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This is an attempt to develop conventional, contemporary, elementary-particle physics in a
Riemannian space of constant curvature. Ne study the global structure of the 3+ 2 de Sitter
space, which we take to mean the covering space of the hyperboloid y02 -y~+ y& = p ~ in a
five-dimensional Minkowski space. This space is not periodic in time. A causal structure
is shown to exist and the commutation relations between free fields are shown to be causal.
Elementary massive particles are associated with a class of irreducible representations
of the universal covering group of SO(3, 2) for which the He~~ltonian has a discrete spectrum
with a lower {positive) bound. A detailed study is made of the wave functions in "momentum
space" and in configuration space. Free quantum fields are introduced with the help of a
discrete set of creation and destruction operators and the commutator fpo(x), ~t) 0(x')] is
calculated. An appendix describes what we think is an interesting way to realize irreducible
representations of the "discrete series. "

I. INTRODUCTION

Dirac, ' in 1935, was the first to consider wave
equations invariant under the groups SO(3, 2} and

SO(4, 1). SchrMinger derived the same equations
from the point of view of general covariance.
Goto' derived invariant equations of the Duffin-
Kemmer type. Gursey' ' and Gursey and Lee'
studied Dirac's 1935 equation from the point of
view of the irreducible representations of the de
Sitter group. They discuss both positive and nega-
tive constant curvature and the corresponding
groups O(3, 2) and O(4, 1). Although they seem to
prefer the latter, they mention the serious diffi-
culty that arises from the indefinite spectrum of
the Hamiltonian, common to all irreducible repre-
sentations of this group. Quantum fields in de
Sitter space were discussed by Gutzwiller' and by
Thirring and Nachtmann, 'who also appear to prefer
O(4, 1) to O(3, 2). Finally, several people have
calculated Green's functions for the lowest spin
values.

This paper is a direct continuation of an earlier
report" in which our motivation for undertaking
an investigation of elementary-particle physics in
a space of constant curvature was given. Here
we merely add that the work is of considerable
pedagogical value: One finds that it is necessary
to acquire a deeper understanding of conventional
flat-space physics.

Our program, barely initiated in our first report
and only slightly advanced in this paper, is to
make essential use of the group of motions of
space-time, by virtue of which the foundations
exist for applying the modern approach based on
the irreducible representations of this group.

The group of motions has ten parameters and the
infinitesimal generators can be associated with
the operators of energy-momentum and angular
momentum in the usual way. Consequently, our
work has no close relationship to papers that deal
with curved spaces in general.

The point of departure of our 1964 paper" was
to apply signer's method" to construct the most
important irreducible representations of the group
SO(3, 2). This group was chosen in preference to
SO(4, 1) because it has representations for which
the spectrum of the Hamiltonian has a minimum.
Such representations could be associated with
elementary particles. The "mass" rn of the par-
ticle was identified with the lowest eigenvalue of
the Hamiltonian. The subspace of states with en-
ergy P, =m was found to carry an irreducible rep-
resentation of the rotation group, and this allows
a natural definition of the spin s of the particle.
In fact, an irreducible representation is deter-
mined up to equivalence by m and s. A complete
system of basis vectors, denoted

~ p, s,), was
defined as follows. Let P be the four-vector
(m, 0) and let

~ P, s,), with P fixed and s, = -s, -s
+1, . . . , s, be the states with energy m. Let
~P, s,), where P=(P„p}and P, =+(m'+p'}"~', be
the result of applying a Lorentz boost to

~ P, s,).
This is precisely signer's method, and the trans-
formation properties of

~ p, s,) under (homogeneous}
Lorentz transformations are exactly the same as
in flat space. The effect of the translation opera-
tors on

~ P, s,) was found by an extremely simple
calculation (p is the curvature constant):

P„=p'~'L„, = P„—-(ip'~ 2/m)P "L„„.
These results hold for any spin, but the present
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paper is devoted entirely to spinless particles.
Section II of this paper is a detailed study of the

states of a free particle in the "momentum" rep-
resentation. The wave functions turn out to have
an interesting dual structure of distributions and
analytic functions.

