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Quantum corrections to the stress tensor are studied within the framework of the pertur-
bation theory. %'e use both the Feynman cutoff method and the Bogoliubov-Parasiuk-Hepp
(BPH) cutoff method in the scalar theory with f(I)

4 coupling. In the case of the Feynman cutoff
method, the quantum corrections to the stress tensor depend on the ratio of the regulator
masses. To get the definite corrections, an additional renormalization condition is essential.
To O(~ ), the finite stress tensor is 0„,=7„„+ ~ [1+A/(48~)j(8&b, -6„,8)P, where T„„
is the canonical stress tensor and ~ is the coupling constant. The BPH cutoff method, on
the other hand, gives us a fairly general basis to get the finite corrections. Explicit formu-
las are given to OP, 2). Finally the relation between the on-mass-shell renormalization and
the off-mass-shell renormalization of the stress tensor is investigated in detail.

I. INTRODUCTION

The energy-momentum stress tensor in quantum
field theory has been extensively studied in recent
years' in connection with (1) the observed scaling
law in particle physics, and (2) the construction of
the finite stress tensor in perturbation theory. An

important step in the latter is the proposal by
Callan, Coleman, and Jackiw' (CCJ) of a modified
stress tensor. This CCJ tensor has, in some
cases, different consequences from the usual ca-
nonical stress tensor on both the classical and the
quantum level. The main difference between vari-
ous forms of the stress tensor will emerge when

the quantum corrections are taken into account.
There are several methods to obtain these cor-
rections. %hen we use the Feynman cutoff meth-
od, we first regularize the Lagrangian and deter-
mine the cutoff-dependent coefficients of the nec-
essary counterterms in the Lagrangian. Counter-
terms are determined by suitable renormalization
conditions. In this method, a cutoff is the mass of
a regulator field. Then we apply the Feynman-
Dyson rule, using the entire Lagrangian supplied
with the counterterms, to get the corrections to
the scattering amplitude or the stress tensor. It
is finite under the loop momentum integration.
Finally we make the regulator masses arbitrarily
large. The resultant scattering amplitude is the
renormalized scattering amplitude, which is
unique and finite as is mell known. In CCJ it was
suggested that the quantum corrections would also
be finite for a suitably chosen stresg tensor in the
limit of the large regulator masses. This is a
bold suggestion. So it will be absolutely necessary
to know by explicit calculations whether or not the
possible divergences, pointed out by Symanzik, '
actually occur. In the Q' theory we will show that

the Feynman cutoff method gives the divergent
corrections to the stress tensor in the second or-
der of the perturbation theory if f = f in Eq. (2.15)
below. This choice was done in CCJ. It is im-
portant, however, to note that there exists a
unique choice of f which makes the second-order
corrections finite. It is sufficient to add a term of
order A to f in CCJ, where A. is the coupling con-
stant. The corrections are also unique, provided
that the additional renormalization condition is
imposed. This point will be clarified in Sec. II.
When we use the Bogoliubov-Parasiuk-Hepp (BPH)
cutoff method, on the other hand, explicit regula-
tor fields are unnecessary. The possible diver-
gences of the Feynman integral are transferred
from the momentum space to the parameter space.
The most general and the convenient way to per-
form the BPH subtractions systematically is con-
tained in the method of the normal product due to
Zimmermann. ' The latter has been extensively
applied and clarified by, among others, Lowen-
stein' and Schroer."By using this method we
find that the regulator contribution in the first-
order quantum corrections to the stress tensor,
as was found in CCJ, is identical to the contribu-
tion of the additional subtraction. The necessity
of the additional subtraction comes in turn from
the assumption" that the minimum canonical di-
mension of the stress tensor is four. The situa-
tion is in close analogy with the case of the axial-
vector vertex in spinor electrodynamics. To ob-
tain the expressions for the BPH-subtracted inte-
grand and subsequent momentum integrations, we
make extensive use of Appelquist's technique.
Appelquist' has proved that Bogoliubov's A opera-
tion on the unrenormalized integrand I~ is equiva-
lent to the product of the Taylor subtraction oper-
ators, g(1 —f ), where y refers to the relevant
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Feynman subgraph of G. We describe the BPH
cutoff method and the related technical points in
See. III. In this section the asymptotic forms of
the quantum corrections are also given. In Sec.
IV we consider the finite renormalization effect on
the stress tensor. In the case of the scattering
amplitude it is well known that the BPH subtrac-
tion itself does not give a unique finite result. The
arbitrariness occurs when we expand the unre-
normalized integrand in a Taylor series around
some fixed values of the external momentum of the
graph. This arbitrariness is completely elimi-
nated by suitable renormalization conditions. In
the case of the stress tensor, however, the re-
normalization conditions are necessary not only
for the ordinary scattering amplitude but also for
the Green's functions containing the stress-tensor
vertex. We give such renorma1ization conditions
for both the on-mass-she11 renormalization (OR)
and the intermediate renormalization (IR). We can
show that the finite stress tensors obtained under
these two renormalization conditions are related
by a multiplication of a regular 6& 6 matrix. This
simply means that the finite renormalization from
IR to OR of the stress tensor is done by multipli-
cation of a finite factor. This fact has already
been stated in CCJ in the case of the infinite re-
normalization. Section V is devoted to discus-
sions.

where

1+c,'+ c,' =0,

+c, I,'+, M2' =o, (2.3)

4' = ~ + Ci '{t'1 + C2 4~ ~ (2.4)

and Qp are regulator fields . AI, and iV, are
their respective masses. I., is the renormaliza-
tion counter term and is expressed by cutoff-de-
pendent coefficients A, B, and C as

L, = —2As„4 8„4 ——,B4' —(1/4! }C4' . (2.5)

+ c,'(p. '- 3I,')

Convenient renormalization conditions will be

(2.6)

I"( )(p p)
BP

(2.8)

A, B, and C can be expanded in power series of
the coupling constant A. , and are determined by re-
normalization conditions on the 2- and 4-point
Green's functions. The contribution of the regula-
tor fields changes the free propagator to

