (6.2) to be consistent with unitarity the
number of subtractions in the fixed-t dispersion
relation for lepton-lepton scattering with t «0
must be less than or equal to 2. We now see that
the light-by-light and massless m-m elastic ampli-
tudes must also obey twice-subtracted dispersion
relations for t + 0.

tering of massless pions:

o„,(s) ~ const/s . (7.2)

o...(s) ~ const/s'. ('I .3)

This is already much stronger than the Jin-Martin
result for the strong interactions.

The upper bound of DZO, namely

o...(s) & const x s'", (7.4)

applies to massless m-m as well as to lepton-lepton
scattering. Using the same method we have found
for light-by-light scattering the improved bound

This bound has in fact been obtained as a strict
inequality for lepton-lepton scattering by Anselm
and Gribov, ' who examined the high-energy be-
havior of leptonic weak interactions using the com-
plex angular momentum theory. Within that frame-
work they demonstrated that unitarity requires the
existence of a j-plane singularity located to the
right of j = 0 for t = 0 and the positivity of the con-
tribution of this singularity to the absorptive parts
of the s-channel partial-wave amplitudes.

It would be remarkable if the bound (7.2) could
be obtained from more general considerations.
In a theory with only massless particles one could
argue on dimensional grounds that the asymptotic
behavior of total cross sections must be essen-
tially o«, (s)-const/s, since there are no masses
around to scale the energy. So the lower bound
(7.2) would be saturated.

Let us summarize the results we have obtained
without appealing to any model. For massless
pion-pion, neutrino-neutrino, neutrino-electron,
and light-by-light scattering the forward disper-
sion relation (for the appropriate helicity ampli-
tudes) requires at least one subtraction. The total
cross sections for these processes are bounded
below by

VII. DISCUSSION o...(s) & const x s'" . (7.5)
We discuss here the relation between our lower

bounds and those of other authors. Auerbach,
Pennington, and Rosenzweig '~ have already noted
that the Adler zero is inconsistent with an unsub-
tracted forward dispersion relation for massless
w-m scattering. How'ever, their conclusion that
Im E(s, 0) ~ const is incorrect, at least without
further assumptions. " If the high-energy behavior
of pion-pion scattering is dominated by the ex-
change of Regge trajectories, then in the limit
m,'-0 the intercept of the leading trajectory
(presumably the Pomeranchukon) must satisfy the
lower bound:

ap(0) ~ 0.
With the usual Regge signature factor we obtain
the lower bound on the total cross section for scat-

Of course (7.4) and (7.5) are not as strong as the
Froissart bound.

We hope experimental information on some of
these cross sections mill be available in the not
too distant future.
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The possibility of molecular-type binding in a many-multiplet quark model is considered. This is

defined as the binding of three or more constituents (quarks and antiquarks) that results from a spatial

configuration in which attracting pairs of particles are relatively close together. It is shown that the

strength of such forces is a decreasing function of the size of the regular representation of the assumed

internal-symmetry group. It is suggested that the actual hadronic internal symmetry may be the

simplest symmetry that does not lead to many bound states of many hadrons.

I. INTRODUCTION

We consider the question of why SU(3) is the
internal-symmetry group of hadronic interactions.
The hypothesis that nature prefers simplicity can
be used as an argument against more complicated
groups, but points up the fact that SU(3) is not the
simplest conceivable symmetry. One hopes that
a consistency criterion will be found that rules
out other internal symmetries, especially those
simpler than SU(3). Most discussions of the pos-
sibility of such a criterion occur in reference to
bootstrap models, but the question is equally valid
if hadrons are composed of quarks.

In this paper we propose a criterion that pro-
vides a distinction between internal symmetries,
and might rule out symmetries simp1er than SU(3).
Our hypothesis is that the interaction constants
involving basic particles must not be so large as
to lead to large numbers of many-particle states
bound by strong interactions.

The motivation for this hypothesis comes from

comparing various known forces between parti-
cles. We consider first the simple symmetry of
the electrostatic interactions, mediated by one
vector field, the photon field. The electrostatic
interaction leads to many weakly bound systems,
i.e., systems in which the volume is approximate-
ly proportional to the number of constituents. Ex-
amples are the hydrogen diatomic molecule and

a chunk of iron, although the strong interactions
within the iron nuclei play an essential role in the
latter case.

Within the realm of hadronic interactions,
atomic nuclei are weakly bound, many-particle
states. However, nuclear forces are unusuaI. in
that their effective strength depends on the fact
that the pion is much lighter than all other mesons.
Thus, strong nuclear forces are the result of
SU(3)-symmetry breaking. Our hypothesis is that
nature must forbid a stronger mechanism for had-
ron binding, a mechanism that does not depend on

symmetry breaking. Lacking a theory that in-
cludes strong interactions, we do not know that


