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Relativistic transition amplitudes in a class of 0(4,2) infinite multiplets.

II. Discrete-continuum transitions
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A general relativistic formula is derived in closed form for the photoeffect amplitude from a
composite system of spin )Lt described by O(4, 2} infinite-multiplet wave functions. For p, = 0,
it reduces to the relativistic H-atom photoeffect amplitude.

S„=-ie d'x J„xA" x

For the external field we take as usual

X„(x)= (2v/q V)e„e( "")- (2)

Inserting (2} and the form of the initial and final
states into (1}, we perform the x integration, de-
fine the T matrix by

S„.=- i(2v)'6'(P, —P,. —q}r„
and obtain for the T-matrix elements

f' f i' i

(4)

Here 4 „y is the initial discrete bound state and
j

the outgoing scattering state. They are
given in terms of the group states of the p. repre-

In the first part' of our investigations of the
relativistic transition amplitudes in a class of
infinite multiplets, characterized by spin p, , we
derived generalizations of the Coulomb scattering
amplitude (the case p =0 gives the usual relativ-
istic Coulomb amplitude) In. this second part we

study the analog of the relativistic photoeffect.
In contrast to the continuum-continuum transitions
of paper I, we have to take into account, in the
discrete-continuum transitions, the momentum
transfer to the system by external interactions.
This makes the problem a bit more complex.

The starting forms of the S matrix and the T
matrix are the same as in the p, =0 case. ' The S
matrix for our calculation is

sentation of the dynamical group SO(4, 2) by'
1./2

) 1 2 (($ p») ('()
~f)( )

M, (1+n')

where M„ is the total mass of the bound state N,

and
(2v)»/2 ~ gg &/2 (-~ "/2)

V 2((nm, m, Sk 2(w)'

x I'(1+ (), +i)(), e('~ 3)r(-i)( —i(, )
r(-i) +y. )

)( e(ieL2) ((8XL45)e(-wz45/2)~@-c ) (6)

The kinematics in these expressions is such that
we are in the center of mass of the initialparticles,
i.e., II, = -(I, and in a coordinate system in which
the photon comes in along the z axis with its po-
larization r along the x axis, and the final free-
particle momentum kf points in the direction
(8, (()). Then Eq. (4) becomes

M "' 2p ez

m, Poq V2 2(1+p'+ n') Sk

x e(-"/"r(I+)/, —6) r(i)( —)(. )

r(i)(+ p)
where we have introduced

I =&q '. )e
I "2e ""e-(e/'45-

fi (-ix)

x e'('-q'»e"
& '45r' ~/q, )

i, = 6), ——,'sn . (8)

%e take the current operator J„ to be

Zq = n, l'„+n2P„+ n3P„r~,
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i.e., the standard O(4, 2) current. '2 For our pro-
cess in the kinematics chosen, only I' contributes.

%e use again the parabolic quantum numbers to
label the group states, and shall take the initial
state from now on to be the ground state:

l~:; 1&
= [l(b)'), —1 —I) I), o, —lu I; I) I&

+ l(b)' —I —I) I» o l)1 I
—lul&]

b/1 = iX-(10)

Ie„,&
= [lo, o, v; I) I&~ lo, o, v; —I) I&],

X, =1+ I!1 I . (11)

%e restrict the spin-projection quantum number
v of the ground state by Iv —1

I
- I)1 I. Actually the

limiting case v=+I)1 I
is required. In the oscillator

representation of SO(4, 2}we have explicitly
()1 -0)

I0, 0, v;l)1 I&
=- lo, 0, v&

=[()1+v))() —v}']"'a""'"'a"""'Io&

The matrix element M«can be split into two

parts, one part for lLt,
& 0, and the other for p, &0,

and these two parts do not interfere, because the
group generators do not connect the two repre-
sentations. Hence

fi « (12)

It will therefore be sufficient to give the calcula-
tion «r }1= l)1 I

The case )
= —l)1 I

is similar.
From now on, therefore, )1 means lp, I.