1
&(q) = i, , -+ 'c(p,

'
AI, ' }-

@' + P. —zE'

ll. FEYNMAN CUTOFF METHOD

We begin with a brief survey of the perturbation
calculation due to Callan, Coleman, and Jackiw. '
Then we will extend their method to the second
order of the perturbation theory. The main pur-
pose is to confirm the finiteness of the corrections
to this order. To obtain the scattering amplitude,
we need a set of relevant Feynman graphs. As the
loop momentum integrations are generally diver-
gent, a suitable regularization is necessary to
have a mell-defined value of a given graph. One

may to do this is to use the Feynman cutoff. This
cutoff can be derived from the Lagrangian by using
the regulator fields. We shall restrict ourselves
to the case of a single scalar field with quartic
self-interaction. In this case, at least two reg-
ulator fields are necessary to regularize the scat-
tering amplitude. A graph containing a stress ten-
sor vertex is also regularized thereby. Let p. and

A. be the physical mass of the scalar particle and

the coupling constant normalized at the symmetric
point on the mass shell, respectively. Following
CCJ, the regularized Lagrangian is

where s.p. indicates the symmetric point:

(2.9)

(2.10)

In (2.7)—(2.9), I' "'(P„.. . ,p„) are amputated,
one-particle-irreducible Green's functions. ' We
write

A = +A„X",
n=1

and

n =1

Ay 81 and C, were determined in CCJ from
(2.&)-(2.9) [("q) -=' d/(q»)' i:

A]610
(2.i2)

B, = -,'- (dq)a(q) .

We can get the second-order values by the same
conditions. They are
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B 1
2 6

p 2 $2

6 = 6"'+~g('~ +X'| "~ + ~ ~ ~ (2.19)

The matrix elements between the two-particle
state with the momenta p, p' and the vacuum can
be written as (k +p +p ' = 0):

+,'-i (dq)(dr) ~(q)~(x)~(p, +p, r—)
s.p.

(2.13)

(pP'~g„„~o) =iaaf(„'„&(P,P')+~Af'„'„&(P,P')

+ ~'Af „"„)(P,P ')+ ~ ~ ~,

where

~ „"„)(p,p') = --,'(k'5„, —k„()., )

(2.20)

&, = -'- f (~q)&(q)&(P, +P, —q)
I S.P.

ln (2.13), I(p') is the second-order self-energy
integral:

I((*)= )(~.)(dr)~-hr)o( i~(l e l (2—.(4)— .

+ —,'5„,(k'+p'+p" + 2p')

—(p„p. +p„'p.') .
M„", was obtained in CCJ and is

(1) p
A. 7T 2 kP k p+f ()P (P)P ) 3(2 )4 P ~0))

(2.21)

The modified stress tensor introduced in CCJ is of
the form

k' k
x dxln 1+x(1—x)—,

0 u'

60 = T~„+f(80 8„—5 8 )(P2, (2.15)
(2.22)

where T„„is the canonical stress tensor. In CCJ
the choice f=-,' was made. First let us see the
quantum corrections to 8„„ in this case (f=0 ).
When the regulator fields are added, it would be

The relevant Feynman graphs are shown in Fig. 1.
This is finite. The trace M"'(p, p') is given by
(K' =1+4m'/&')

—A&p4&, 4 —6„,I
+-,' (s„s„—()„,s')((t)'+ p,'+ ()),'+ Ac'),

(2.16)

where L is given by (2.1). As the coefficients of
the counter terms are explicitly dependent on the
coupling constant A. , I. and 6„, are also explicitly
dependent on A. We define the total interaction
Lagrangian L,. by

11.. =-—Xe'+I- .i 4[ c (2 17)

The expansions in powers of A, are

I, . =~L,(". & + ~'L,(.'~ + ~ ~ ~

Z Z Z
(2.18)

k

FIG. 1. Graph for OP, ) correction to the stress tensor
indicated by a cross.

FIG. 2. Graphs for O{~ ) corrections to the stress
tensor. Kinematics are the same as in Fig. 1. Dots
indicate the vertices corresponding to I; given by
Eq. {2.17). The numbers attached to vertices indicate
the order in ~ introduced by Eqs. {2.18)-{2.19).
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(2.23)

The last term in the square bracket is the regula-
tor contribution. It survives the limit p,'- 0. The
leading asymptotic form as k'- ~ is given by this

regulator contribution. %e will see later that this
is identical to that of the additional subtraction in
the BPH cutoff method. Now let us turn our atten-
tion to the second-order corrections. The rele-
vant graphs are shown in Fig. 2. %e combine
I, and 6„"„' in such a way that Q(m+n) =2. Theap-
pl.ication of the Feynman rules gives us immedi-
ately:

x a(r)[n(r+k)+n(r+ q -p)+ a(r+ q -p ') - 3n(r -p, -p, )j„]
+4&„.([2I(p') —I(-u') —(p'+V')I'( u')-] +(p —p')j

+ ,' &'(-p')[-P„P„+P„'P'„+ (k'5„„—4k„k„)].

By using the identity

(2.24}

(2.25)

%e find that

k„M „"„'(P,P ') = 'k, [l„(P')+—i„(P")J

-'(p -p'). [&.(p') —l„(p")J,
(2.26)

I,(p') =l(p') &( u') —(p—' + V-')I'(-V') (2 27)

1„(p') is the second-order self-energy, renormal-
ized on the mass shell. Thus k„M„"„'(P,P') is fi-
nite. It vanishes on the mass shell P' =P"=-p, '.
In the following we will find that M ~2„'(p, p ') is di-
vergent in the limit of the large regulator masses
(M„M,-~), and that the divergence in M'„", (P,P')
is exactly canceled by adding a finite O(A) term to

f in Eq. (2.15) Then the stress tensor (2.15) with

f = + O(A) would be finite up to O(X'). To be more

precise, we may proCeed in the following steps.
%'e show that:

(i) M„"„'(p,p') is divergent as M„M, —~. This
implies M~('„'(p, p') is divergent. M„"„'(p,p') is un-
ambiguously separated into the divergent part and
the finite part.

(ii) The divergent part of M „"„'(p,p ') is a multi-
ple of (k'5„„—k„k„).

(iii} The divergence is canceled by the first-
order corrections to the last term in Eq. (2.15).
This implies that the quantum corrections to the
stress tensor (2.15) can be made finite up to O()P)
by choosing f = —,'+O(X).