Section III studies the local and global geometry
of 3+ 2 de Sitter space-time. Contrary to what
has been said, "space-time is not periodic in
time. %'e make use of the usual model given by a
hyperboloid in five-dimensional Minkowski space
(which is periodic}, but identify space-time with
the covering space. The group of motions is,
therefore, the universal covering group of 80(3, 2).
A causal structure, with invariant distinction be-
tween past and future, is shown to exist. A geo-
desic coordinate system (nonglobal), as well as a
global coordinate system, is introduced, and the
group generators are found. The invariant wave
equation is calculated from the known expression
for —and the known value of—the Casimir opera-
tor. It coincides with the covariant Klein-Gordon
equation because the space-time wave functions
are taken to transform like scalar functions under
de Sitter transformations.

In Sec. IV a complete set of space-time wave
functions are calculated. The transformation of
wave functions between p space and x space (gen-
eralized Fourier transform) is found.

Section V deals with free fields; their canonical
quantization is based on a discrete orthonormal
system of basis states. The commutator [P,(x),
P,(x') j is calculated and shown to have correct
causal properties and the correct flat-space limit.

the norm of (2.1)

q *(p)( pl p'&q'( p')(~p), (~p'), . (2.2)

EoK+ I,
'~ P'+m2)K' =0. (2 3)

Vfe may choose the integration constant to suit our
convenience, and take

(4 (2.4)

It will be seen that the norm (2.2) exists for every
state in a Hilbert space X in which our unitary
irreducible representation of the de Sitter group
is realized. However, 3C is not the whole space
defined by (2.2).

We next determine the wave functions q'ez„(P)

TABLE I. A collection of results. Notation:
Eo=p 1 m is the lowest eigenvalue ofLO&-—p
it was earlier called m.

+{p)Ip)(dp} = &(p) lp)(dp), = ~ (~)!x)(d&}

~ (p') = (P'Ip)+(P)(dp), ~ IP') =- (p IP') Ip){dp),

II+II'= g *{p)+(p)(dp), = +*{p}|t{p){dp},= I y(~) I2(dx)

The kernel (P~ P'&, if it exists, is determined up
to a constant factor by the invariance of |,2.2) under
the de Sitter group; that is, by the Hermiticity of
the generators with respect to this norm. I orentz
invariance requires that (p~ p'& be a function

K(P P') and Hermiticity of P„ is equivalent to the
differential equation

II. STATES AND WAVE FUNCTIONS IN p SPACE

In our first report" we introduced a set of nor-
malizable but not mutually orthogonal basis vec-
tors

~ P&, the main properties of which were re-
called in the Introduction. The action of the
SO(3, 2) generators on

~ P& is noted in Table I.
Relatively to this basis we now define the wave
function 4'(P} of a state 4' by the expansion

~„,=~(p„a,, -p„~„) o~ lp), Ip). ~.(p), 0"(p)

=+i {p„a,-p„a„) o~ (p I, {p I, e(p), y(p}
1

&„=p„—E' p" {p,&j -P},8 ) ofi IP), (pl, &{P), &*(P)
0

1
=P} +

E {Pv~l -Pt, ~t }P' o IP) {P I ~ //(P) +*(P)
0

~8= (y~~s-ya~~» && =p'"J-j, s o~ 4(y) =4{ }=4«.i)
L ~„=i(x„&„—x 8„), P„:Eq. (3.10), y„=f{w )x

4 ( p) I p&(&p).

with the I.orentz-invariant volume element

(2.1)
Q =pE0(E0 —3) =m (1 —3/E0) —-t —-(-g) '/ 8 g" (-g)'/ 8

=p ~otyoty 8~8 ~n aot

(dy) =2p-1/2g(y2 p-1)d Sy = {dx) ( g)1/2d 'x =d'~d

(dp), = &'p &(p'- ~') 9( p.-)

Applying L„„and P„ to (2.1), using the just-quoted
rules for acting with the generators on

~ P&, and

transferring this action to 4'( p) by partial integra-
tion, we find the rules for applying SO(3, 2) gen-
erators to 4'(P}. The result is entered in Table I.

In order to discover the invariant normalization
of basis states and wave functions, we consider

(Et} 1) (E0 2) (E(} 2}
(~IP) =(PI»' =e0(p'"ys+ip yiE0) 0

'
~ ~0 2 3 1/2

0 0~2

(XIP) —(p I I) ~ —&&(pl/2ys+ip .y//E0) + ' e0 ™2 {E0 23)1/22''
2m 2

(pip') =—,2, (xlx'): Eq. {4.5)

exp (f +2+j')
2f2 2 ~ y~ =f(&')

(x 1 —psf x
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of the basis

I»=
Ji +,(p)lf»(dp). , I=ELM

in which I.„, L', and L» are diagonal:

(L„E)-iEL8f&=(L„V-)iZLM&=0,

[L' - L(L+ I)](EfAf& = 0. (2.5)

&I lf'&= 4,*(P)&PIP'&~, (P')(dP), (dP'),

This turns out to be somewhat complicated, so we
have relegated the details to the Appendix. The
result is as follows.

