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Relativistic transition amplitudes in a class of Q(4, 2) infinite multiplets.
&. Continuum-continuum transitions
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A class of unitary irreducible O(4, 2) representations characterized by the lowest spin p,
p= 0, +2, ~1, . . . , and the corresponding infinite-component wave equations are considered.
The continuum-continuum transition amplitudes are evaluated by the method of analytic
continuation generalizing the relativistic Coulomb case (}Lt = 0). A general exact Regge-type
amplitude is derived, which contains the relativistic scattering amplitudes of O(4)-symmetric
Coulomb interactions of two dyons in the symmetric model and amplitudes in certain hadron
models as special cases.

I. INTRODUCTION

The purpose of this work is to derive group-
theoretically a class of explicit relativistic scat-
tering amplitudes for a variety of systems. The
method is the following. The states of the system
in the center -of -mass frame are described by a
representation of the dynamical group containing
the Lorentz group and labeled by certain quantum
numbers. The general states are constructed by
means of Lorentz boosts. The calculation of
bound-state properties within this framework has
been extensively studied %e are now interested
in the scattering processes. From a configuration-
space representation of the Lie algebra we deduce
analytically continued values of the quantum num-

.bers (from their bound-state values} for scatter-
ing states. The 8-matrix elements can then be
evaluated as the matrix elements of a rotation
(from the initial to final three-momentum) taken
between the scattering states, i.e., as matrix ele-
ments of a group element.

%'e carry out this program for a class of unitary
irreducible representations of the group SO(4, 2).
The results generalize the Coulomb scattering am-
plitude in two directions: first, in the direction of
allowing a tower of states with spin beginning with
a lowest spin IU. ; second, in the direction of rela-
tivistic kinematics. The general scattering formu-
la we derive is in terms of p. and the "principal
quantum number" n whose relation to the energy
variable s (or momentum q) depends on the kine-
matics and dynamics of the interaction. Inelastic
amplitudes can also be treated by this method.
Some of the physical problems covered by this
theory are relativistic and nonrelativistic scatter-
ing of dyons in the symmetric model, O(4)-sym-
metric Klein-Gordon or Dirac type Hamiltonians
with spin, and relativistic infinite-component wave
equations that have been used in hadron models.

II. DYNAMICAL GROUP AND PHYSICAL
SCATTERING STATES

A. The group states

The group SO(4, 2) has a well-known class of
most degenerate irreducible unitary representa-
tions characterized by a quantum number p. , p, =0,
a-,', +1, +-,', . . . , in which the states are labeled
completely by three quantum numbers only. (In
the general case, apart from the three Casimir
operators, we need six labels altogether. } These
can be chosen to be the eigenvalues of the elements
of Cartan subalgebra': I.„, L,34, and I.„.Hence
the states can be denoted by I n, n, m),

L,~In, n~m) = mIn, n2m),

4.1n, n. m) =
I:n, -n, +-'(Im —~l —Im+ I I)J

x In, n, m),
(2.1)

I., I n, n, m) = [n, + n2 + 1+k (I m —p I
+

I
m + g I }j

xIn, n, m&

=- n
I n, n, »~) .

The case where p=0 corresponds to the so-called
parabolic group states of the H-atom problem.

We make use of two explicit realizations of the
states In, n, m). One is in terms of the parabolic
coordinates:

, t, ( ~c ~imp~ - g/2( $n-if)/2

fthm

n~tlt 8) rf2ftt

x,F, (-n, , Im —uI +I; $)e

xq ~"'~ Y,2F(- n„ mI+p I+;Iq), (2.2)

where

10 622



RELATIVISTIC TRANSITION AMPLITUDES IN A CLASS. . . I. . . . 623

A I'(Im-}/I+n, +1)F(lm+!»I+, +1) '"
tt g Jl2IS r(n, + l)i (n, +I}

1
I'(I —!»I+I)1'(I + ~I+ I) '

A = (-I)n~+/ +~+!m+~!&n (2 3

In this realization the generators L„of SO(4, 2}
are the following differential operators'.