(iv} The finite part of M„"„'(p,p') is uniquely de-
termined by a renormalization condition on
M „"„'(P,P ').

To show (i), we consider the trace M„"„'(p,p'}.
From (2.24) it is given by

M"'(p p') =M"'(p p')+M',"(p, k)+M,"'(p', k) +-,' I„(p') —,'p

where

dx I"(x) +(p- p'),
j

(2.28)

x [n(r+k) —a(r p, -p, )~„—]

8 3~2 tan ' ———,'&ln 2p. ' &--,'gin +
v2 1-& (2.29)



10 QUANTUM CORRECTIONS TO THE STRESS TENSOR IN. . . 603

2 2

M',"(p, k) = -,
'

' (dq)(dr) i, , „„„,, —,,",, + c,'(p'- M, ') + c,'(p' - M, )
j

x~(r)l n(r+q-p) n-(r p,--p, )l, p ] . (2.30)

In the right-hand side of (2.28), I"(p')=-[6'/s(p')']I(p') is a finite function depending only on p', x, and p' in
the limit M„M,- ~. 3f~p(p, p') is atso a finite function given by (2.29). So we have only to know the prop-
erties of M~,'~(p, k). Apart from the masses, it depends only on three scalars k', p', and (p, +P2}'~,
=-4p. '/3. This will be verified below by explicit calculations. Note that M',"(p, 0) =0. Hence

Mg'{p, k) = --,' dx Z[x, p', {p,+p, )' ], (2.31)

where

J[x,p', (p, +p, }',
p j =Q c, 'c, 'c, 'J[x. ip .

~ (pi+p2) (2.32)

with

a[k', p', (p, +P,}'„,M, , i}f,, M„j

, 8 1 1 1 1= M,.
'- —, {dq)(dr) (q'+M, . 2) [(q+k) +M,. 'J (r +M,.2} (r+q-P) +M~' (r-P, -P, ) +M~"2 2 2 2 2- —,- . (2.33)

In (2.32), i, j, and k go through 0, 1, and 2 [c,' —= 1 and Mo'=—p']. The momentum integrations in(2. 33}will
most conveniently be performed by the parametric integration method explained in Sec. III. We obtain

1 X/A24[k, . . . , M J = (,8 M,. dx, dx~5 1 -Qx; 3 xx2(x~+x~} —, ,3,',22') (2.34)

where

1
A =—[ x,x,{x,+ x,}k'+ (x, + x,}x,x,p'] + (x, + x,}M,, '+ x,M,.

' x,M„',
(2.35)

U= (x, + x, )(x, + x, ) + x,x, .

We consider the following two cases separately:
(1) i =j=k=0 (i.e., M,. =M,. =M, =p). By the change of variables

Ag —R&y X2 —(1 R)A
y ~3 —Uy s A4 —(1 —U

Eq. (2.34) reduces, by introducing p=—k'/p, ', to

1

d[k', p', (p, +p,)', p. , P, , uj=, dudvdy u(1 —u)(1, +I,),

(2.36}

(2.3V)

I, = (1-y)'
[(1—u)u(1 —y} l3+ (1 —y)(1 —v)vy(p /p, '}+1 —y+ (1 —v)vy —se]2 2 -1

y[1 —y+ (1 —v)vy J' (2.38}

I, = ——[{1—u}u(1 —y)P + 1 —',—(1 —v)vy —iej
y

(2.39)

If P =0, and P =-p, , then I, and I~ satisfy the in-
equalities (1 & y & 0):

(1-y)'
y

' y(1 ——,'y) '

1 1

(2.40)
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Hence, 0& I, +I, & -3 in the allowed ranges of the
integration variables. Thus J [0, —p', -4y. '/3,
g, p, , p] is finite. In general, the divergences
can occur only at such values of y, u, and v where
the denominator of the integrand vanishes. From
(2.38) and (2.39) we see that the denominators of
Iy and I, never vanish if P & -4 and that the inte-
grand is then finite. (%e putP'=-p. '.) Note that
8[k', -p, ', -4p'/3, p, p, p. j is analytic throughout
the entire complex k' plane with the exception of
a cut running from k' =-4p, ' to -~ along the real
k' axis.

(2) At least one of the M, M, , a.nd M~ is the

regulator mass. A and h reduce to

(&i+&a»~ + &3~, '+-«~ '. (2.41)

The dependence on k', p', and (p, +p, )' of
8[k', . . . , M„] disappears. Equations (2.28) and
(2.31}then imply that the contribution to the trace
M~„„' of ~[k', . . . , M, ] is a multiple of O'. This
feature is in common with the first-order result
of (2.23} of CCJ. If M,. = y. , then 4[k', . . . , M, ]

will vanish. So we can restrict ourselves to the
case in which AI,. is a regulator mass (i.e., i =1
or 2). Using the abbreviation J[M, , M, , M, ] for
the left-hand side of (2.33), we rewrite it as

1
M I, '

V[M, , M, , M, J=—,dvdy] 1 —(I —y)'[1 —y+(1 —v)ry] ') I —y+vy ', +(1- v)y ', . (2.42)6(2 vP O S

From the inequality

1 ~ 1 —(1 —y)'[ 1 —y + (1 —U k y J
'. ~ 0, (2.43)

which is valid for 1» r «0, and 1&y» 0, we see
that the divergence of the integral in the limit
M„M, —~, if any, comes from the second factor
of the integral. The case (2) is further divided
into three cases.

(2') q=I =O.
The integral has a logarithmic dependence on the

regulator mass and is therefore divergent as
M„M~

of the step (i).
%e next turn to the step (ii). From the Lorentz

invariance we can write the symmetric tensor
M'„"„(P,P') as

~~„'., (P, P') =&„,I, +(P„P,, +P„'P', )F..+&„4„,F„
(2.46)

where the functions +,. (i =1, 2, and 3) can depend
only on three scalars P', P ", and O'. Hence,

k„M'„"„(P,P') =k, [r, +k'(lF, +r, )j

J[M, , y. , p J
= —

(2 }, ln

(2")j =0, k =1, 2 and vice versa.