(a) When E,&0 and E,x &, the spectrum of ELM
in an irreducible representation is given by

F. = F. + J + 2K, K = 0, 1, 2, . . . ,
(2.6)

L, =0, 1, 2, . . . , M=-L„-X+1, . . . , L, .
The basis vectors, normalized in the sense that

4'(P) =QC,@,(P),

or as the space of functions"

~(~) =QC,~,(p),

(2.15)

(2.16)

However, it is impossible to invert (2.11), and one
cannot express the norm in terms of an integral
over (!)(P}alone. "

(b} In the case E, = —, the above representation
becomes reducible, since it turns out that the
subspace K=0 is invariant. (See the last para-
graph of the Appendix. } In this subspace we find
one of Dirac's remarkable" representations. "
The above formulas are valid if K is replaced by
0, and (E, L) by (2L+ I)'~ '

As we noted above, following E(I. (2.4), the Hil-
bert space K of the irreducible representation is
not the whole L' space defined by (2.2). A rigor-
ous and safe procedure is to define X as the space
of distributions

=&re =&8m &L, z, &~~ (2 7) with square-summable coefficients

are

+„,(P)=(Z, L)( 'q ) &"((&F„((&). (28)

(!(P) =- &PIP'&+(!t')(df '). . (2.11)

where N=-E -Fo, P is the direction of p, ~o
=+(p'+m')' ', and rP(p) is the distribution" de-
fined by

~l
~()»"((»(*e)2(. „', (

' „" ='—,—'~} ~(()

(2.9)

where P = (p~ and the normalizing coefficient is

)
(Eo —I}!(Eo —p)!(L+K+ 2)!K!
(2)!(L+K+ E, —1)!(K+E, —$)!.

(2.10)

A dual space of continuous functions (!)z (p) is de-
fined through the transformation

(2.18)

%e also note that the relation

&pl p'&=pc, (p)e,'(p'),

which is easily derived formally from (2.18), is
meaningful beyond the distribution sense, since
the sum is absolutely convergent when Rep„and
Rep& are both inside the forward cone.

Finally, one may attempt to introduce basis
states

~ P) that have the same relation to (!)(p) as
()t)& has to 4'(P) by writing

(2.19)

(2.17)

or, better still, as the l' space of the ~-tuples
{C,}. It is easy to show that the integrals (2.2) and
(2.13) exist if (2.17) is satisfied and that, in this
case,

In particular, the transform of (2.8) is

(...())=(),&& '(, ',
) '(, ',„));.())

(2.12)

+=
J e(f)l!f}(dS»,.

Inserting (2.11) we find

Is"&
= J ( I '&I &()& (&()

(2.20)

(2.21)

The norm (2.2) is then simply

~*(pW»(dp),

and

r
6(p)+r (p}(dp), =5m (2.14)

If we take 4 = ~I& in (2.20), multiply by (l),*(P') and
sum over I, and use (2.19) and (2.21), we obtain

I p& =Q (!)f(p)Ii&. (2.22)

Notwithstanding the formal nature of the deriva-
tion, this result is easily justified in terms of the
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original definition of
~ P). In fact, (2.22) is covari-

ant (see Table I) so it is sufficient to verify its
validity for p=0. But then (2.22) reduces to

~ p)
= (4s) ' 2)E„O, 0), which agrees with our definition
of this state.

To complete the bra-ket formalism we note that

(2.23)

(2.24)

sinp' 'I, = -yQ//'R,

(y 2+ y 2)1/ 2
(p

1 + r2)1/ 2

with

p"'t =7+ 2~n,

-7r ~7&m, n=o, +1, . . . .

(3 5)

(3 6)

III. GEOMETRY

y(x„0) = exp(-ip'/'x, L„)$(0) (3.2)

and, in particular,

$(2vp '/', 0) = exp(-2wiE, )g(0), (3.3)

In view of the interpretation of P„, as translation
generators, it seems natural to introduce config-
uration-space coordinates as parameters of trans-
lation. Let g(x) be a scalar field and suppose that

P„g(x) has been defined, then it may happen that"

q(x} =e '*2P2y(0), -~&x„«+~. (3.1}

In this case we say that the x„are geodesic coor-
dinates. Unfortunately we shall see that such coor-
dinates are not global; nevertheless, they are of
some use.

