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The first-order renormalized Hamiltonian, calculated by the quasisecular perturbation
method applied to the weakly nonlinear P4 model of quantum field theory, is used to discuss
the scattering of two particles. The scattering amplitude is found by an approximation which
is accurate for weak coupling. For one space dimension a resonance in the s-wave scattering
occurs at threshold for both signs of the Q4 coupling. For two space dimensions a resonance
occurs only for the sign of coupling which also gives a bound state as found in previous work,
and the resonance lies above threshold by the bound-state energy. For three dimensions
the scattering amplitude shows very little structure. Comparison of the scattering amplitudes
is made with the Bethe-Salpeter equation.

I. INTRODUCTION

One of the important problems in elementary
particle physics is to develop methods for cal-
culating properties of bound states and reso-
nances based on field-theory models. These
phenomena, like the self-energies of particles,
are persistent effects which arise from repeated
interaction over long times. ' This is by way of
contrast with the case of ordinary (nonresonant}
collisions, which take place over a limited time
interval. In previous work' it was shown that
persistent effects arise from the presence of
secular and quasisecular terms in a perturbative
solution of the Heisenberg field equations. Sec-
ular terms are not periodic, and blow up for
large times. These terms are associated with
vanishing energy denominators. Quasisecular
terms are associated with energy denominators
which are small compared to the dimensionless
coupling constant times a characteristic energy.
A heuristic procedure for modifying the quasi-
secular terms was devised' via g -number fre-
quency (mass} and amplitude (wave-function}
renormaliz ation.

The modified perturbative theory, which is
called quasisecular perturbation theory, differs
in several important respects from standard
perturbation theory. In contrast with the latter,
which is formulated within the Pock space (of
the bare particles), the quasisecular perturbation
theory picks out a new' Hilbert space of physical
states. ' For the Q' interaction this Hilbert space
differs from Fock space in the cases of two and
three space dimensions. The time evolution of
states in the physical Hilbert space is described
by a renormalized Hamiltonian, which leads to
interactions between the physical particles. " A
two-particle bound state occurs for arbitrarily

weak coupling' in the cases of one and two space
dimensions, if the Q' interaction appears in the
Hamiltonian with a negative coefficient. It was
shown that the stability of the Hamiltonian is
assured by introducing additional weak inter-
actions, ' which play no further role in the per-
turbative analysis.

In further work' the quasisecular perturbative
method wa. s put on a more systematic footing by
deriving the same equations via the method of
multiple-time-scales perturbation theory. ' This
led to a more natural derivation of the renormal-
ized Hamiltonian.

It has been demonstrated already that the quasi-
secular perturbation theory can handle bound-
state phenomena for weakly interacting quantum-
field-theory models. ' In this work we extend the
method to handle the scattering of the physical
particles and study resonances. Resonances are
found to occur in the ~It)' model for the cases of one
and two space dimensions.

The Heisenberg equation for the real scalar
field Q(t, x) = P~(t, x) is written as

where Cl is the differential wave operator a'/a t'
-V' (a'= c = I), N is the number of space dimen-
sions (I, 2, or 3), X is the dimensionless coupling
constant, and:: denotes normal ordering. The
initial condition at t=0 is taken as [P(0,x), P(0, y)]
= is "~ (x —y). In the following, vector symbols
on coordinates and momenta are not indicated
explicitly for M=2, 3.

Since this paper is based on the first-order
renormalized Hamiltonian acting in the physical
Hilbert space, it is useful to present a heuristic
derivation of it. With the assumption of periodic
boundary conditions for a cubical box of volume V,
the formal Hamiltonian associated with Eq. (1.1} is
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H =Ho+ A. HI, (1.2)

+0 = ~)o'i otr ~

where l denotes the momenta allowed by periodic

boundary conditions, ~I = m + L, and e), Off are
the annihilation and creation operators, respec-
tively„ for bare particles of momentum / and

energy &„satisfying canonical commutation
relations. The interaction Hamiltonian is

H, =-m' "(16V) 'Q 6„,p„((u, (u, &ups), ) '":(a)+ a, ) (ap + a „) (a +a*p) (a, + a*,):. (1 4)
l ItPq

Most of the interaction of Eq. {1.4) can be transformed away by introducing a formally unitary clothing
transformation. ' If S is anti-Hermitian, then e" is (formally) unitary, and