(2,44)
Comparing this with (2.26), we obta, in

F (
2 P 2k2) I IR(P ) IR(l )-

2 0 9 6 pQ

0 ~integrand of (2.42}~, (2.46}1 —y+ (1- U)yg
'

where ~=—~M, ',/&I, ' (&0) is held fixed at some finite
value. As the right-hand side of (2.45) is finite
after integration, V[M, , p, , M, , ] is finite. How-
ever the precise value of it depends on 6).

(2" )~~0, u~o.
The integral (2.42) is finite. The value of it will

be dependent on the relative ratio of the regulator
masses. In particular, if M, '/M, ' =1 in the limit
M, ,- ~, we would obtain --,'O'4[0, 0, 0, p, , p, , p, ]
as the contribution to M',"(p, k). But there is no
apparent reason at this stage for choosing a par-
ticular value of M, '/M, '. The cases (1}and (2}
exhaust all possibilities. The separation of the
divergent part is unambiguous. So we conclude
that M~~"(P, k) acquires the divergent contributions
from the case (2'), which is not cancelled by other
terms. The situation is exactly the same for
M, (P', k) in (2.28). This establishes the validity

~, (P'-, P", k') =-,', [Z„(p')+Z, (p '-)]

k
+ —,', , &„ I, P')-1„(P")

(2.49)

The function P, is finite and has a definite value
— IR'(p') at p' =p", which vanishes on the mass
shell. Substituting (2.48) and (2.49) into (2.46), we
get

M'„'~„(P,P') =-(k'S„, —k„k,)~,

+ finite functions . (2.50)

Thus the divergent part of M'„', (P, P ') is a multiple
of (k'5„„-k„k„). This proves (ii). Next we show
(iii). As we have seen, the divergence of the trace
M~„'„(P,P') comes from (2.44). Hence
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v'
M'„'„'(P, P'), = },k'

f.-,2 ln ', + c2' ln

(2.51)

Equation (2.50) then implies that F, is logarith-
mically divergent as M„M, —~. From the O(X}
result in CCJ, we know that the (8„B,-5„,8')Q2

term in (2.15) has a logarithmically divergent cor-
rection in O(X} and that its tensor structure is of
the form of a multiple of (k'5„, —k„k„). This sug-
gests a possibility that the O(X) part of f in (2.15)
cancels the divergence in (2.50) through the first-
order quantum corrections to the stress tensor.
To see more precisely we put

f=,—'+ aA. .
The aA. term in this equation gives, through the
zeroth-order perturbation theory, a finite O(X)
contribution to M~„",(P, P '). The contribution to
M„"„(P,P'), through the first-order perturbation
theory, is

M„„(P,P')i, „, =
(2 ), (k 5„„-k„k„)

2 2

x f", ln 2 +c2 ln2 ~1 2 2

(2.53)

This is divergent in the limit M„M2-~. We find
that the net correction in O(X') is finite if and only
if

(2.54)

This establishes (iii). Note that the above value
differs from the one given by Coleman and

Jackiw, )o who added an additional O(A) term to

f =,'- to eliminate the regulator contribution to the
trace in the first-order correction. Their choice
a= [6(2v} ]

' would result in the divergence of the
second-order corrections in the present method.
We must remember that the finite parts of the
regulator contribution to M'~2„'(P, P') depend on the
value of M, '/M, ' in the limit M„M, - ~. This is
a very unsatisfactory point in the Feynman cutoff
method. " However, physicists are familiar with
such ambiguities in quantum electrodynamics. "
When ambiguities arise, one invokes some general

principle, such as the gauge invariance, to elimi-
nate them. In our case, a renormalization condition
must be imposed on (&/&k')M'„'„)(p, p'). If this is
done, M„'„'(p,p') is also completely determined.
This proves (iv). In general, if a local operator
product contains many derivatives, many regula-
tors will be necessary to regularize the Feynman
integral which contains a corresponding vertex.
It follows that the number of independent ratios of
regulator masses is correspondingly large. To
get the unambiguous corrections, many renormali-
zation conditions will be required. The situation
is the same for the BPH cutoff method used in
Sec. III. We further justify our procedure leading
to (iv) in this manner. In concluding Sec. II, it
should be noted that the contribution of the regula-
tor fields makes it very difficult in practice to get
the higher-order corrections in this method.

III. BPH CUTOFF METHOD

In this section we consider another cutoff meth-
od, which makes each Feynman integral finite
without introducing the regulator fields. Consider
a renormalizable Lagrangian field theory. Every
meaningful cutoff method will give us the same
scattering amplitude after renormalizations. This
is not the case for the matrix elements of the gen-
eral local operators such as the stress tensor.
For example, the N-point Green's function
(T)P(x, ) )P(x„)), can be made unique and finite in
each order of the perturbation theory after the re-
normalization. When some of the arguments x,.
coincide, it is divergent however. Graphically we
must make a special subtraction in the subgraph
containing this vertex. It is at this point that the
dependence on the method of the cutoff comes in.
In the following we employ the Bogoliubov-
Parasiuk-Hepp (BPH) cutoff method. This will al-
so give us a simple interpretation of the regulator
contribution in the Feynman cutoff method.

A. Stress tensor and normal product

The most convenient way to utilize the BPH cut-
off method systematically will be to use the nor-
mal products. Let us summarize briefly the defi-
nition of the normal product given by Zimmer-
mann. " Suppose a Gell-Mann-Low formula for
the N-point Green's function in the presence of a
single scalar field with the interaction Lagrangian

N

Till ) =)f'n'te paa 0) T 41,1))exp ifd'*I )) t*))
0 t=1 0
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where P(x,. ) is a renormalized Heisenberg field
operator and Q,(x, ) is a free-field operator. The
finite part is obtained by BPH subtraction opera-
tions applied to the every unrenormalized ampli-
tude. For a particular connected graph G, which
contributes to the right-hand side of (3.1), there
exists a corresponding unrenormalized integrand
I~. The renormalized integrand A~ is given by
Zimmermann's formula:

I1 = Q II (-l&'! ))I
UgE gE U

(3.2)

In this formula, y stands for a proper subgraph of
G with a non-negative superficial degree of diver-
gence and is called a renormalization part. The
renormalization parts y„y„.. . , y„of G satisfying
y, y, ~ ~y~ constitute a set called a forest U,

which may also be empty. All possible forests of

a proper graph 6 constitute a set denoted by p.
The t& stands for a Taylor expansion operator.
Note that