It is worth emphasizing the infinite range of x,.
In the case of a pure time translation,

We shall show that a causal structure exists on
the onion. The only continuous two-point invari-
ant is"

z(x, x') = py. y.'= I —-p(y. —y'. )'.
We shall say that the separation between two

points is

spacelike if
~ ~

&I,

timelike if (z~ &I,

(3 7)

and lightlike if ~z
~

= 1. Taking x' to be any fixed
point, we find the regions that are spacelike or
timelike with respect to it. The situation is illus-
trated in Fig. 1. As we see, there are two dis-
connected spaeelike regions on the hyperboloid
and infinitely many on the onion. The timelike
regions are (barely) connected. We have named
the various timelike regions by the leaf number
n and the invariant sign function ~, defined for

since the eigenvalues of L,„differ from E, by
integers. If E, is integer, then p(22/p

' ', 0) =$(0),
and if only integer values of F., were allowed, then
the history of the universe would be periodic with

period 2mp
' '. But if different fields have differ-

ent and incommensurable values of E„ then the
periodicity is lost. Ne wish to treat this more
general case. The group of motions is therefore
the universal covering group of SO(3, 2}.

It would be convenient to interpret our Rieman-
nian space of constant curvature as the hgperbol-
oid

=x& +x -y =v (3.4)

imbedded in a (3+ 2}-dimensional Minkowski space.
This is not possible globally because the time
translation exp(-2ziL02) carries a point on the

hyperboloid into itself. To remedy this we replace
the hyperboloid by a covering space —an onion with

countably infinitely many leaves —so that
exp(-2viL2, ) carries a point on leaf number n into
a point with the same coordinates on leaf number
n+1. A point in Riemannian space should there-
fore be denoted (y, n), n =0, +I, +2, . . . . A global
set of coordinates r, t is given by

e(x, x') = sgn[sinp
"/ '(I —I') j . (3.S}

f (x2) x ~, (p-1 x2—f2)1/ 2

The generators P„are
(3.9}

Among the spacelike regions, we may distin-
guish two types:

spacelike-even: z & 1,
spaeelike-odd: z & -1 .

The former are identified on the hyperboloid with
the set of spacelike geodesics through x'," for
these the leaf number is defined and is equal to
the leaf numbers of the timelike regions on either
side. The spacelike-odd regions are identified
on the hyperboloid with the set of spacelike geode-
sics through the point that is antipodal to x'. The
leaf number is not defined for these regions. To
identify a particular spacelike-odd region we may
give the leaf numbers of the pair of timelike re-
gions adjoining it (see Fig. I).

We shall determine the relationship between the
hyperbolic coordinates y and the geodesic coor-
dinates defined by (3.1). Since x„ is a Lorentz
four-vector we must have
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or

X 8 ~EX' Ii )

(1 x2f 2)1/ 2 —f + 2x2f &

constant:es x') up to an irrelevant coand this fixes f(x up o co
f=-sink/X, where X=(px') . u

'~ 'cosX .= -x„sink/A. , y. = p

rou h the origin are the ogo ug
eter groups of trans a '

of the one-parame
ters associated withcording to (3.1), the parameters asso '

translation group,

(3.11)

a one-param- arameter

(3.12)-~&cr &~, u„ fixe)X~ =O'Q~)

of the associatedare precise yl the coordinates of
to whether uth u'&0/ =0/&0, we

a ' ' i htlike/spacelike geod
de sic. A o g

have a timelike lig e

p apl/2(y 6 v 6 }5

1J

~Xx' f+2x'f' x x' '

(3.10)

According to (3.1),

(3.13)

ex" ex" (3.14)

th t (3 12) ts the esca"i "Equation (3 11) s"o
h -0, hencedime»io»»lane 'h""gfor a t 0-dimens

t rsectlons of theare just the in erthe geodesics
through the point~

h lanes Passinghype rboloid with p .
od ics the inase of timelike ge es'0 In the ca o

o that a timelikea closed curve, so atersection is a
sed on the hyPer ob iotd (b« op'"geodesic is close

elike geodesicsI„ the case of spacon the onion)
~ disconnected openthe intersection

=0 =1 and the

~ consists of two
in through Yj

=lines, one passing
— . The region de-other going throug Xi'

=
' eodesics through

uh
et of all spacelike g ofined by the s

'ble b means of geode-the latter po'oint is inaccessible m
hence geodesic' atin at the former; en

19
sics originating

l on the hyperboloid,coordinates are not global on e
e on the covering space.

the coordinates (3.5) by means o e

L„,=i(y„s q
—y88„) .

ted in Table I. The metricThe results are listed in a
tensor is

Spacelike geodesic
through x'.