H„=e-"He"' =H —~ [S,H]+-,'~'[S, [S,H]]+ ~ ~

is dynamically equivalent to H. By choosing

= m {4V) Q bp~p p~„((dp&dp(dp&d„) [((dp —(dp —(d~ —(d~) (ap a paq~ —a„ap a pap)
ltp qr

+ ~(&A+ ~p+ ~q+ ~r) (aaapa aa ra ~a--papap)]

+ 3m (8 V} Q bp~p „(1—D» „}(&dp(dp(d (d~) ((dp+ (dp —&d —(0„) a/ ap a a„
Appal

we see that [S,H, ] contains most of the interaction
in Eq. (1.4). Thus

H„=H, + ~H, —~[S,H,]+O(~')

has very little interaction left in first order. In
fact all the interaction would be formally trans-
formed away were it not for the vanishing and
small denominators" of the last term in Eq. (1.6).
The expansion of Eq. (1.5) is valid only if XS is
of order A. ; hence denominators of order A. must
be avoided in Eq. (1.6). The function D»~ fulfills
this aim, since it is taken to be unity if A+p=q+r
and

~
(&u + &up}' —(cg, + cv, )'

~

~ 4
~

A. (m', and is zero
otherwise. ' The set on which D takes the value
unity is called the quasisecular region. In Eq.
(1.7), Hs has first-order interaction only in the
quasisecular region. It should be noted that e "~

is a. formally unitary transformation. In the cases
N=2 and 3 it is an "improper" unitary transfor-
mation (i.e. , its domain is Fock space, and its
range a new Hilbert space which is outside the
Fock space of bare-particle states).

In Sec. II the first-order renormalized Hamil-
tonian H„ is discussed further. It is a well-defined
operator without the divergences which are pre-
sent in the formal Hamiltonian H of Eq. (1.2),
which are due to the local product of field oper-
ators that makes up the interaction energy density.
In Sec. III the tmo-particle subspace, which is
invariant under 0„, is discussed and some new
properties of the bound state in tmo space dimen-
sions are elucidated. In Sec. IV the T-matrix
equation for the two-particle scattering is set up
and solved approximately for weak coupling.

The properties of the scattering amplitudes for
N= 1, 2, 3 are the subject of Sec. V. For N= 1
a resonance occurs for both signs of ~ at thresh-
old, and the s-wave scattering amplitude attains
its unitarity bound. For N=2 a resonance occurs
only for A. &0, and the unitarity bound is attained
at a kinetic energy equal to the binding energy
of the bound state. For N=3 the scattering ampli-
tude shows no interesting structure for weak
coupling.

II. THE FIRST-ORDER RENORMALIZED
HAMILTON IAN

[b, ( t ), b ( t )] = [b,*(t },b,*{t )) = 0,

[b~ «) b.*{ )l =tbrg.

(2.2a)

(2.2b)

It was shown that the dynamical information

In previous work' the method of multiple time
scales was applied to the Q' quantum-field-theory
model. The method leads to the natural intro-
duction of a first-order renormalized Hamiltonian
which is a well-defined self-adjoint operator on
the Fock space of the physical particles. The
first-order renormalized Hamiltonian is given by

Hs =Q(u, b*, b, —3A.m "(8V)
1

P Dipp (~l ~p~p&r) l bp pbr .
rapr

(2 1)

The operators b, b* are the usual annihilation and
creation operators which satisfy the equal-time
commutation relations
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n n

H)( =gu~ + g V, , (2.3)

and consists of kinetic energies together with

a nonlocal potential acting between pairs of par-
ticles. The interaction V» has the form

(V,P) (P„P„.. , P.).
= —3)(m' "(4V) ' gD»» ((d&&L)), ru„,m)„)

'"
k)42

x'tI)'{k k P . . . P ) .