(-l ~~!&!)Io Io——!y(-'!~~
~& ~

}I»
where Io& corresponds to a reduced graph G/~.

is obtained from I by keeping only the
first d(y)+1 terms of the Taylor expansion of I
with respect to its external momenta P,. around

p, =0, where d(y} is the degree of the superficial
divergence of y. When integrated over internal
loop momenta, the resultant amplitude is finite. It
is the renormalized amplitude. The normal prod-
uct of the field operators is defined by a slight
generalization of the above rule. Let M[QJ be a
monomial of the field operator Q(x) and its deriva-
tives. The normal product of the degree 5,
N, J,M[!P]j, is defined by

( TN( M[&] j~ (x)@(y,) &j&(y„)},=finite part of TM[&,J (x)P,{y,) ~ ~ P,(y„)exp'i d z L, [!P,] (z) . (3.3}

e„„=N,[ T„,+f(a„a, — „,5)ay'J . (3.4)

This is the finite form of (2.15'). By Lowenstein's
lemma:

apNriM[p] I =Ng+ij apM[QJ) i

(3.4) takes the form:

(3.5)

The finite-part prescription is the same as in
(3.2), except for a rule that -g, should be re-
placed by -tg

&
if the renormalization part y con-

tains a special vertex corresponding to M[/]. We
denote the canonical operator dimension of M by
d. Then 5(y}=—d(y)+5 —d(5 ~ d). With these pre-
liminaries, we follow I owenstein' and Schroer' to
introduce a finite stress tensor (9„,:

e„,= [--,'-a„a, + 5„,a'+f (a„a„5„„a')]N,[ y')

+-.'~'5„,N. [~'J+N. [~a„a„~] .'5,.N-. [-~a'~J

+(1/4!) X5„„N,[y'] . (3.5)

In (3.6) we have written the mass and the coupling
constant as p, and X, respectively. This is be-
cause the normal product is defined through the
subtraction at p, (external momenta) =0. The
precise relations with p, and A. will be given la-
ter. ln Sec. 111, we always use the (P, X) La-
grangian. Vertex functions are defined by keeping
only the contribution of the proper graphs to (3.3}.
Denoting the Fourier transform of P(x) by P(p),
the 2-point vertex functions are expanded into the
power series of X:

( TN, [y'] (0)y(P) y(P ' )),""=- (2v)'5(P +P '+ a)g II', {7 )',
i=O

(»,[e'1(&)k(p) b(p '))l'" -=(»)'5(P +P ' &)QI4(&)',
i=O

(~N4[Aa„a. A](&)@(p)&t'(P'))0 =-(»)'5(P+P'+&) +II'„„(~)',
i=O

(3.7)

( TN. [ O' J (~)b (P }4(p '
)}'"-=(2 )'5 (P +P '+ &)g &,' ( & )',

i=O

where we used the same symbol for both X,. and its Fourier transform, and the superscript "prop" indi-
cates that only one-particle irreducible diagrams are included.

B. Parametric integrations

The unrenormalized integrand l~ corresponding to a proper graph 6 containing a stress tensor vertex is
of the form



10 QUANTUM CORRECTIONS TO THE STRESS TENSOR IN. . . 607

r, =«r„.(q, rr) 11 q(E q p;)1-1 r«(q),
2~j «N

where

(3.8)

&(q) =,
+ 1). —1E.

M„,(q, P) is a tensor made from the internal and the external momenta. The momentum dependence of I
is, except for 5 functions, absorbed into the exponential factor by using

-iZ(q } " 1 e
dx Z, —exp[ ix-(q '

+q ~ 1+P.
' —i e) J

q +p. -ix ~l„ (3.10)

where Z(q„) represents a polynomial of q„. To obtain the renormalized integrand R0 we may use (3.2) di-
rectly. It is more convenient, however, to perform the loop momentum integrations first. To do this,
following Appelquist, ' we multiply the external momenta of the each renormalization part y, by (, Then
we perform the loop momentum integrations to get the unrenormalized amplitude F~($„.. . , $„,(p,. )),
where (P,) represents a set of the external momenta. The Taylor subtraction operator is defined by

[1—I,('„)]F0(k» ~ ~ k. (P~])=+0(&» ~ «5; =1, &.«(P, r) —&'0(&», h;=0, , k„, (P, })-
t

f . =0
(3.11)

In the absence of the overlapping divergence, (3.2) reduces to

R, = II(I - I,'(, ,)I, .

After the loop momentum integrations it takes the form:

(3.13')

where Jc((P,. j } is the renormalized amplitude. Appelquist' has proved that (3.13) holds also in the pres-
ence of the overlapping divergences. It can easily be checked in the examples described below. Let us
first consider the 0(A) corrections to the stress tensor. By (3,6) and (3.7),

M(00) (p «p
' ) = [(—, +f )k 0k, —(q +f )lP5 q, J R', + 0 p 5 „„R,' +R '„p —,'5 „,R I ) .— (3.14)

M'„'„'(P,P') is defined by (2.20). The relevant graph
y is identical to the one shown in Fig. 1. The un-
renormalized integrands for R', and A'„„are

I =n, (q}L(q+ $k) for R '

=-[q„q„+(q + $k)„(q+ (k), ]

dA 11= —q( ——r ),~p A.

and (2.36) to get

(3.17)

factor in I, we perform the indicated integration
by using the identity

&&n, (q)n, (q+ &k) for R„'„.
The set of forests is, for both A,' and 8»,

z=(U„Uj,
where Up is the empty forest and U, =y. Substi-
tuting (3.10) for the propagator and the momentum

rq', = —(( —rr) J(qq) r,

duln[1+u(l —u) PJ,(2 ««)'
(3.18)

r('„„=— 't) —Ir') J(qq)r
1

du(5„„[I+ u(I —u) PJ in[1+ u(1 —u}t)J
—5„„u(1—u) P —P„„(l—2u+ 2u-') In( 1+u(l - u) P]]. ,

0

(3.19)
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where P„„=-k„k,/P' and P' =-k'/it, '. R,' is obtained

by replacing IQ& in (3.18) by II, . Thus

d,' =-l(1 —i()f tdqll&

=8', —l(lt) —qq) J ( dqll

(3.24a)

for I, and y, and y3 for I, . Then the
0(z') corrections arising from Fig. 3(a) and Fig.
3(b), respectively, are given by