1 m

~~ =&~i&)} L~a =~uar~~a
2

A/ = L;» = nr/7/ —w/(r ' w) +—4; + 2 r/+nr frr ' 2r2
2

IM = L, =
n r, 7/ -v, ( r z ) +—j,+, r . 2r, -

3 5 2r

annihilation operators, and are given in Ref. 1,
for example.

B. Schrodinger states

We shall now compare the states (2.2} with the
following Schr&Minger states in parabolic coor-
dinates:

lm-p l/2

=N e' "— e - {g/n)/2
'Yn n2m n&n2~

X,E, (-n, , In/ —pl+1; &/n}

x (~/n ) I m+ p!/ne - ( q/n)/2

x,E, (-n, , lm+pl+I; q/n),

r, =L«=r~„ (2.4) 1
Nn m m 2&nn m&2 pg ], 2

(2.10)

I =L, = — rn +r+—2

I'~ =L~6=2 rg -r +—

T =L~5 =r n' —c,

with N„„given in Eq. (2.3}. The wave functions
1 2

(2.10) are generalizations of the Coulomb wave
functions (p, =0}and can be realized as the eigen-
functions of the Hamiltonian

with

[w, , z, j =i //. ]//, r„/r' . (2.5)

H=
2m r 2n2r2 '

where

(2.11)

These operators are self-adjoint with respect to
the scalar product

r&Qr ~ 8
v =p —!»D(r), D(r) =, , ), (2.12)

(Incan&m4n(n&m' J 4ngnnm 4'n&m'

5,5
ntm (2.6)

The parabolic coordinates in (2.2) and (2.6}are,
as usual, related to the Cartesian coordinates by

$ =r+ a, 7! =r —z, tang= y/x. (2.7)

The second realization is in terms of two pairs of
creation and annihilation operators a, , 6, , a~~, b~t,

i =1, 2, [a, , a/t] =6//, [b, , b/t] =6„.:

representing the system of two dyons with electric
a,nd magnetic charges q, = (e, , g, ) and q, = (e, , g, )
with an extra scalar potential !»'/2 mr', where
/r =e,e, +g,g, a,nd!/, =e,g, -e,g, (Refs. 2, 3) in
suitable units. The difference between the group
states (2.2) and the Schrodinger states (2.11) is
essentially an n-dependent dilatation of the co-
ordinates ( and q by 1/n and a different scalar
product. The explicit connection between these
two states is now well understood and is given by
the dilatation operator of SO(4, 2},

!
&fn2+(l~+)I l+~+&)/2 &tff~+&I ff4-& l-m+ jf)/2

2

=—8' ~45$, 8 = -lnPl.
nln2m n I 2

{2.13)

2, &n&+&l ~-P l+m-P)/2j. tn2+( les+}I I -m-jf)/2loxXu, &

(2.8)

In addition, matrix elements of an arbitrary opera-
tor A between physical states can be written, in
terms of the group states, as

where

C„„'=[n,+-,'(Im+!/, I+m+g)]!

x [n, +-,' (lm —//, I m+ g}j!-
x[n, +-,'(Im —pl+ m —p, )j!

x [nn +4 (Im+ ~I —m —~)]! {2.S)

1
=- —,(n,n, mle-"'-(I', —I,)

xAe 'e~»»
I n,'n,' m '),

(2.14)

where we used the fact that
In this second realization the generators are
given by bilinear combinations of the creation and r =1"o-I ~
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from (2.4) and the scalar product (2.6). The states
~ n, n, m)' are usually referred to in the literature
as the "tilted states, " i.e., tilted by p'8~~5.

III. CALCULATION OF CONTINUUM-CONTINUUM

TRANSITION AMPLITUDES

A. Scattering states

%'e shall define the "scattering states" for our
representations by analytic continuation in the
quantum numbers n, , n, , and m and in angle 8.
For this purpose we go to the realization on the
space of SchrMinger wave functions (2.11). We
take for the "in" and "out" states m=+p, and —p. ,
respectively. This is because the components of
J=rxm —p,x in the direction of -r" ands are re-
spectively +p. and -p, . Thus, the scattering states
are states of fixed helicity + p. , determined by the
representation of the group. With these values of
m we expand ()(e in (2.10) into the asymptotic re-
gion and impose on it the condition of "in" and
"out" states with proper normalization:

~k ter
~4hz+ k (g +&gp@

The continuum-group states are eigenstates of
L«with continuous eigenvalues A, . In contrast, the
bound-group states were eigenstates of L„, with
discrete eigenvalues n. We can pass from bound
to the continuum states by a hyperbolic rotation
with the tilt operator L„ followed by an analytic
continuation of the quantum number n to -iA. The
"in" and "out" group scattering states are then

pcs R (~)R (g )Ck e - I'LL 4gl2 qG (3

where n, , n, , and m are to be continued to the
values given in (3.1). The standard helicity rota-
tions R, (y)R, (8) bring the direction of the asymp-
totic plane wave from a direction parallel to the
z axis to the direction defined by (8, cp). The nor-
malization coefficients C', are

(—I)((,„,[I"(-iX —p+1) "-'
C)

(3 2)(/2
e' 'I'(1+ & -iX) I, ( 'A. 1)

-m X, /2
I'(-iA. —i(, ) '"

Cg =(3 ~)(g2 e I(1+/+1K) ~( .
~ )

The improper tilt e '~~5" is to be understood as
the limit of e ' ~5 as @--i-,'m. The states so de-
fined have the normalization

This procedure gives the folloming values of the
quantum numbers:

"in" states:

n", =n —fgf

The physical states are related to these group
states by a tilt, boost, and normalization (as was
given for the SchrMinger states), depending on
the particular application and model to be consid-
ered.

rn"' = p. .

"out" states:

n',-'=n —1- ~i(~,

(3.1) 8. The scattering-matrix elements

The scattering-matrix elements are given by

(3.4)

We shall take the values in (3.1) to define "scatter-
ing states" moving asymptotically parallel to the
z axis in general. We assume from now on that p.

is positive; the calculations are the same for p,

negative.
Our aim is to develop a scattering theory in

terms of the quantum numbers directly, side-
stepping the use of relative coordinates and their
asymptotic forms. It is then natural to take the
same universal group-theoretical definition of
scattering states given in (3.1) in all cases; it is
the simplest definition which in the nonrelativistic
case coincides with the usual definition of scatter-
ing states. The reason for trying to construct a
scattering matrix directly in terms of the quantum
numbers is that a coordinate-space representation
of the wave functions may not always exist, as in
some relativistic cases.

where k& and k,. denote the direction of propagation
of the "out" and "in" states, respectively. Be-
cause we have an exact specification of the states
occurring in (3.4), we can actually evaluate the
amplitudes as an overlap of two wave functions.
We shall use the method of analytic continuation. 4

It consists of first evaluating (3.4) for the bound

states and then continuing the result analytically
in the quantum numbers to the values given in (3.1).
(3 1)

In the center-of-momentum frame the S-matrix
elements Sf,. are given by

S~, =Ge ' ~(( n'n 2m'~ ZP (tkz, k,.)~n, n, m). (3.5)

Here C is a model-dependent factor and J, the
current operator of the model. The matrix ele-
ments are taken between physical states defined
in (2.14). Because the initial and final states have
the same energy, we can move the tilt operations
together and then evaluate the matrix elements of
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S» = « "'&)I'). (a, o) IR,'(8)ling(o, a)}. (3 8)

Here the two A.'s have been kept different because

erp PUtting all thes e factors and 6 together into a
new term C, we are left with a simple matrix ele-
ment of a rotation between the group states, '

we shall go to the limit of the improper tilt after-
wards. Thus, in all cases considered, the S-
matrix elements are proportional to the matrix
elements of a model-independent rotation. This
factor common to all models is

14'/ g» 4 1/2

lR (8)l)I)
' }e '" =(8v') 'e '" e" '"(-1) "I'(1+ -ik)I'(I+ i)-).')