(2.4)

contained in the first-order Heisenberg field,
as obtained by the method of multiple time scales,
is unitarily equivalent to the dynamics of the
renormalized Hamiltonian 0„.' As noted above,
the transformation which maps the Fock space
of bare particles into the physical Hilbert space
is improperly unitary in the cases of two and
three space dimensions, since in these cases
the range is not the same as the domain. ' The
space of physical states does not coincide with
the space of bare states (i.e. , the unitary trans-
formation mapping the bare-particle Fock space
into the physical Hilbert space has a range which
is outside Fock space in the cases of two and

three space dimensions).
H~ is a particularly simple operator since it

commutes with the particle number operator
n=K, blab). The vacuum or no-particle state
is taken as the unique (up to a. phase) state

l
0)

satisfying b, l0) =0 for all l . The one-particle
states are of the form

l
l ) = b; l

0) and lie at the
unperturbed energy co, . For the two-particle
states the interaction part of H„, the last term
of Eq. (2. 1), affects the dynamics.

Since HR leaves invariant subspaces of a def-
inite particle number, it is the direct sum of
Schrodinger Hamiltonians over subspaces of
particle number n =0, 1, 2, 3, . . . . The n-particle
subspace can be represented by symmetric wave
functions 4(p„p„.. . , p„) which are square-
summable (normalizable) over the various par-
ticle momenta P„P„.. . , p„. The Hamiltonian
on the n-particle subspace is

III. TAO-PARTICLE BOUND STATES

The renormalized Hamiltonian in the two-
particle subspace is simply

Hg =43p +Np + Vgg .(2)

In the limit of infinite volume the potential of
Eq. (2.4) becomes an integral operator,

(V„g ) (P, , P, ) = -!) m'-"(2. )-"

(3.1)

D( pit p2 &
k 1 ~ k2)(~g~gl2~). '~~k2)

X q (kz, k2)d k~d (3.2)

Here D(p„p„k„k,) contains a Dirac delta
6" (P, +P, —k, —k, ) instead of the previous
Kronecker delta, but the (invariant) mass re-
strictions are the same.

Some properties of the bound states of H~["

were discussed in previous work. ' A variational
calculation showed the existence of a bound state
for arbitrarily small positive ~ in the cases of
one and two space dimensions {M=1,2). In the
case of three space dimensions no bound state
appears until A. = 8.5, which is undoubtedly be-
yond the range of validity of the perturbative
method. The bound state is an eigenstate of the
part of H'~2 which describes the relative motion
of the two particles (i.e. , the two-particle energy
in the center -of -mass coordinate system). The
(covariant) mass operator

[(ff(2) )2 (p +p }2]1/2 (3 3)

becomes, in the center-of-mass coordinate sys-
tem,

(3.4a)

can be written in terms of space -time vectors
L = ((d„l), using the invariant inner product
L ~ K= sr, &u, —l ~ k and L'=L L, as l(L+K)' (I'-+R)'l
«4l)(lm'. Thus the invariant mass squared of
the two particles created by the last term of
Eq. (2.1}[which is (L+K)'] differs from the in-
variant mass squared of the two particles an-
nihilated by less than 4

l
)(lm'.

The interaction is a bounded, real, and symmetric
operator, ' and the domain of the self-adjoint op-
erator H R is just the domain of the kinetic energy
ff (n)

The function D&»„, which restricts the region
of interaction in momentum space, has been de-
fined in a relativistically invariant manner. The
condition

X D( p k)~ K +{k)d

{3.4b)

Here 4'(P) is the wave function of the motion in
the center -of -mass coordinate system, and the
new symbol D(j, k) denotes the function which
takes the value unity if l (d,' —~, 'I =

l
k'-p'I- i&1m'

and is zero otherwise.
Bound states occur when an eigenvalue of M, which
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is a value of the internal energy of the two par-
ticles, lies below 2m, the sum of the rest energies
of the two particles. The eigenstates are nor-
malized by (2w ) "f

~
4'(k) ~' d"k = 1.

The potential of Eq. (3.4) depends only on the
magnitudes of P, k and not on their directions as
vectors, and therefore only has an s-wave com-
ponent. In the case of three dimensions, M=3,
this means that in the general partial-wave ex-
pansion

below 2m only for A. &0.
If the {positive) coupling constant is turned off

for K=2, Es-0 and (4(0)~-~. Since 4 is nor-
malized and 4(0) = f 4(r)d'r, where 4(r) is the
(spatial) wave function in space of the physical
particles, it follows that the wave function spreads
out more and more as X-0 from above. It is
reasonable that stronger binding implies a more
localized wave function.