%e first evaluate the action of I'. Because

I' = i(a, b, —a, b, + a, b, —a,b, ),I (13)

we find

r'Io, 0, v) =-,'i[()1+v+1)~ 2ll, 0, v+1&

—()1 —v+1)' 'IQ, 1, v —1)] . (14)

The matrix element Mf,. can be split into a rotation
and a Lorentz-transformation part. In fact, be-
cause L, and I,„commute with J, we can write

bf/, . ———,'i. g [(!t le ' »e( '~ 2 ln'n ' v+1& ()1 + v+ 1}~(n,'n,', v+ lie ' / ' e '~ 4» e-' { 42 ll, 0, v+1)
0 y ft 2

—({) Ie ' 2 e '~ 2 ln'n' v —1&()1 —v+I)' (n,'n,', v —lie ' / e{'~ 4» e ' 42 I-0, 1, v —1)].
(15}

We shall treat only the term with (v+1); the (v —1)
term is similar and we shall state the result for
the (v -1) case. Thus, we wish to evaluate

A= g ,'iR„„—(8,{/)) 7,„,„,(8, g, 8,.), (16)

where the rotation matrix R „(8,{/)} and the trans-
ition matrix T„.„~ are given by

j. 2

R„,„,=-(4'
I

{ ' '~ ' ln,'n', v+1),

T„„=()1 + v + 1)'/'

x (n,'n,', v+ 1
I
e{-"/'4 ' e"""

x e' "{'42)II, O, v+1&.

The transition matrix T„, , can now be evaluated
7l j tt2

by algebraic techniques using the direct product
O(2, 1)x O(2, 1) as shown in the Appendix. The
result is

V/2 ~( V -~)/2
benin

r = (p, + v+ IP D n i+()1 n)/2, 1+{)1-n)/2I

~ n(]»/2+i~
gg +( /+V)/2+7, , ( P+t/)/2+/ j

where the hyperbolic rotation matrices are given
by

~+2&-1~~ i/2
Dk (g/) ( I'

(
—

) (n+2k)pn
(2b —1)!n!

(n+ 2b —1)!
nk, k+1(W) ( }

(2b) ) ( 1) (

X I —i-( n+2k+1) pn-1x (e)
(il+ 2b 1)
(2!2—1)!n!

X (
—

)
-{ +2 +n1) (kpp)pn 1

The arguments %', and 8'2 are identical to those
given in paper I. %e have, therefore,

[(+ + v+ 1)n / ] 1/2 ( 1 OI'( '2 ) I '
(o )-(k)+)I -n+1) nl -1( —)-(n2+ +v+ 2)2

Pl '

[( v)( + v+ 1)]1/2 ( 1 ) I 'i 2 I I '
(+ )-(n&+ 2 -n+l)P n& -1()3 P )(

—)-{ng+ 2+n+2)P ni—p p, +v+

(20)
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We next evaluate the rotation-matrix elements
R„„,, again algebraically, by using the decorn-

n&n2 y

position, this time O(3) x O(3). Namely, we write
the states as

where

j, = —,(tv'- 1 —p ) + t) =j + P,

'!n,'n,', v+ 1) =
(j,m, ) )8)

~j,m,),
j,= —,'(yg,'+ n,' ) + p. =j + ]L(, ,

j,= —,'(n,'+ n,' }=j,
mg = p(n2 —n()+ v =m+ v,

m, = ~(n,' —n,' ) = -m,

~(N- 1 —t), ), 0, —t),) =
~j,', )n,')

~j,', m,'),

(21)

(22)

We solve for n,' and n2 in terms of j and m, and
use the usual d functions of the rotation group,
and obtain

Qp Qy Q2 Qg C2 Q2 pj

1 „. „, „,t2 (j +t).+m+v+1)!(j +t), —m —v —1)!x jjj -rn)~j +m+ljj' '
o),P, (j + m+1)!(j —m —1)!(tt + v)! (p —v)!

P P,„„,],t2 )(j+t).+m+ v+1)!(j+p —m —v —1)!
n2P, (j +m)!(j —m)! (p + v+ 1)!(p —v —1)!

We shall now apply the general coupling of the d functions'.