I'(-iX + )).+ I)I'(iX'+ i), )

x lim [(n' —1 —i),, 0, -tulR, (-8)e '~baal-l, n —g, i)}J .
g~ im'

n'~iX»; n~-iX

(3.7)

We take n'wn and then go to the limit n'= n in order
to extract the 5 function in energy that must ap-
pear in Sz, %'e have chosen our coordinate sys-
tem in such a way that the rotation R(kz, k, ) does
not involve any q dependence (the so-called stan-
dard orientation), then R(k», k, ) becomes a. rota-
tion through the Y axis by an angle B, the scatter-
ing angle. Thus the S-matrix elements are reduced

essentially to the matrix elements of a rotation.
They are proportional to the following quantity I:
F„„, (n'-1=—a, 0, -plR, (-8)e'ea '~"l-l, n —g, g),

(3.8)

kg+1 + p, pg +0+1 + jL

with

1
1 +2+,

Q~CV~

22=
(-1) a T(n+1+)).)I'(n'-a+g)

r(1+2') r(n+1 —i))1 (n' a —g-)

(3.12)

with B„„=B„—Bn» =- Q.

C. Evaluation of F„„'

Inserting a complete set of states in (3.8), we

obtain

and

x (oro)r) "

a~ = coshBnn»,

P ~
= sinhBn„.

B, BT, Bnn (3.9)
We substitute Eqs. (3.11) and (3.12) into Eq. (3.9)
and use the identity'

where R, (8) and T, (8„„,) are defined by the follow-

ing relations: , —,x' '(1 —x)',F)(-1+a, n, P; y)

R.(8) = (n'-1 —q, 0, -i) IR, (-8)la, -a+ n'-I —v, u}
(3.10)

T,(8„„,) = (a, -a + n ' 1 —i), , p-l"ea'a~ aa-ll, n—i), , )).}. and the relation'

=2F, (-l, n, P; xy) (3.13)

The rotation matrix elements R, (8}are given by

(see the Appendix)

(8) A ( 1)(a'-a-1(p p
}a' -a-) (I p p )a

,F, (a, b, c; z) =(1-z)' ' ',F, (c -a, c -b, c; z)

(3.14)

to obtain the following general expression:

where

(3.11a)
F„„.=E„'„[sin'(-,'8}l"( 1)2P

"" I' 1+2'.

A —, +
( I)-a (3 lib)I'(n'+ a + p)I'(n'- a —)), )

T(n'+)))I'(n+))+I) "'"e )~a a. )a).
X

»
)I'(n'- g)I'(n +1 —p )

and P~ = -sin( —,'6).
For the transition-matrix elements T,(8„„,) we

obtain (see the Appendix) where I„'„.is given by

(3.15)
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i sinh8
cosh8 ++e

(
stu2 (I 8 ) (II II + 1)

x 1-
cosh'8„„,

x2E, n'+ pI ~+ pI I+2p, ; 2 . (3.16}
sin2{28)

cosh H„„p

Next we evaluate the limit of I' (more precisely
the limit of the singular term F') whe n goes
to n'. In order to extract the usual 5 '.nction in

energy, we use the following transfo. -. 1ation
formula '.

,F, {a, b, c; z) = (-z) ',E, (a, -1-c+a, 1+b+a; 1/z)
I"(c)1'(b -a)

+ (-z) ',E, (b, 1 —c+b, 1 -a+b; 1/z).
I'(c)I"(a —b ) (3.17)

This yields

( )II II

F A [a2-sin2(-'8)] ~ """
I'(2!2+1)I'(-n -n') sin'{28) 2 "F(!2+n', -g+n', 1+ n -n'; a'/sin'(-, '8)}

I'(y, -n)I'()2+1 -n') a'
I"(2y, +1)I'(n+ n') sin2{28)+,

}
—, F(g-n', -p -n, 1 -n+n'; a2/sin2{28)),I' iL+n' I' g+1+n) a'

(3.18)

We see that lim, E„„,is zero unless n = -n' or
Taking out the nonsingular parts, we find

limE A (m) "~[-sin2{28)]'~ '

I'(2p +1)
I'(p +i X}I'(p+I iX), -

We compare this expression with the following
relation for the 5 function'.

-2mb(x) =lim [a'*I'(-ix)+a "1'(ix)], (3.21)

and obtain

»mE„„,= (-1)-2-'[sin2{28)]" '2wb(a —Z')

x [I(iX y)I'+(i'z —p, ),

x I'( iX+ p, 1)-1'+( iX-!2+I)-] '".

