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Calculability conditions are discussed for local gauge theories w'ith Higgs-type symmetry breaking. We

focus on the naturalness of p,e universality, the naturalness of the Cabibbo angle 8, the naturalness of
CP-violating phases, and the naturalness of the noiileptonic bI = 2 rule. In this context we examine

many published gauge models and construct others to illuminate the questions at hand. We note that

naturalness of p,e universality for charged currents does not necessarily imply universality for neutral

currents (natural "restricted" universality), and we emphasize the need for v„-beam experiments. For
SU{2)XU(1) and SU{2)XU(1)XU(1) we give first examples of how a nontrivial natural 8 can appear.

Models with CP violation are classified as to whether their CP-violatirig phases are natural or not. For
O(4)XU(1) we give a first example in which all the above naturalness criteria can be implemented.

Here the natural p, e universality is necessarily restricted. The principal tool used in these investigations

is the strict renormalizabiiity relative to " gauge group enlarged by discrete symmetries, and the union

of representations reducible under the gauge group to irreducible ones under the enlarged group. To
implement this program, it is sometimes necessary to introduce Higgs couplings involving right-handed

neutrinos; here the zero neutrino mass is associated with a discrete symmetry which remains unbroken

upon spontaneous breakdown. We also find that strict renormalizability can lead to mass relations

between fermions. In 0{4)XU(1) models, such mass relations as well as right-handed neutrinos are

iiecessary ingredients. Furthermore, for these models the spontaneity of CP violation acquired an

operational significance, namely, as a discrete symmetry necessary {but not sufficient) to give a
CP-violating phase a natural value (90'). While the models we discuss are rather cumbersome,

particularly due to the complexity of the symmetry-breaking mechanism, we expect that the tools we

have developed may well have wider applicability.

I. INTRODUCTION

Many gauge models of weak and electromagnetic
interactions have been devised in the last few
years. The basic strategy for their construction
consists in a reconciliation of field-theoretical
and phenomenological requirements. From the

side of field theory one insists on the renormal-
izability of the scheme as the principal predictive
theoretical tool. From the side of phenomenology
one attempts to incorporate all the known regular-
ities of the weak interactions. What is known here
almost entirely concerns the rather low-energy
and low-momentum-transfer domain. Indeed, it is
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our ignorance of high-energy weak phenomena
which allows, at this stage, for so much play in
model building. Thus, experiments have not even
confirmed the actual existence of massive vector
bosons, the key ingredient in all models. In ad-
dition, there are many other questions which, when
answered, will sharply delimit the present free-
dom of theoretical speculation, such as: Are there
other weak currents' than the one customary pair
of charge-carrying currents? Are there heavy
leptons? Are there charmed hadronic states and,
if so, what is the scheme which combines charm
with known hadronic symmetries?

While, therefore, the future lies almost entirely
in new experimental information, there is never-
theless much room for further theoretical study at
this time. Beyond the construction of further mod-
els, there exist already a number of problems of
principle which in some way or other have to do
with the question: To what extent is some given
model phenomenological?

This question has already been much discussed
in the context both of specific problems related to
some particular gauge model (p e universality, '~
strong isospin invariance as a natural versus an
artificial symmetry, '8 and others), and of broader
considerations on the presence and role of counter-
terms' and (related thereto) of "Eeroth-order rela-
tions. '" Thus it is known that, in order to answer
our question, one must first of all exhibit the
Lagrangian Z of a given scheme in its strictly re-
normalizable' form. This means in particular that
all necessary counterterms are included in g.
Then one phenomenological parameter can be as-
sociated with each independent counterterm (ex-
cept wave-function renormalization counterterms }.
All observable quantities in the theory are then ex-
pressible in terms of these parameters. For ex-
ample, in spin--,' electrodynamics, charge and
mass need renormalization so they can be chosen
to be the phenomenological parameters. We call
a quantity "calculable" if no corresponding counter-
term need be introduced. In ordinary theories,
calculability is determined simply by power
counting. For example, in spin-~ electrody-
namics, the anomalous magnetic moment is cal-
culable because the corresponding counterterm
is not renormalizable.