(23)

Jy+)2

d„, (8)d ', (8) = Q (j,m,',j,m,' ~j, m,'+m,')d', „. .. (8) (m,'+m,',j ~j,m„j,m, ) (24}

In our case j, = -m,' and j,= -m,', and the sum over j reduces to the one term j =j, +j,. Using explicit
values of the Clebsch-Gordan coefficients we get

~&+~2 . . (j, +j, +m, +m, )!(j,+j, —(m, +m, ))! 't' [2(j,+j,}]!
(j,+m, )!(j, —m, )!(j,+m, )!(j, —m, )! (2j,)!(2j,)! -ti™i -» ~2

In the expression (23) for A we have precisely the
Clebsch-Qordan coefficients (25). If in the first
term we identify

j1, =j )2= p

m, =m+&,

and in the second term

fPZ~ = 7tl ~ W2 = V + 1

the quantity A becomes

x P ' [(j — )(jmm +I)]+'t'd', „(-8)d',. ( 8)d" „.„(--8)
~2p. o.p

', e '~[(p, —v)(p + v+1)]'t'd "„,„(-8)d',. (-8)d,' (-8)
&24~

Summation. The summation over m in (26) can
actually be carried out. The key lies in recogniz-
ing that the factor (a,P,/n, P, ) is an m-dependent
phase and that the index m is the eigenvalue of J,.
We have from the Appendix

so that

Px = -P&

n~tL (a,p, )*
= exp[ 2i()) —-'v)],-

~24 ~iP

(2'I }

(28)
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where we have defined

a1p1 =
I ag p1 I

e

= la, p, l(cosy+ising }= R, +ii, . (29}

Thus the m-dependent part in the first term of the
sum, for example, can be written as

e "' ' 'r" [(j —m)(j + m + 1)]'I'

and the sum becomes

g e'"'e ""&-i~ le '"~.ilm&&mi le""li, -I&

=""e""Q&jj -le ' 2e "-"».Ijm&

x &mi le""li, i&-
=e'"e"'( jj le -' 2e ""~J,e' 2lj, -j), (32}

x d', „(-8)d,' (-8}

=g e " ""'-(-i -i le '&"ar ljrn&

d„,.(8) =(-1) "d'.
, „.(-8), (31)

x(jj le 'Or2l j, —m&.

The phase can be placed into the rotation-matrix
elements. Furthermore we make use of the iden-
tity

where we have replaced a sum over a complete
set by unity. The rotation-matrix elements can
then be evaluated easily. We find

e'"'e""e '"j sine(cosr!+i sinr) cose)" '

=e e js1ne R,+ iI,cos8

The second sum A. can be done in the same way.
The complete expression for M&,.

=~ "1 is then

(2j)!(2!1)! a, a, a,
l' 2j sine cosy
l (R,+iI,cos8)""

P1P, e '
[(p, —v)(!1+v+1)]' ' „P2@e' [(p, +v)(p, —v+1)]' '

L a,g (R,+iI,cose)"" """ a p, (R,+iI,cose)1'"

The expression for Mz,
" is obtained from this expression by changing the indices 1 and 2 and by re-

placing the spin projection -p, of the d' function by + p. .

d"„„,(-e)- d "„„,(-8) .

The final expression for the

I'(iz+ p, )
r(rX )(2 )t

X
(iX —1 —!1)sine cos y

(m, ' —i)""

matrix elements is

[(1+p, )'+ a']"' m„ lcl

, .[(1+p. )'+ a']"' lcle "
m,

(!1 — }(!1+ +1}]'I'd", .„(-
I

+ ' e'"[(!1+v)(p, —v+1)]'~'d",„„,(-8) .E, + k'

(35)

In the Appendix we have also listed the values of the n' s and the p' s for both the relativistic and the non-
relativistic cases. In the limit as p, -o we recover the previous values.

Nonxelativistie limit. The nonrelativistic limit of the matrix elements is given by
1/2 4.s. ~+ & C+ g' iX1(i~+!1) mx 4ik -i~y(l

l

t)~r& &1 -c+k
I'(i& —!1)(2!1}! (1+!1)a,

(gl. —1 —p, )sine cosy
( + k}2+V y )I, l/

(1+p, )a, lcle " e '
[(p. —v)(!1+v+1)]'~' „( )k (c+8}"" (qm/m, v k)'+1/(1+p, ) ao'

e"[(! + v)(! —v+1)]"'
(qm/m, ~ k)'+ 1/(1+!1)'a,' (36)
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The essential angle dependence is the factor

(m, ' —i) ~ (c+6)= q — +&'+
mg Qo (1+p)

yn—2 q —kcos6.
PFL 1

The matrix element thus has bvo parts, one part
coming from the p e term as in the spinless case

sin6} cosy
(m ' —i)"" (c+ f )"" '

The O(2, 1) generators for raising and lowering
n, and n2 are

I. =-X(,"+X(2),45

(A2}

—~(3) ~(3)

and the quantum numbers of the iwo O(2, 1) groups
are given by

and a second term characteristic of the algebraic
current in a spin-p. theory.