IV. TWO-PARTICLE SCATTERING

x ((~')d (3.5)

The integral over momenta has been replaced by
the single-particle density of states

(3.6)

which has the form

(3.7a)

(3.7b)

(3.7c)

For weak coupling (~ A.
~

w 1) in the case of two

space dimensions, a relation between the bound-
state energy and the value of the (normalized)
wave function at zero momentum is derived in
Appendix A:

only the I = 0 term is nonvanishing. A similar
result holds for %=1,2. The interaction acts
only in the s-wave subspace ("spherically sym-
metric" wave functions), which carries all the
scattering and binding effects.

This is not surprising, as the underlying Q'
interaction vertex in lowest order has the nature
of a 5 function in space (locality), giving rise
only to s-wave scattering.

The eigenvalue equation for s-wave bound states
is best written in terms of $(a~) = 4(f)) as

The Harniltonian of Eq. (3.4) is expected to
have a pure continuous spectrum extending from
2m, the two-particle threshold, to ~. In the case
of two space dimensions this is proved. In the
other cases it is a plausible conjecture.

It is shown in Appendix B that for M=1, 2, and
3 the interaction potential of Eq. (3.4b) is rel-
atively compact" with respect to the kinetic en-
ergy of Eq. (3.4a). The perturbation then leaves
invariant the essential spectrum, "which is ob-
tained by removing from the spectrum all iso-
lated eigenvalues of finite multiplicity. Since
the kinetic energy H, has the continuous (hence
essential) spectrum [2m, ~], it follows that M
has the essential spectrum [2m, ~]. For two
dimensions it is proved in Appendix A that M
has no eigenvalues above 2m (at least in a. small
interval above 2m), so that M has the purely con-
tinuous spectrum [2m, ~]. The spectrum below
2m must consist of isolated eigenvalues of finite
multiplicity in all cases.

The s-wave scattering amplitude can be cal-
culated from the Lippmann-Schwinger equation,

(4. 1)

where T(z) is the off-energy-shell T matrix. For
the (relatively compact) interaction being studied,
Eq. (4.1) has a unique solution" T(z} for each z,
provided Imz c0. In terms of plane-wave matrix
elements ((x~P) =e'~'*), Eq. (4.1) becomes

(Pl T(~)l»= &(f, &)+(») '

E =2m E=4mm '~)I)(-0)~ (3 8)

Since the right-hand side is positive, the bound
state always lies below the continuum threshold
2m. It is possible to construct long-range local
potentials with mell-arranged bumps which pos-
sess bound states in the continuum. ' Thus it is
interesting that the nonlocal potential of Eq. {3.2)
does not have such bound states, at least for the
case of two dimensions. Note that Eq. (3.8) is
valid for both signs of A. ; however, a variational
calculation shows the existence of a bound state

(4.2)

Separating out the s-wave part, we obtain via
the definition t (w~, &u„z) =(P

~
T{z)~q) the equation

{for Imz w0}

x t {(d', v, z)p, .(~')d~',

(4.3a)
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v((v, v) = ——,'A. m' "(u 'v 'D((v, v). (4.3b)

For
~

X~ small, D(((j, (d'} (which vanishes if
~

(()' —(d'w]&~ X~m'} restricts the integration over
u' to a narrow interval centered at w. An ap-
proximate solution of Eq. (4.3) is obtained by
assuming that in this interval t(&', v, z) can be
replaced by the constant t((v, v, z). It is assumed
that the variation of t in the interval is small.
Then we obtain the approximate solution

be even better. The interval width shrinks as
(d ', and the elastic threshold at 2m (which leads
to rapid variation) is further away. For small

~ X~ the approximation is uniformly accurate in
energy.

The elastic s-wave scattering amplitude can
be expressed in terms of the T matrix on the
energy shell. Define

(4.6)

v((u, v) = ——,'Xm' ")t((v)y(v), (4 5)

where y(&()) = 1 if m «(d «m(I+
~ X~ } and is zero

otherwise. Here only the low-energy part of the
interaction is kept. This approximation was used
to obtain upper and lower bounds on the bound-
state energy' for the cases N= 1, 2. Moreover,
it is expected that the approximate solution of
Eq. (4.4) is quite accurate for weak coupling not
only at low energies but also at high energies,
where the small-variation assumption on t should

(4 4)

If (d is near m, (d -m=0(X}, the nonrelativistic
approxima. tion is accurate for p~, v, and D, and
the integral in Eq. (4.4) can be easily evaluated.