In a theory with spontaneously broken sym-
metry, the situation is more complicated. The
counterterms needed for renormalizability have
the symmetries of the Lagrangian before spon-
taneous breakdown. In such a case, there may be
nontrivial relations among the counterterms. If
so, the masses and coupling constants appearing
in the Lagrangian will not be independent phe-
nomenological parameters. Rather there will be

"zeroth-order relations" among these quantities,
the corrections to which wi11 be calculable higher-
order effects."We will call such relations
"natural. " For phenomenological reasons it is
sometimes assumed that there are relations a-
mong masses and/or coupling constants which are
not zeroth-order relations. The "corrections" to
such relations are uncontrollable. Relations of
this kind are called' "artificial. "

As an example of a zeroth-order relation, con-
sider the Weinberg"" SU(2) x U(l) model in its
original form. It contains a pair of charged vector
mesons 8"' with mass M~ and a neutral vector
meson with mass M~. Another parameter in the
model is the mixing angle 8~ (tan8~ is a ratio of
gauge coupling constants). Associated with the
three parameters M~, M~, and 8~, there are
only two independent counterterms, so only bvo
of the parameters are phenomenological. There
is a natural, zeroth-order relation among them:
cos'8~=M„'/M~'. Thus M~'cos'6~-M~' is cal-
culable and, since a11. couplings in the theory are
relatively weak, it is small. To leading order,
the finiteness of this expression has been verified
explicitly. "

If the Weinberg model is correct, then one com-
bination of parameters, sin'8~M~', is already
known because it is related to e2/G. A measure-
ment of M~, for instance, would then yield a
determination of all three parameters and make
specific predictions about, say, neutral-current
effects in v„-electron scattering.

The naturalness of this relation between M~,
M~, 8~ depends on the details of the Higgs-me-
son structureof the model; in particuj, ar, on the
assumption that the only scalar-meson multip1et
in the model is the one doublet needed to give
mass to the fermions. This choice has the virtue
of simplicity, but, on the other hand, it is pos-
sible to enlarge the Higgs system without signifi-
cantly changing the low-energy predictions. The
only important new feature of such a modified
SU(2) x U(l) model (aside from the additional
Higgs mesons themselves) is that M~, M~, and

8~ become independent phenomenological param-
eters, and their natural relation is lost. In such
theories v„-electron scattering would not be com-
pletely predicted, but instead would serve to
determine the additional parameter.

This discussion illustrates how natural relations
serve to delimit the number of measurements
necessary to reach the predictive level of a gauge
theory. Closely related to this kind of problem
are questions whether (approximate) regularities
already observed can be translated, in the con-
text of gauge theory, into "natural" relations; in
other words, whether these regularities are a
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necessary theoretical consequence of the choice
of gauge model, rather than just an ad hoc phe-
nomenological input. An illustrative example is
p. e universality. If a gauge group and its adopted
representation content are such that the equality
of the v,e and v„p, couplings in the charged current
is dictated by the structure of the strictly renor-
malizable Lagrangian before symmetry break-
down, then the unit value of the coupling-constant
ratio mill be a zeroth-order relation, the correc-
tions to which will be calculable higher-order ef-
fects. This calculability is obviously a sensible
theoretical constraint to be imposed on the choice
of gauge model. This question mill be discussed
in more detail in Secs. II A and III B.

It has become customary to choose the set of
scalar fields by a tacit criterion of minimality;
namely, by introducing just such fields sufficient
to attain mass mhere mass is needed. It is the
main point of the present study that it may be
worthwhile to replace this cxiterion by the al-
ternative one to attain as much naturalness or
predictive power as possible. In the example just
discussed of the Weinberg model, these criteria
[with respect both to the naturalness of the
(M v, Ms, 8~) relation and to pe universality] are
equivalent. But, as we mill see, this is not al-
ways the case.

In this paper we consider in detail some ques-
tions of calculability and naturalness in specific
models with the aim of developing insight and the-
oretical tools which may be generally useful in
model building. We focus on four topics, all es-
sentially concerned with low-energy parameters:

(a) naturalness of pe universality,
(b) zeroth-order relations involving the Cabibbo

angle L9,

(c) naturalness of CP-violating phases,
(d) naturalness of the nonleptonic M= —,

' rule.