1

o' y -1.light cone
5

through x'.

eodesic through x'and x'.

1

o'y5=-1. light cone
through x'.

S acelike geodesicP
through x'.

~r' Spacelike-even

0 y

-/? &1:Timelike
/g Spacelike- odd

1

o2 y5

?+-1
Timelike
Spacelike - even

1

o y5=1
?%1f —1

n = 0 The point x.

e h erboloid and the covering
d th. ;.di..t.de is homogeneous an ep

s to an arbitrary pornstructure refers
l ke relative to x' are' ns that are space i e r ' eg' ~ g

e in the lower diagram.the winding curve in
ed timelike) and the cross-through x covh ' over the unshaded (time

hatched (spacelike) regions.

(3.16}

(3.17)

U ~ *(1—— 0(x)=0.E. (3.18)

IV. WAVE FUNCTCTIONS IN x SPACE AND
SFOURIER TRANSFORM

are determined most easily in
S' 't hh erbolic coordinates. inc

n
' quare -integrable,that the basis funnctions are squar -'

e uite standard andthe calculationn turns out to be qui e s
n order to avoid am-onl the results. " In o er

l use lobal coordinates.biguities we shall use g o a
The simu anlt eous eigenstates o

&3I. are for E, &-„
12

sions are given in Table I. TheExplicit expressions are
me element is found y eb effecting thein

d'riables from y coor inah g f
of which the form is self-evi en,
nates, with the result

(d. }-=2P "'d'y 5(y' p')-
(3.15)=( g)' '-'d'x=-(dx}.

is thet La lace-Beltrami operator '

same as the Casimir operator o
1I. = P + 2pL, g)) pp&p o5 ag

"'e g""(-g)"'&„.)J g//

' ns of our irre u
'

n
'

d cible representa-
th f ition mus t therefore satisfy the free w
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~ d'r ~ df gz (r, t)g, (r, t) = 6z, (4 2)

(In these coordinates -g= 1.) There is no dual
structure such as was encountered in P space, and
no distributions appear. Note that integrals like
(4.2) are always understood to cover the hyper-
boloid only, not the covering space. The integral
is independent of the leaf number n, so it cannot
exist if extended to an infinite number of leaves.

When 0 &E, & -.', the functions (4.1) are not nor-
malizable in the sense (4.2).~ In the special case
of the singleton representation, E, = 2, K takes
the value zero only, and the basis functions are
simply, up to an arbitrary common factor,

Nzzv(r, f} (2L+I} "'yz~(r}
& e-i0 Bt( 1/2II) Eye (4.3)

with F =L+ 2.
We shall need to know the function defined by

(xlx') = Q g, (x)g,'(»') . (4.4)

This function is an invariant and depends on the
invariants z, e, n only. We may evaluate the sum
in the case r = r' = 0 and obtain the general expres-
sion by expressing the result in terms of the in-
variants. The series, which in this way becomes
hypergeometric, converges in the entire z plane,
cut from -1 to +1, and the result is

(xlx'& = (») 'p'II(-', E.- -')[z+(-"- I)" 'I "
2 IP/z

2 1 0) «) 0 2) ~ 2 ~1/f 2z+(z -1)

4, ,(r, I) = (E, L } 'p[zfI(-, E.——.)1 "'y (r)

~ &
-iP St (pl//2Z}-E(@1/ 2 }I+ 2K

x zF,( K-, -K —f. ——,"„Eo—z; -I/pr') .

(4.1)

The range of K, L, M is given by (2.6), and R was
defined in (3.5). The normalizing coefficient
(E, I.) was given by (2.10) and the over-all normal-
ization is such that

+-2)IinEO (4.7)

z &1, spacelike-even, n =0

Izl &1, timelike, n=0

Imz &0, e =+1

Imz &0, e =-1
z & -1, spacelike-odd

Imz &0, ~=0, 1

Imz &0, n=-1, 0.

(4.8)

The rest of the manifold is reached by analytic
continuation across the line z & -1. The Riemann
sheet that is reached by descending across z & -1
corresponds to the next higher leaf number.