1'
(t(', ).= —, ll( t- 1")J.id, )(d )r.

i=1

2 1

du/in[1+ u(1 —u) pl — j3} . (3.20)
(2)i)4

(tt'), =-1 ll (1-lq )f (dq)td )1
i=1,3

(3.24b}

From (3.14) we get

(3.21)

x (1+3P(j ——,'}J

k„3I~"(p p') =0

M'„",(P, P') depends on the external momentaP and
P' only through k. So (3.21) tells us that Mt„')(P, P')
is a multiple of (k'5„, —k„k„) lt is .given by

(1) 77 P, k}Ik PM„,(P)P ) —
3(2 )&

These are convergent integrals by construction.
(ii) (R', ), and (R2)~ are simply obtained by making

the additional subtraction to the above results. We

get

(tt', ). = - t t 1 —l ",')(1 —1,'*)(1 —l t') J (dq)(d )l.
' .if d) (t. "(1 )-ii,12(2v)'

{3.25a)

1

x ' duln 1+u 1 —u P —6IS

(3.22)

Apart from the finite renormalization, this is
identical to (2.22) if f= . In particular we find
that the regulator contribution in the first-order
corrections (2.22) is identical to the additional sub-
traction term in the present method. The reason
for the necessity of the additional subtractions is
that the degree four is assigned to the stress ten-
sor as a whole. A constituent of the stress tensor
whose operator dimension is less than four ac-
quires additional subtractions. However, its in-
terpretation is very simple and transparent as
compared with the previous method. Now let us
turn our attention to the 0(A.') corrections. For the
vertex functions containing (i) N, [Q'), (ii) Nd[qd'],
(iii) I)I,[ (t) B„B,(I) f, and (iv) I)I, [@'], the relevant
graphs for X=2 are shown in Fig. 3. The renor-
malized amplitudes are considered below sepa-
rately. Only in special cases they are expressed
by elementary functions.

(i) The unrenormalized integrands I, and I, for
the graphs in Fig. 3(a) and Fig. 3(b), respectively,
are, apart from the numerical constants,

I, = n. (q}n,(q+ ],],k)n. (r) dq (r+ F„(,k) (3.23a)

I, =n(q)n. {q+I„k)n.(r) n((, I,,p —(,q —r)

i l tt)l( lqt')(t —li') f(dq)(d )1,

=(tt') —-'(l,"' —1",')(1 —l t'\ J(dql(d il, .

I)t„t, =-n(q}n, (q+ t, t,k)n (r)b($, $, (,P —$,q —$,r)

x [ q„q, + ( q + (2 (sk) q (q + $2 I,3k } l 1 (3 26b)

!

Y3
l

l y
lf: j

y2 l

f L

L
~l

(3.25b)

The additional subtraction terms in these ex-
pressions are finite by themselves. (R,'), and

(R', ), are thus finite.
(iii) The unrenormalized integrands I„„, and I„„,

are

I„„,=-n(q)n(q+ (,),k)dq)(r)E(r+ $,(,k)

x [q„q,, + (q+ $2),k)„(q+ ),t,k), J, (3.26a)

+(P-P') (3.23b)
'Ia)

Here we introduced the parameters (,. in the way
stated before. The renormalization parts are y, ,

FIG. 3. Graphs for O{&2) corrections to the stress
tensor. Subgraphs y,-{i =1, 2, and 3) denote the renor-
malization parts. Kinematics are the same as in Fig. 1.
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respectively. The renormalization parts are y, ,
y, , and y, . Further d(y, )=0 and d(y, }=d(y,)=2.
These hold for both I„„and I„„.Thus we get

(R'„„),= --,'(1- f,")(1—)! 22){1—f ~o))

x dq) d& )I

(&'„,), =- -,'(1 —~2")(1 —~2")(1—~', )

R',=,{lnP —2+ ~ ~ ~ ),(2m)'

2
71 (--'P + lnP —2+ ~ )(2v)' )

(3.30)
2

R'„„= „p.' ( p5» —4p„,) lnp +9-(-4p5 „,+ 13p„„)2(2')'

+=(P5„,—2P„,}lnP —5„,+ ~ ~ ~
1=
P

x (dq)(dr) I„„,, (3.27b)
R,'=0.

(iv) The unrenormalized integrand is given by

I, =s(C)n(r)a(t, (,p —f. ,r —q)+(p p'). (3.28)

From this we get

))l=-4'() —&.")()—lt') J)dq))d )I, , (3.29)

The finite amplitudes obtained above will also be
necessary in Sec. IV to determine the finite re-
normalization matrix.

C. Asymptotir forms

In order to get more explicit forms of the cor-
rections we may consider the asymptotic forms of
them as P- ~ with u (=-P'/P') and n' (=-P "/P')
fixed. In some cases we can factorize lnj3 from
the integrands with finite coefficients. In the other
cases the coefficients are logarithmically diver-
gent, if we factorize ln13 formally. The latter
cases can be treated just as the former after dif-
ferentiating the amplitudes with respect to P. We

put a=o. ' =-1 (i.e., P'=P" =-P, '). For the O(7)
corrections we have simply

For the O(&'} corrections we have [c=-v'/(2)))'J

(R', ), = —,'c[{lnP)' —4 lnP+ ],
(R',), =,-'c[(lnP)' —6 lnP+ ~ ~ ~ J,
(R', ), = (R', ), —,', c(P—lnP—2P+2 lnP + ~ ~ ~ },
(R,'), = {R2)~ + —,

' cc'p,
(R'„,), =,', cp'[—(p5 „„—4p„,)(lnp )'

+(-—", 8„.+—','P„,)»P
+18 p5 52' +. . .