The approximate solution for t given by Eq.
(4.4) is identical with the solution obtained from
a separable-potential approximation in the non-
relativistic region of energies m «(v, v «m(l+

~
&~ ).

The separable potential approximation involves
replacing v by 8:

f)(2(d) =m(2ik) (T,(2(d},

f, (2(d) =m(8wk) "'e'"'f, (2&()),

f, (2u)) = -m(4w) 'T, (2(u}.

(4.Va)

(4.7b)

(4.Vc)

Here k =] 2m((d -m)]"' is the magnitude of the
wave vector of the relative motion in the center-
of-mass coordinate system. In estimating the
amount of (s-wave) scattering, it is useful to
compare with the bounds set by unitarity. The
unitarity bounds are (f, ~

-1, (f, ~-(2/wk)"', and

The amplitude -„is written in the form

T~(2(v) = ——,'zm' "[I-a„(2u))] (4.8)

Performing the nonrelativistic integrals in the
case N= 1, in the low-energy region m ~ u ~m+6
where A =-,'~ A~m, leads to

as the on-energy-shell T matrix, where the corn-
plex variable z approaches the physical (center-
of-mass) energy 2&() from above the real axis.
The nonrelativistic scattering amplitude for the
various space dimensions is given by

a,(2(()) = —(3Am/8wk) (ln[(co+ a —m)'"+ {(d —m)"'] —ln[(&u+r —m)"' —((d —m)'"] —iw} .

In the next energy region, m+6 «&v «m+O(X), the result is

a,(2(o) = —(31m/8wk) fin[((d+A -m)'"+((u —m)"'] —ln[((a+a —m)'" —((u —m)"']

+In[((u —m}'" —((v —A —m)'"] —ln[{(v —m)'"+((u —A —m)"'] —iw} . (4. Bb)

For /=2 the formulas are much simpler be-
cause the nonrelativistic density of states is
constant. If no~ & ~m+6, then again in terms
of Eq. (4.8)

and if m+6 «(d «m+0{A.),

a,(2 (v) = 3Xi/16 . (4.10b}

a2(2(()) = —(3X/16w) ]In[(&a& —m)6 ') —iw}, (4.10a)
For %=3, if m~ co ~ m+6, then in terms of

Eq. (4.8)

a,{2 }= ——,'Xw '(2m) '"(w((() —m)'"(In[(&()+ & —m)'"+ ((d —m)"']

—jn[(&() + 6 —m)"' —((() —m)"'] —tw} —((d + 6 '—m)"'),
and if m+ 6 ~ co ~ m+ O(A.), then

(4.11a)
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a,(2(u) = — Am '(2m) ""(p((u —m)'"]in[{(a+a —m)'"+(u) —m)"']
—in[((u+ d, —m)"' —((u —m)""] +ln[((o —m)'" —((u —a —m)"']
—in[((u —m)'"+ ((u —a -m}'"] —iv) —((a+ b, —m)'"} . (4. 1lb)

The properties of these scattering amplitudes are discussed in the next section.

V. D1SCUSSION

It is interesting to compare the scattering am-
plitudes of Sec. IV with the results of the Bethe-
Salpeter equation in the simplest approximation
obtained by summing the "chain of bubbles" for
the P' interaction. ' The result for the quantity
a,(2u)defined by Eq. (4.8) is"

a =3~m'~ 's '"{4m'-s) '"
&&tan-'[s{4m' —s)-'] '", {5.1)

again for s'"&2m. The nonrelativistic limit
analytically continued to physical energies is

a, (2(u) = —3x(Sar) '[in[-,'m '((u —m)] —iw) .

Now there is a replacement of 6 in Eq. {4.10a)
by 2m. Also there is an additional factor of 2 in
the coefficient of Eq. (5.4} as compared with
Eq. (4.10a)~

For three space dimensions the Bethe-Salpeter
scattering amplitude diverges, and a comparison
cannot be made. ' We note that no divergence
occurs in the quasisecular scheme. Bound states.
which appear as poles in the scattering amplitudes
calculated from Eqs. {4.9a) and (4.10a) for u&m,
occur for A. &0. The analytic continuation of Eq.

where s'" is the center-of-mass energy 2u of
the incoming particles, which is taken as real
and less than 2m in Eq. (5.1). Passing to the
nonrelativistic limit of Eq. (5.1}, and analyti-
cally continuing to physical energies 2(d&2m,
we obtain

a,(2u) = —(3Am/Swk} I in [m'"+ (& —m)' ']
—in [m'"-(~ —m)"'] —im[.