Another formula for (xlx'& is

(xlx'&= —(p'/4w')(E, ——', )(z' —I) ' '

x ql (z)e
—2&tllz 0 (4.9}

To obtain &xlx') in a spacelike-odd region with
leaf number (k, k+ 1}, take either k = n, Imz &0

or k+1=n, Imz &0.
Next we shall determine the transforms that

play the role of Fourier transforms in de Sitter space.
We look for functions" (x Ip) and (x lp&, such that

4z(x) = „&»I P)tg(P)(df ),

(xl f»4, (f )(df )., (4.10)

where 41(P), gz(P), and gz(x) were given by (2.8),
(2.12), and (4.1), respectively. If such functions
exist, then they can be determined up to a constant
factor by noting that (when E, &-', )

where n is the leaf number (relative to»') of the
spacelike-even region to which x belongs.

The first Riemann sheet-the cuts being drawn
as in Fig. 2—corresponds to leaf number n =0.
The details of the correspondence are the following:

Iz2 Ill/2 z&1

(z2 1)1/2—

I
+ I

I
I —z'I"'e(», x'),

(4.6)

In addition to the cut from -1 to +1 introduced by
the hypergeometric series, we need another cut
from -~ to +1 due to the factor [] zo. The square
root is defined by

Timelike

Spacelike-odd n={Q1)

n=(-1,p)
-E~

Cut of [z+(z'-1)2]

from - ~ to+1.

Spacelike-even
n=p

Cut of(z -1) from-1to1.

When z is real and &1, the phase of the factor [] zo

is
FIG. 2. The complex z plane, showing the sheet n =0,

with the cuts of the function K (x, x').
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I e(x) I'(dx)

=
J C*(x)&xl p)s( p)(dp).

=
l V*(x)&«IPH(P)(dp), (4.11)

if &
= a,'in), a, in& =O

[al, az ] = 5sr,

[a„a,, ] = [a,', a,*,] = 0 .

A Hermitian free-field operator is defined by

4,(x) IQ& =
i x&

(5.3)

(5.4)

(5.5)

(4.12)

The constant of proportionality is found by inte-
grating (4.10). The final results are compiled in
Table I. Applications follow easily; for example,

is invariant. By the same procedure that was
used [following (2.2)] to calculate (Pi P'& we easily
discover that, for example,

&«IP) (P"'y +fp y/E )" ' (5.6)4,(x) =Q [g,*(x)a,'+ P, (x)a, ] .

The commutation relations follow from (5.3) and

(5.4):

C(p)= &Pl &tt( )(d ), (4.13)
= -in. q(x, x') . (5.7)

(xl p'&=
I &xl p)&pl p'&(dp). ,

(xl P) & Pl «')(dP), .

(4.14)

(4.15)

If the leaf number n of x, relative to x', is zero
(see Fig. 1), then according to (4.9)

p(x, x') = i(p'/-4v')(E, ——,')

xDisc(z' —1) ' 'Qz, (z) .

Ix) =+41*(x)If &.

Using the orthogonality condition (4.2) we find that

(4.16)

iI ) = q, (x)ix)(dx) . (4.17)

Like the basis states
I P), the states Ix) are nor-

malizable and complete, but not orthogonal.

V. FREE FIELDS

Consider the normalized basis states

+zz, z( P) I P&(dp)~

Izaak(x)

I x}(«) (5.1)

and recall the inverse formulas

The integrals over x converge if F, &-', ; the P inte-
grals converge almost everywhere. This is evi-
dent on inspection.

The notation that we have used —&xi P&, (xix'),
etc.—is justified by defining the basis states ix)
by

The function (z'- 1) "'Q~z, (z} has simple poles
at z = +1 that give rise to 6-function contributions
to the discontinuity. The discontinuity vanishes
when z &1. Vfhen -1&z ~1 we get

,(x, x') = -(p'/4w') (E, —-', )

x [(1—z ') '~ ~Ps', (z) + 5(z —1)]

x z(x, x') . (5 6)

The 6 functions appears on every Riemann sheet
at z =+1; this reflects the situation illustrated in

Fig. 1. All geodesics through x' meet again twice
for each circumnavigation of the hyperboloid.

As required by causality, h ~(x, x') vanishes
when n =0 and z & 1, that is, when x is in the region
that is shown cross-hatched in Fig. 1. The com-
mutator does not vanish when x is in any of the
other "spacelike" regions. This result is physi-
cally reasonable. If x is anywhere outside the
cross-hatched region, then a signal can reach x
from x', or vice versa, by following a path that
is piecewise timelike geodesic.