We are now ready to take the limit 8- -im and
perform the analytic continuation n - -i h, , n'- + iA. .
The limit 8- -in is equivalent to the following
limit on n and P:

lim f )= lim
~~o, 8~ f

D. The result

We now go back to the S-matrix elements Sff
%Ve convert the 5 function over (X —A.') into a 5

function over the energy and obtain

S =C2xb(p' -p ) e '"~ "' (-1}22 ']. . gp
ff O Sm'

I'{-iX+jtf, + I)x[sin2(2'8)]'~ '(iX+ p) ~(. 1)

(3.23)

This is our general result. The basic Coulomb-
type structure of the amplitude can be recognized.
Indeed, for p, =0 we recover the relativistic
Coulomb-type amplitudes for the spinless case.
We shall see that these amplitudes are also of the
Regge type. The basic ingredients upon which this
formula is based are the representation of the
dynamical group describing the physical states of
the relativistic composite system, and second, the
analytically continued values of the parabolic quan-
tum numbers (3, 1}representing the scattering
states of the system.

It remains now to evaluate the model-dependent
coefficient C. In Sec. IIIE we consider explicitly
several applications to relativistic and nonrelativis-
tic cases with spin p. , evaluate the scattering am-
plitude, and determine the corresponding "tra-
jectory functions. "
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E. Relativistic and nonrelativistic kinematics: examples

The asymptotic quantum numbers of the "in" and
"out" states given in Eq. (3.1) depend only on the
principal quantum number n for a given p, repre-
sentation of SO(4, 2). Our fundamental formula
(3.23) depends only on n. The relation of the quan-
tum number n to the energy (or center-or-mass
momentum k) depends on the mass spectrum of the
system, or on the internal dynamics. The basic
dynamical group SO(4, 2) is common to the Schrb-
dinger-type Coulomb problem, or to the Dirac or
Klein-Gordon type, or even to the fully relativistic
Coulomb inf inite-component wave equation. The
only difference lies, for the present purpose, in
the functional dependence

n = n(k),

which we now evaluate for a number of cases.

"Schrodinger case"

By this we mean the Hamiltonian (2.11). The
total spin of the system is ILL (integer or half-odd
integer), but the kinematics is nonrelativistic.
In this case, from the algebraic solution of H we
know that ' the eigenvalue of I,« is X = 1/k, hence

1+ p

[s tn (—8 )]
- ("+n+ 1 &

4( 2

I'{2(2+1) 22(

I"(-n+ p}I'{I+p+n) n'

(3.28)

Hence we have the elastic scattering amplitude

f(kk)(1)22 exp[-n ln sin'(28)]
2k sin'( —'8)

(i) 0(4) -symmetric "Klein-Gordon" -type Hamil-
tonian with spin p (Ref. 10). The Hamiltonian

H»= y+m», 2H r r (3.30)

x (-n+(2) e '2~ (3.29)I'(-n+ p+I)
In this form the amplitude agrees with the result
of Zwanziger, ' obtained by an entirely different
method, and, for p. =0, it reduces to the Coulomb
scattering amplitude. The poles of the amplitude
(3.29) agree with the corresponding bound-state
spectrum of the system.

ReLativistic examples

and

n = -2/k, n'= -2/k'

n'
8„„,=8„—8„=inn' —inn = ln—= ln —,

(3.24)

ca.n be solved exactly by the O(2, 1) algebra I'„
I'„T of Eq. (2.4). The spectrum is given by

~2 -1/2
E=m 1+—

N

It is instructive to derive the limits from the be-
ginning. ' Equations (3.15) and (3.16) become

m 1 (3.31)

I =I ' [sin2(-,'8)]n
(-1)'"

F(2i2+1)

I'( n'+(2)I'(n-+ p, +1)
I'(-n ' —p, )I'(n + 1 —(2)

X -((n+n 12/2(+k1)2 1
7

k'+kI' = (k' -k) '"

(3.25)

The factors occurring in the general formula
(3.23) become in this case

q = nm/A, , n = iA, -.
1 BA, Bp 1 BA. 8E v

(3.32)

1 4kk'x, „}, 1+ „,}, sin'(-,'8}
- (ff+ n '+ 1 )