(5.2)

This is quite similar to the result of Eq. (4.9a)
in the low-energy region; in fact if w —m«A
then the only difference is the replacement of
~ = -.'

~

~
~
m by m.

For the case of two space dimensions the cor-
responding approximate Bethe -Salpeter expre ssion
is

a, = —3am(4v) 's '"ln[(2m+ s'")(2m —s"') '],
(5.3)

(4.9a} for X=1 to +&mis

a, (2u)) = 31m(Sw) '[2m(m —(u)]

&&[w —2 tan '(m —(u)'"d, "'], (5.5)

and a, (2&v) = 1 if 2m —2u =E~~I where the binding
energy of the pair of particles takes the value4
E~'= (3A/8}'m. Similarly, for two space dimen-
sions the pole of f, (2&v) occurs when Eis =Arne """

These are the only poles of the analytically
continued scattering amplitude f„{2u), N= 1, 2,
on the first sheet, and they occur only for A. &0,
which corresponds to an attractive potential in
Eq. (3.1) with negative matrix elements between
plane-wave states. As noted already, these bound
states were discussed previously' via the sepa-
rable-potential approximation of Eq. (4.5).

We turn to the behavior of the scattering am-
plitude of Eq. (4.7) as a function of energy. Near
threshold for one dimension the logarithms in
Eq. (4.9a} cancel and a,{2~)=Semi/Sk if k «a.
Then

f,(2(u}=3afm(Sk) '[1 -a,{2ur)] '= —1,
so that the scattering amplitude is at its uni-
tarity bound,

~ f, ~

= 1, in the low-energy region
~ —m& A.'m, irrespective of the sign of A. . The
width of this region is of the same order as the
binding energy E s(3X/8)'m for the case of A&0.
As the energy increases,

~ f, ~
falls below the

unitarity bound until when &v=m+ 6, ~f, ~=&
~

X]'"«1
for weak coupling (& «0. 1, for example), and ~f, ~

continues to decrease with increasing energy.
These results can be interpreted in terms of a
resonance at the threshold energy u = m with
width of about E'& . The source of the resonance
(and the bound state) is the large (singular) den-
sity of states at threshold for ¹ 1 as seen in
Eq. (3.7a).

For two space dimensions the behavior is quite
different. Combining Eqs. (4.7b), (4.8}, and
Eq. (4.10a) we see that

f,(2) = —-'. x ~'"'(2~a) -'"
&(1+3K(16m) '[in[A '(&u —m)) —im)} '.

The unitarity bound is ( /v2'k"}=8, so that ~f, ~/F
attains its maximum of unity when the real part
of the denominator in Eq. (5.6}vanishes. Since
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ur —m&6 in Eq. (5.6), this occurs only for X& 0,
the same sign which gives the bound state, and
it occurs when 2(d —2m=E'8", so that the total
energy above the threshold at resonance equals
the bound-state energy. The local behavior of
the scattering cross section has the Breit-signer
form

I f (2~}/EI'=-,'I '[(2u —2m E',")-'+ ,'F' j-
(5.7}

where I'=E'8. The width is thus about E~", which
is much less than 6 for weak coupling; hence
the resonance is extremely sharp. The scattering
amplitude decreases with increasing energy above
the resonance until If, I

/F= 3I P. I/16m~ 1 at
~ =m+ b, . Because of the divergence of the log-
arithm in Eq. (5.6}, as &u-m', If,I!F-0. For
X&0, If, I!F increases smoothly with energy
until it reaches its maximum of about 3

I
x

I
/16m

at ~=m+ h. It is interesting that for @=2 the
resonant behavior occurs only for A. &0.