In the flat-space limit, p- 0, E,- ~ with m
= p"'E fixed

I p&=go,'(p)I»,
(5.2)

1z - 1 —2pA. 2,

pE,P~z, (z)- -m'J, (ma),
0

(5.9)

(5.10)

Ix) =P y,'(«)ll &.
I

Let IQ& denote the vacuum state, and define crea-
tion and destruction operators by

pl/2
,(x, x')- (2m)a (x —x'),

2r (5.11}
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1a (x x') = Z (~&) ——5(&'} e(x —x')
4m' 2m

(5.12)

is the familiar flat-space commutator function.
The factors (p'~'/2w} and (2m) are easily recog-
nized as being due to the unconventional normaliza-
tion adopted here [see Eq. (4.2)].

VI. PROBLEMS

with 9,=9/sb' and

L s='(b.e —bs&. }

The Casimir operator is

LoqLc

Using (A2) we find

Q=b, 9 (bRBR 3)=n(n 3).
Applying Q to be ground state we get instead Q
=E,(E„—3); hence we have two possibilities:

(A5)

(A6)

Before we can define interpolating fields, it is
necessary to understand what it means to go off
the mass she11. A study of quantum mechanics
in de Sitter space should be instructive.

"Massless" particles are of particular interest.
Since m = p' 'F.» any particle is massless in the
flat-space limit unless E, is of the order p

' '.
Any "small" value of F.„ fixed in the process of
letting p tend to zero, defines a massless particle.
The values F.,= 1 and E, = 2 are associated with
conformal invariance, E, =

& with the peculiarly
degenerate Dirac representation.

Before we can study photons and gravitons we
must introduce spin. As we explained in the In-
troduction, no difficulties arise. (It is curious that
"mass" and "spin" are well defined even for
"massless" particles. )
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pl 2

0+~
(A9)

where b=b/b and b'=b'=b, '+b, ' The no. rmaliz-
ing coefficients are fixed by requiring that these
functions form a basis for a Hermitian matrix
representation of the algebra. (The Hermitian
matrices are given at the end of this appendix. )
An absolutely straightforward calculation gives
for (E, L) the expression given in the text by Eq.
(2.10). The ranges of ELM are as follows. Let
K=- 2(E —E, —L) and let S, be the index sets

S, : K=0, 1, . . . ; L=0, 1, . . . ; M=-L, . . . , L,
S: K=-1, -2, . . . ; L=0, 1, . . . ; M=-L, . . . , L.
Let V, be the linear vector spaces

f(b)» V,~f(b}=QC„„f„„(b),
Sp

where a finite number of the complex coefficients
are nonzero. If E,g -', we have (Case 1}:The space
V, is invariant and irreducible. We turn it into a
Hilbert space 3C, by completion with respect to the
inner product

(A10)

(f,f') =gC.*..C.'.. (Al 1)
Si

(The space V is irrelevant, but compare Case 2.}
In this case w'e may be allowed the usual abuse of
language that confuses an element f with a function
f(b),

Case 1: n=-F, ,

Case 2: n=F, —3.
Case l. The simultaneous eigenfunctions of L„,

L', and L», with eigenvalues E, L(L+ 1), and M,
are

The de Sitter group is realized as the group of
transformations

&'(A): f(b) - [D(A)f j(b) =f (A 'b)

For infinitesimal transformations,

(A 'b) = b~+ 9 gbp, ,

D(A) = 1+ pi 9~gL~g,

(AS)

(A4)

f=f(b}=Q Cxi~fxi~(b}.
S+

Cgse Z. Instead of (A9),

(A12)

b —ib
+xi~(b)=(E, L}b" ' b' b' yi~(b). (AI2)

p+ E

Let S, be as above and define W', by
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(F~ E ) =g Cz1zCz,zz ~

Sg

(A15)

Here C~~ „are the expansion coefficients of the
function E(b) that is associated with the equiva-
lence class I',

E(b) Q CELN F81 z( (A16)

(The situation can be described in simpler terms
as follows: Some of the generators, when applied
to a basis function with K=O, lead out of W, . The
unwanted terms belong to W but, since W is
invariant, we obtain an irreducible representation
by simply ignoring such terms. )

Of course the representations obtained in X, and
in X, are equivalent.