Using the kinematics appropriate for a particle
moving relativistically in the field of another, we
obtain

-4k''
~»E, -n'+ p. , -n+ g, 1+2',;(,}2

sin'-'8
(-1)'"''e '"~ {. }I'(1+i'—i X)
v sin'( —,'8) I'(1 + i2+iX)

x exp[i' ln sin'( —,'8)]. (3.33)

Further, Eq. (3.18) now reads, with y =k —k',

I I (2k)2 '[4kn2 sin2(18)]- (n'+1+ 2}
y~ p

l~l

(ii) Dirac-tyPe HamiLtonian saith O(4) sym-
metry. ' The radial wave equation is given by

p„+—,Z +(m -E )—1», nE am
r' r r

I'(2p, +1}
I (-n'+ i2)I'(n'+ i2+1)

Again using Eq. (3.19), Eq. (3.20) becomes

(3.27) —(p'm —i p, E) ()1 =0, (3.34)

with the spectrum
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2 j, 2
Pl -g CV=m l
pg2 + Q2

Henc e

m+F
= -ih.m-E

(3.35)

(3.35')

Bg BQ 1 B+
Bq

1 Bs
2q2~s Bq

1 Bs

q~s e(q'}
= 4s"'(q[s'-- (m, '-m, ')']'"[.

Thus the 8-matrix elements are given by

(3.39)

1 BABE 1 8E
BQ' BA. g

(3.36)

The scattering amplitude is identical to f in
(3.33) except for the different relation between q
and A. . This case is an approximation to the Dirac
Hamiltonian with spin to order e'; it has much
nicer symmetry properties and contains recoil
corrections.

(iii) Infinite comPone-nt suave equations for
Iiadrons. ' A class of O(4, 2) infinite-component
wave equations in momentum space is of the form

(3.3 "t)

I"~+~2+~+ ~3+~~4+~ ~~J-

n2M2+y
[a 'M' (a M'- p)']'t2 (3.38}

Because s = M2, and introducing the magnitude of
momentum in the center-of-mass frame q by

4q's = [s —(m, '+ m, ')]' —4m, 'm, ',

we have

where n&, P, y are parameters, F„,I'~, J.„,are the
SO(4, 2) generators [see Eq. (2.4); P„ is the total
momentum, and q" the momentum difference in
matrix elements between two states. These wave
equations are exactly soluble. The principal quan-
tum number n, eigenvalue of J,6, is related to the
mass spectrum by

e-i'd@( 1)2P+1
St, = (27i) 5 (P —P') —2 [

. , (, )]
x exp(iA. In[sin '(-,'8)]] (iA + g)

I'(1+ii ix-) 1 Bx BP,
I'(I+!i+iA} q' Bq BX

4 4, m e '"@(-1)"''
= (2m)'5'(Z- Z') —,

x exp[i%. ln(-t /4q')] (ik + g }

X
r(I+! -i~) (-16s'"}
I'(1 + p, +iX) [s' —(m, ' -m, ')']'" ' (3.40)
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APPENDIX

In order to evaluate the matrix elements R, (6)) in
Eq. (3.10) we decompose the basis ~n, n, m) as a.

direct product of two O(3) bases, namely,
~ n, n, m) =

~j, , m, ) 8
~j, , m, ) . Therefore R, (8) can

be written as

II,(e) =(j „m, jII", i'(-8)/I „m,'&
x(j „m, /II&,"'(-8)/j „m,') .

En our particular case we have. ) y Q (-pg' —1+ p. },
ml j j Pny j ] a j 2 j y p m2 j I g and
Pn2 = —j,—a —p, . Furthermore, "

where we have introduced the invariant square of
the momentum transfer

t = -4q' sin'(-,' 8 ) .

The same S matrix results from a relativistic
generalization of the H-like models apart from a
change in the relationship between s and n or A,

and spin ~ti, ~. In the latter case,

s = m, 2+m22+2m, m, (1+ a2/n') .