APPENDIX

Consider the transition-matrix elements

Z'„,„,= (p + v + 1)'

x(n,'n2, v+l~e ' ~ 45e''-. 35e'e~ 45~1, 0, v+1) .

N, =n, + (ip, —vi+1),

N2=n, + ~(~p, +v~+1),

k, =-,'(~p —v~+1),

k, = —,'()p + v(+1) .

(AS )

(~)T,„,= (g + v+1)' '(n,'+ —'(g —v), —,'(p —v)(exp[i', (-N,'" cosh&~+ N,' ) sinh&~}] e' -"i ~-,'(p —v}, 1+-,'(g —v))"2

x(n,'+ ~(p, + v)+1, —,'(g+ v+ 1)(exp[i/ ( N~~'~ co-sh&& —N~'~ sin&&)] e ' -"2 ~-,'(g+ v)+1, —,'(p + v)+1) . (A4)

Introducing the hyperbolic rotation-matrix ele-
ments D„",„(+we obtain the expression (18) of
the text. The arguments W,

'

and 8; are found by
using the 2-dimensional representation of the
operators in (A2):

W, =exp[i&,(--,'io, cosh&/+ —,'io, sinh&f)]e "-'s '

Z = 2SV2,
1 ~ 2

Z = -2iV„
n, =cosh( —,'&}cosh(-,'8 )+i sinh(~&)sinh(-, '8, ),
P, =cosh( —,'1)sinh(-,'8 ) —isinh( —'. $}cosh(~8,},

W, = epx[ig, ( i ~,cco-sh&—f ~io,sinh&z)]

+4 6 03/2

8,= &y+ &, , 8 = 8~ —8, (AV}

e1~ P2 =
PX ~ (A8)

(A8)

%'e give now a list of the most important rela-
tions:

n, P, = ft, +if„n,P, =- a -iZ-

R,= ——i — l [(1+p. )'+ n']'~', f,= —,
' [(1+g)'+ n']'~',2' k m,

R = —i —— ' [(1+p) +n ], i = ,i a;——1 . q 1 m, +m, —m2 2 2 1/2 1 ~ 0
2a k m, 2yyg, . km, '

, , [(1+p)'+ n']' ' 2m; '(M~'+M, ') —(M, '+m, ' —m, ')(M~'+m, ' —m, ')
a~n, k 2m~~

i„fcfe", -, , [(1+p, )'+ n']'i'

2iam, k

[(1+p. }'+n' j"'-
{A10}
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n, 2M, (E,. +k) ' ' ' ' ' [(1+ )2+ ']'~2 (E, +k) E, +k

In the nonrelativistic limit me have

1 . t 1
' i+2 1

E,= ——i(l+p)ao k +» + q —,j.= —i(l+p, }a, 2iq k-
4k ' a,'(1+p)' m, ' 4k ' m,

(A 11)

1 . I
M'

2 1
= —i(1+p)a, t q — -k

'L m, (1+@,}'a,'

=1 M 1
ngn2= 4 i(l+g}ao q -k +

( )2m] +P Qo

1 2qM/m,
4k o (1 )

2ik 1—(1, = —i(l+g}a,(c)e",
1 +P, )Qp 4Q

(A12)

(A12)

n, (qM/m, )' —1/a, '(1+ p. )' -k' —2iqM/m, (1+ ij, )ao

n, (qM/m, ) +1/a, '(1+p)'+k'-2q(M/m, )k

E,+il, cos 9 „, (qM/m, )'+ k'+1/a02(1+ p, }'—2q(M/m, )kcos8

n, n, (qM/m, )' -k'+1/a, '(1+p} —2ik/(1+ g} a,'

(A14)

i(l + p, )a,
P&P&—

kl
m, (1+p)a,

. (1+p)a, M ' 1

4k m, a,'(1+g)'

i(1 + y. )a, ' iV ' 1 1 mj m2

Qo ~1 + Pg2
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