We wish to obtain a characterization of the two
Hilbert spaces in terms of functions that are, in
some sense, square-integrable. Let the angle u,
0 ~u&2n, be defined by

(b, + ib, )/b = e'", (A17)

and introduce functions h and H by

f(b) =( 2v)' 'i( b+ib, ) zoh(u, b),

F(b) = (2v)' 'b '(b, —ib, )zoH(u, b) .

(A18)

{A19)

In pa, rticular,

h (u b) =(2v) '~'(E 1.) 'e '"'z z"Y (b)

E(b) H Wy~E(b) = Q CzzzFz1 u(b) (A 14}
Sy

In this case W, rather than W„ is invariant;
this complicates matters. If E„)b &, we have
(Case 2): The space (W,S W )/W is invariant
and irreducible. An element E of this space is
an equivalence class of functions belonging to
W, ~W . Each equivalence class I' contains one
and only one function F(b) that belongs to W„.
hence we have a natural bijection E~E(b). A Hil-
bert space K, of equivalence classes —and at the
same time a Hilbert space 3C,

' of functions F(b)—is
obtained by compl, etion with respect to the inner
product

(f,f )=(F,F)=(h, h)=(H, H)=PC/C,

h*(u, b)H(u, b)dudQ . (A22)

The question is whether we can find kernels k' and
K such that

(h, h') = h'(u, b)h(u, b;u', b')h'(u', b')dudu'dQdQ',

(A24}

(A25)

The answer is no as far as k' is concerned, and

yes in the case of K.
The function k, if it exists, is determined by the

Hermiticity of the generators to be a constant
multiple of {z-=e"", z'=e '" ):

(zz )-'[(zz'}-'+1 2b b /zz ]"-'. (A26}

This function must be defined for real u, u' as the
boundary value from the domain ~zz'~ & I in which
it is one-valued. Unfortunately (A24) is equal to
zero by Cauchy's theorem.

For K we find

K=(8z') '[(zz')'+1 —2zz'b ~ b'] z' (A27)

defined for real u, u' as the boundary value from
~zz'~ & 1, since this function is one-valued there.
One easily verifies that the integral (A25) agrees
with (A23) when both exist.

The negative result regarding (A24) is a familiar
feature of representations of this type. '4 If the
existence of (A25) is surprising at first glance,
it should be recalled that the Hilbert space 3C„
rather than the function space 3C'„carries the
representation. Of course the representation can
just as well be realized in X,', but not in terms
of differential operators. How it can be done was
she wn in a paper by Barut and Fronsdal. "

The rephrasing of these results in terms of the
p-space functions p(p) and 4(p) was carried out
as follows. The action of I.„~ on E(b) is given by

(A5). If we define

(H, H') = H (u, b)K(u, b; u', b')H'(u', b')du du'dQ dQ'.

Hz „(u, b) = (2z) 'i'(E, I,)e '"'z zo'Y1„(b) . '

Note that

h, (u, b}H1 (u, b)dudQ = 611, ,

so that the inner product is

(A20)

(A 21)

(A22)

pq= imb„/b, ,

4(P) =b, ' "F(b),
N(P) = b, "f(b),

then the action of I.,& on 4 ( p) and on g ( p) is presisely
the same as was found in the text by other means.
But this is as yet only formal, since an analytic
continuation from real b to real P„must be
carried out. At first we deal only with the basis
vectors and try to express the integral (A22} in
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4p
A(e'")e '""du = A(z)2z()" (z)dz,

M P

where, by definition,

terms of real P„. Since Hzz„(u, b) has a pole at
at z =0, while hzt „(u, b) has a zero there, we are
naturally led to the structure described in the text.
In fact, let A(z) be analytic in the region ~z ~

& 1,
and let n be a non-negative integer. Then

n

A(z)b" (z)dz = —, —A(z)
&o 88 4' 0

The domain of the z integration corresponds to
real p„, and the derivation of the results for g(p)
and 4(P) given in the test is now straightforward.

For completeness we give the explicit form of
the Hermitian matrix representation, to the extent
that it was needed:

E +E+L 2 —E +E+L) '~'

(E, —1 s E —L)(2 —Ev + E —L) '~ '
(2L —1)(2L+ 1)

This formula makes the invariance and irreducibility of the space spanned by F. —Eo —L =0, 2, . . . explicit,
unless Fp = -„ in which case the space spanned by E -Ep —L = 0 is invariant and irreducible.
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