D, (8)=, , (a) & i(-p) i ~& 2E, (-j —m, ,j -m, +l, m, ' -m+1; pp ),(, ) (j +m,')!(j -m, )! '" 1

„(j-m, ' !(j+m ! (m'-m !

apl~ & m (A1)
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D"', (8)= .
''

. ', ' a &' &p ~ "i E( '+m, j+m+l, m, —m'+1 pp)
(j —m~)! (j +m~')! (m~ —m~'}!

m, & m,
' (A2)

in which n=cos(-,'8) and P =-sin(-,'8). Then using
(Al) and (A2) we obtain the result given in Eqs.
(3.11).

The transition-matrix elements T, (8„„,) in Eq.
(3.10) can be computed in a similar way using the
fact that the basis ~n, n, m) is decomposable into a
product of two O(2, 1) bases. It is easy to prove
that T,(8„„,} is given by

(k) (-1)' I'(h + n)I'(0 + m}
r(2X) I (n -a -1)r (m -a+ I).
X (Q)rs k (~)- (n+k/

( p)k-III

1
&,E, n+k, A; -n, 2k;

one obtains for D,',"„, „,(-8„„,)

(A4)

x nI/2+ p-n'-a-1/k. n+1/2( nn') '

Using the O(2, 1) matrix elements s'

(-1)" '""" I'(n +1+p}I"(-n' -a+t/, )
""

-n'-a-1/2, k+1/2 nn' P(I + 2+) I (n + I +}T( t a ~)

g (/X )-(k + a+ //+ I )
(/X )- (k+ I+ //) ( p )k+ k~+ a+ I

2 2 2 I
1

+ p. +1,n'+a+ p. +1, 1+2'.; (A.6)
@2722

where a, = o/, and p, =-p, . These results inserted in (A3) yield Eq. (3.12}.
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II. Discrete-continuum transitions
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A general relativistic formula is derived in closed form for the photoeffect amplitude from a
composite system of spin )Lt described by O(4, 2} infinite-multiplet wave functions. For p, = 0,
it reduces to the relativistic H-atom photoeffect amplitude.

S„=-ie d'x J„xA" x

For the external field we take as usual

X„(x)= (2v/q V)e„e( "")- (2)

Inserting (2} and the form of the initial and final
states into (1}, we perform the x integration, de-
fine the T matrix by

S„.=- i(2v)'6'(P, —P,. —q}r„
and obtain for the T-matrix elements

f' f i' i

(4)

Here 4 „y is the initial discrete bound state and
j

the outgoing scattering state. They are
given in terms of the group states of the p. repre-

In the first part' of our investigations of the
relativistic transition amplitudes in a class of
infinite multiplets, characterized by spin p, , we
derived generalizations of the Coulomb scattering
amplitude (the case p =0 gives the usual relativ-
istic Coulomb amplitude) In. this second part we

study the analog of the relativistic photoeffect.
In contrast to the continuum-continuum transitions
of paper I, we have to take into account, in the
discrete-continuum transitions, the momentum
transfer to the system by external interactions.
This makes the problem a bit more complex.

The starting forms of the S matrix and the T
matrix are the same as in the p, =0 case. ' The S
matrix for our calculation is

sentation of the dynamical group SO(4, 2) by'
1./2

) 1 2 (($ p») ('()
~f)( )

M, (1+n')

where M„ is the total mass of the bound state N,

and
(2v)»/2 ~ gg &/2 (-~ "/2)

V 2((nm, m, Sk 2(w)'

x I'(1+ (), +i)(), e('~ 3)r(-i)( —i(, )
r(-i) +y. )

)( e(ieL2) ((8XL45)e(-wz45/2)~@-c ) (6)

The kinematics in these expressions is such that
we are in the center of mass of the initialparticles,
i.e., II, = -(I, and in a coordinate system in which
the photon comes in along the z axis with its po-
larization r along the x axis, and the final free-
particle momentum kf points in the direction
(8, (()). Then Eq. (4) becomes

M "' 2p ez

m, Poq V2 2(1+p'+ n') Sk

x e(-"/"r(I+)/, —6) r(i)( —)(. )

r(i)(+ p)
where we have introduced

I =&q '. )e
I "2e ""e-(e/'45-

fi (-ix)

x e'('-q'»e"
& '45r' ~/q, )

i, = 6), ——,'sn . (8)

%e take the current operator J„ to be

Zq = n, l'„+n2P„+ n3P„r~,