]

(3.31)

A2 = 0(1),

where c' is a finite constant determined from
(3.25b). We introduced o&, ———p„,pp/' and o &„
= p„' p,', /i), '. The expressions for the corrections to
the stress tensor are given by

(R'„,), =,—', cp. '[(p5„„.—4p„,}(in))' ——",(p5„, —4p„,) lnp

+2(a„,+ n„', ) lnp+ pQ „, , x 0(1)

+ p„„xO(l) + (o.„,+ a„'„)x O(l} + ~ ~ ~ J,

2

MI,",{P)P')=(2 )4F'(P5„.—P„,)l(f —~)»P (2f- „)+— J, {3.32)

4

M „','(p, p ')=,p'([(f ——,') (lnp}' —{5f——,'9) lnp + ~ ~ ~
J p5„, —[(f— ){lnp)' —(5f—,—",) lnp+ ~ ~ ~ ] p„,

+ )2(n„, + n—„', +5„„)lnP+ ~ ~ ) . (3.33)

Note that the leading terms in M'„", and M~2,' drop
out with the choice f=-„'. M'„", is explicitly of the
conserved form, i.e., satisfies k„M„',(P, P') =0.
As was derived by Lowenstein, ' the Ward identity
for the {9„,vertex can easily be obtained in the
nor mal-product method. In particular it implies
(pp'l 8„8„,] Of"' =0 for p' =p" =-p'. This equa-
tion, together with the equation of motion, will

fix the ratios F,/F, and F,/F, in (2.47) on the
mass shell. Except for an over-all factor, this
will also give us M„'„' (P'=P" =-P') in terms of
R', and R', . Equations (3.32) and (3.33) were ob-
tained, however, by taking all the constituents of

8„, directly. Note also that, in k„M'„'„', not only
the (lnP)' terms but also the lnP terms drop out
for P' =P" = -P2. This is in accordance with
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k„lVI'„",(P, P') =0 on the mass shell and supports the
correctness of (3.33). The fact that the coefficient
of (InP)' term in ft'„„vanishes by taking the trace
follows from the equation of motion. From (3.31)
we see that this is satisfied for the two graphs
separately. In concluding this section, we stress
that there are some ambiguities in the choice of 8„,.
The O(1) term in f has physical effects on the
classical level and will be determined by gravita-
tional interactions. However, the higher-order
terms in f and the choice of the degree 5 affect
the quantum behavior. They cannot be fixed a
priori.

diate renormalized vertex functions are given by

1'„"(p,-p:p, x) =-i[p'+ p, '+Z„{p':p,x)], (4.1a}

F, (P P:0 ~)=-z F (P P:0 ~-) (4.2a)

(4.1b)

The values of I'„", (8/SP'}I',", and I'„"atP, =0
are the same as the corresponding values in
{2.7)-{2.9). The result of Brandt" implies that
there is a choice of p, , ~, z„and z„so that

IV. FfNITE RENORMALIZATIONS

The BPH renormalization scheme as well as
Zimmermann's normal product was originally
formulated through the intermediate renormaliza-
tion (IR). The on-mass-shell renormalization
(OR} is also possible and is sometimes more con-
venient in practical applications. In this section
we study the transformation law of the stress ten-
sor when we go from IR to OR. Let us first con-
sider the case of the ordinary scattering ampli-
tudes, which also appear in the corrections to
the stress tensor.

+9 +~,(P:Pi ~)lp&= {4.3)

(4.4)

(4.2b)

where I'" (/=2, 4) were defined in Sec. II. The
renormalization conditions imply

A. Scattering amplitude

The existence and the properties of the finite
renormalization between IR and OR are well
known for the scattering amplitude, or equivalent-
ly, for the Green's functions containing no gen-
eralized vertex. So we will restrict our attention
only to an important step proved by Brandt and

then will make a working rule to perform the finite
renormalization. Consider Zimmermann's for-
mula (3.2). If we change the subtraction point
from P,. =0 to some nonzero fixed point, the resul-
tant integrand is also finite after loop-momentum
integrations. The difference can be expressed by
finite counterterms in Lagrangian. This ambigu-
ity of the amplitude associated with the subtraction
point is completely eliminated by renormalization
conditions. In particular, Hepp" has proved that
there exists a choice of the finite counterterms
consistent with the given renormalization condi-
tions. However, an elaborate BPH technique is
necessary in order to prove that the effect of the
finite counterterms on the Green's functions is
equivalent to finite changes of the mass and the
coupling constant.

Let Z„(P'.p. , X} and V(P„.. . ,P, :p, A) be 2- and

4-point vertex functions, respectively, with the
lowest-order contributions subtracted, and nor-
malized at P,. =0. In terms of them, the interme-

From the dimensional reason we can write as

p' =f(g', x), x =g(A. ),

(4.5)

(4.6)

In order to define X as a function of X, we may
choose z, = 1, which implies 8~(X)/&7= 1 at ~ =0.
Then f (y', A), g(A), .and z, are uniquely determined
from Eqs. (4.3)-(4.5). The desired rule is: Make
substitutions p'- f(p', X) and X-.g{X) in
l „"{p„.. . ,p~:p. , X) and divide by z, for &=2.
Then we obtain I'"'(P„.. . ,P„:g,A} (&=2, 4).

B. Stress tensor

As in the case of the scattering amplitude, the
problem is to make a rule to obtain the OR-value
of the stress tensor when the IR-value of it is
known. We will find that the relative ratios of the
mixing of the normal products are rather complex
in 0„„if the latter is expressed by N~. 6„„(x)is a
linear combination of six tensors A,. (i = 1, . . . , 6).

tensor indices of A, suppressed). Suppose a prop-
er graph G which contains a A, vertex. For a re-
normalization part of 6, which contains no A,. ver-
tex, the subtraction is the same as for the scatter-
ing amplitude. So the OR-value of the amplitude
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is obtained by the previous method. For a re-
normalization part which contains a A,. vertex,
we make necessary subtractions at P,. =0. How-

ever, even if we start with the (u, A ) Lagrangian,
the resulting finite amplitude containing a A,. ver-
tex, obtained in this way, will not in general be

simply proportional to the OR-value of the ampli-
tude in the (u, , X) theory. This is because the op-
erator A,. (i fixed) alone is not necessarily closed
under renormalization. ' To be more precise, we

define the vertex functions (i.e., amputated, one-
pa.rticle irreducible Green's functions):

F'„".(P,P':u, &) = &»[A;(u, &)J 4(P)4(P')}". ' (4.7)

(4.8)G'„;(P„P'„P.,P,:u, ~) = (»,[A;(u, ~)] e(P,)4(P, )e(P,)b(P, ))',
'