Finally, for three space dimensions and weak
coupling the scattering amplitude shows very
little structure. For m «u «m+5, ,

If, I /If, I
- (3/16~)

I
& I'",

which is very small; the effect of a, (2(d) from
Eq. (4.1la} is negligible in the denominator. The
same bound is valid in the entire nonrelativistic
region from a detailed examination of Eq. (4. 11b}.
Only for strong coupling does a bound state appear
at A. = 8.5, and the scattering amplitude begins to
show interesting structure. However, such strong
coupling is probably well outside the limit of
validity of the perturbative treatment.

otherwise. The norm of the bound-state wave
function is chosen to be (2m) 'm f It(~)I'd&u= l.
so (~I'.

The interaction in Eq. (Al) is real and E can
be chosen real. Multiplying Eq. (Al} by d$/des
and integrating both sides from 2m to ~ gives

2%(~)'I" = ~&(&A'I — ((~)'d~

-3~(8~)-' "d$
m d(d

D(~. co'}E((u')dec' .

(A2)

Since 8~I', we have lim~ „$((d)=0; also P, falls
off faster than cg

"' and lim „uF(u)'=0 as well.
With an exchange in the order of integration, the
last integral in Eq. (A2) becomes

(1+ 1X i/2) m

3X(6m) '((m) $((u')du!' = {2m -E)f(m)'.
m

(A3}

Substituting in Eq. (A2) and using the normalizat-
ion condition, we obtain

2m-E =Ea ——4mm '((m} ',
where E~ is the binding energy of the two-particle
sta.te.

It follows from Eq. (A4) that the eigenvalues
are nondegenerate, since if one were degenerate
both eigenfunctions („$,would obey the equation
and the difference ( = E„—F„, which would be an
eigenfunction {not identically zero), could not
obey it, since ((m) = ],(m) —t', (m) = 0.
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APPENDIX A

In the case of weak coupling the bound-state
wave function 4'(P) is negligible for momenta
P such that a~ —m ~ cA.ng, where c is some can-
stant of order one, because the interaction
strength has a bound proportional to A.. As a
consequence the nonrelativistic approximation
to Eq. (3.5) is accurate for weak coupling. For
two space dimensions the nonrelativistic bound-
state equation is

EE(cu) =2u$(u) -3&(8m) ' D(u, cu") F(u'}d~',
m

{Al)

where D(~, &u') = 1 if I cv —co'
I
& —,

'
I

A Im and is zero

APPENDIX 8

This appendix demonstrates that the nonlocal
interaction of Eq. (3.4b) is a relatively compact
perturbation with respect to the kinetic energy"
of Eq. (3.4a) for N= 1, 2, and 3.

In the cases of one and two space dimensions
the perturbation is actually compact, since it
is a Hilbert-Schmidt kernel:

VP, A 'd Pd k

D( p, k )(d~ '~I, ' d "p d' A

= J3 D((u, (o')~ '(o' 'p„(~)p~(~')d(udco' &~.

Here 8 is a positive constant. The function
D(~, ~') picks out a diagonal strip (shrinking
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in width like ~ ' for large ~) in the (&u, ru') plane.
In the case of one dimension, the behavior of the
integral for large &a, "' takes the form f~ 'da&,

which is convergent. In the case of two dimen-
sions it is f&v 'd&u, again convergent. For three
dimensions fur 'd&u just fails to converge; how-
ever, the interaction V is relatively compact
with respect to the kinetic energy HQ.

The domain of H„K)(H, }, equipped with the
scalar product f4', @}=(~', P)+(H04', H, P), is
itself a Hilbert space since H, is a closed op-
erator. Here (~, P) denotes the usual I,' inner
product in momentum space. Then V is said to
be relatively compact with respect to HQ if V is
a compact operator from S(HQ} (with the inner
product ( } ) into the original Hilbert space L'.
This condition is equivalent to the condition that
Vg, -z) ' is compact in L' for all z in the re-
solvent set of H, ."

For three dimensions V(H, —z} 'is again of

the Hilbert-Schmidt type and thus compact:

V(HQ —z} '(p, k} 'd'pd'A

V(P, a ' 2~, -z -'a'P a'a

=$3 D ~, u' ~ e' 2~'-z

x p (~}p (~'g~ g~' (B2}

The behavior of the integral for large +, &' is
given by f&u 'd~, which converges.

Kato" has extended a theorem of Acyl to prove
that the essential spectrum of a closed operator
is unchanged under a relatively compact pertur-
bation. The essential spectrum of a self-adjoint
operator is obtained by removing from its spec-
trum all isolated eigenvalues of finite multiplicity.
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