The (u, a) in the right-hand side implies that it must be calculated using the (u, x) Lagrangian. We need

also the new normal product N,'[A,.], which is defined by the on-mass-shell subtraction':

F„'.(P, P':u, ~) = (»,'[A;(u, &)Jb (P)4(P '))", ' (4.9}

|='.(P»»». :»~) =(™'I.A;(u ~)J 4(P )4(P, )4(P,)4(P.))".
'

Then there exists a unique choice of a 6&6 matrix (n, ,) so that for %=2 and %=4

&»'[A, (u, ~)]4(P,)" 4(P.)}'."'= o., &» I A, (u, AJ 4(P,)" 4(P.}}.""',

(4.10}

{4.11)

where p, and A are related to P and X in the way
described in Sec. IVA. To show (4.11), we first
note that the normal product method of renormal-
ization is equivalent to add to the Lagrangian the
counterterms of special types corresponding to
the local operator products. As in the case of the
scattering amplitude, we can choose the finite
counterterms such that the renormalization con-
ditions are satisfied for each A,. amplitude F'„,
and O'„,. This is guaranteed by the generalized
BPH theorem. It tells us that for Green's function
containing a generalized vertex, there exists a
choice of the finite counter terms consistent with

the renormalization conditions, and that any such
choice leads to the same Green's function. The
proof of this theorem is straightforward by using
the original Hepp's method" and is omitted here. "
The next step is to prove the equivalence of the
effect of the finite counter terms and the finite re-
normalization of the A,. amplitude. This step is
trivial because the A,. vertex appears once and

only once in a graph contributing to (4.11). Thus
we arrive at (4.11). To determine (o.„), we write

F„'.(P,P':u, ~) =B„„u'F',(P,P ':u, &)

+ (P„P.+P„'P,')F'(P, P ':v, &)

+k„k,F,'(P, P '.I, X) . (4.12)

FI = -2,
F5

gp2

F =0

F6 0

aF'
gp2

0

~F,
ap'= '

Fl 1 Fl 0
gp2 y gp2

a 2

gk 2 7 gk2 7

gF5 gF6

Bk Bk

(4.13)

also for G' (i =4, 5, and 6) at k„=0, p,. p,.

= —,u. '(1 —4B,, ). For a particular i, Eq. (4.11) ex-
presses six (five for i =1, 2, and 3) ecluations cor-
responding to these renormalization conditions.
The superficial degree of the divergence is nega-
tive for G'„, (i =1, 2, and 3). The renormalization
conditions are unnecessary for them. This occurs
partly because the operators A,. (i =1, 2, and 3)
are closed by themselves under renormalization.
The decrease in the number of the independent
renormalization conditions does not cause any
trouble in the determination of a, , , since the cor-
responding n, , vanish identically. The (n, ,) is
thus determined. At the subtraction point, the re-
normalization conditions are:

F' (m =1, 2, and 3) are functions of three scalars
P', P ", and O'. The renormalization conditions
are necessary for F', , BE',,/BP' = BF'„/BP",
BF',/B&', E,', and F,' at P' + u' =P" + u' = 0 = 0, and

F =-1 F =-2 F6 0

(4.14)
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8 ~ 8i jr
A@2 1 ij gp2 1

8 . 8Fty2 1 ij@2 1

(4.15)

Gpv QI j G tv

In order to be able to solve uniquely n,.j, it is
necessary and sufficient that

F rF6rF r F5r F rG4r @02 3 gp2 1 g@2 1 (4.16)

The left-hand side of (4.16) is 3'4!p. '5 +O(h)+
and is nonvanishing. (n, ,) is thus uniquely de-
termined by (4.15). This justifies (4.11). Then it
will be natural to define the stress tensor in terms
of the new normal product:

6„,=h, N4[A, (N, X)J, (4.17)

where h,. (i =1, 2, . . . , 6) are constants. Equation
(4.11) then implies

g„„=h,.n, qN, [Aq( p& P. )j . (4.18)

We see that the coefficients in (4.18) cannot be
absorbed into the finite renormalizations of p. and
A. . They are characteristic to the e„„vertex."

If F'„"„danG'„", are known, (4.13)-(4.15) give us

(n, ,). Then the on-mass-shell renormaiized
stress tensor (4.17) is obtained from (4.18). Our
main problem is thus solved. Note that (u, j) is of
the form:

I

0 e„0 0 0 0

0 0 @33 0 0 0
(4 19)

041 &42 0 &44 @45 0

+52 0 +54 +55

61 +62 +63 64 +65 66

and that n, j (A =0) =5,j. From the general con-

In (4.13) other amplitudes or their derivatives not
described here vanish identically. From (4.11) we
get at the subtraction points (for a particular i):

Fjr
1 jj 1

F2 = &;,F2

F'= e3 t j 3

sideration we know that only eleven elements of
(o, , ) are independent. Note also that a product of
e's and an inverse of a are of the same form as
(4.19).

V. DISCUSSION

We have learned the two possible ways to get the
finite quantum corrections to the stress tensor.
The first is the Feynman cutoff method, in which
the Lagrangian counterterms are of the same type
as those contained in the initial Lagrangian. We
confirmed the finiteness of the corrections up to
O(X'). The second is the BPH cutoff method, in
which the counter terms of special types are added
to the Lagrangian. The essential difference be-
tween these two methods lies, not in the way of
the regularization of the Feynman integral, but in
the way of the subtraction. In the Feynman cutoff
method, the cancellation of the divergences occurs
only for a special value of the parameter f. In the
BPH cutoff method we have made over-all sub-
tractions for the graph which contains a stress
tensor vertex. The number of the subtractions in
the latter case is so chosen that the corrections
become finite. This is always possible. Thus the
corrections are finite by construction. At first
sight it may seem that there is less arbitrariness
in the Feynman cutoff method. This is not nec-
essarily so. Remember that the divergence has
appeared only in the quantum corrections. The
analysis in Sec. II shows only that the method ap-
plies to a particular form of 6)„„only. The value
of f will be determined, for example, by Schroer's
condition' on the Callan-Symanzik function P(A.).
But such a choice is not compelling. So it would

be preferable to have the finite corrections for
the stress tensor without specifying the value of f.
The BPH cutoff method is particularly suitable for
this purpose.
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