We limit ourselves to the context of local gauge
theories with a spontaneous breakdown mechanism
induced by the presence of scalar fields, some of
which acquire nonzero vacuum expectation values.
It is sometimes conjectured that this Higgs mech-
anism itself is of a largely phenomenological
character and that the actual symmetry break-
down mechanism is of a more fundamental na-
ture. Since we have nothing to contribute to this
question, we will stick to the Higgs mechanism.
In fact, for the purpose of the present study me
shall take the details of the Higgs-meson cou-
plings very seriously.

Of course, naturalness is a notion valid to all
orders in perturbation theory. The order of
radiative correction in which lack of naturalness
first becomes manifest is often characterized by

parameters «o = +» (for examples, see Secs.
11B and III8}. Hence caution is needed in the
study of naturalness questions by graph methods.

Since we do not explicitly consider strong-in-
teraction effects in this paper, it may be asked
if we do not push things too far on too narrow a
front. It mould appear that there is no such ob-
jection if strong interactions are sufficiently
damped at high virtual frequencies, as is, for
example, the case if they enjoy asymptotic free-
dom. However, it may be well to bear such res-
ervations in mind until we understand better
the union with strong interactions.

The next two sections are organized as follows.
Section II is devoted to gauge groups in which
only a single pair of charged vector bosons ap-
pear. These comprise of course SU(2)x U(1) and
O(3), but we shall also find it instructive to con-
sider SU(2)x U(1) x U(1), which contains two mas-
sive neutral vector bosons. In Sec. OI we discuss
instances where two pairs of charged vector bo-
sons enter; the groups discussed are O(4) and
O(4) x U(1).

We start with the analysis of natural universal-
ity in Sec. IIA and briefly review the published
models, tmo of which are natural, "' the others
artificial in this regard. We then raise a quite
general question: What is the physical meaning
of universality?

As is mell known, all physical information
bearing on universality stems from observations
of semileptonic charge-changing processes. In
the construction of gauge models, it has almost
invariably been assumed tacitly that this uni-
versality property extends to all currents. From
here on, "universality" shall refer to this situa-
tion which is met (whether naturally or artificial-
ly) in all SU(2) x U(1) and O(3) models which have
an equivalent representation content for muon-
type and for electron-type leptons. In the absence
of information to the contrary, we are led to ask
the following question: Is it possible to construct
models such that (a) the universality in the

(hQ~„,„„(= 1 processes is natural, while (b} in
neutral-current processes this universality does
not apply? We shall refer to such a situation as
natural restricted universality. The formal
meaning of natural universality is therefore that
the substitutional invariance v, —v„, e —p. is
natural for all currents, while it does not apply
to some currents in the restricted case.

The physical meaning of the restricted situation
is that it is no longer true that (up to lepton mass
corrections} the cross sections for v„+e-v„+e
and for v, +p-v, +p, are equal. Nor (more im-
portantly in practice) is it true that the reactions

v&+nucleon-v& + X, (1.1)
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v, +nucleon- v, +~ (1.2)

have equal cross sections. Nevertheless, as we
shall show by examples, the cross-section ratio
for the reactions (1.1) and (1.2) may have simple
calculability properties. In the context of a gauge
theory, we can evidently have restricted univer-
sality if and only if inequivalent representations
are involved for muon- and for electron-type
leptons, that is, if heavy leptons exist and/or if
there is more than one neutral current. We give
examples of this in Secs. IIA and IIIB. Since a
breakdown of full universality has been a subject
of much theoretical speculation through the years
(especially in connection with lepton mass prob-
lems), we can only hope tha, t experiments, tion
with e-neutrino beams will not be too far off.

In constructing examples of restricted univer-
sality, we shall introduce a tool to be used re-
peatedly in the sequel, namely the extension of
alocal gauge group 9 by a discrete group S, such
that in the limit of unbroken symmetry we deal
with the full invariance under the group 9 x S.
The demand of strict renormalizabil. ity relative
to 9 is to be extended to strict renormalizability
relative to 9 x S. It is a further and crucial fea-
ture that we shall need representations which are
irreducible under 9 x S, though reducible under
9 alone. This same situation, reducibility rela-
tive to (}, irreducibility relative to gx S will oc-
cur time and again in this paper. Indeed it is by
this same device that we shall demonstrate how

to construct certain natural values for the Cabibbo
angle; and for CP-violating phases. As the pa-
tient reader will see, the distinct problems dis-
cussed in this paper have in fact many technical
traits in common.

In the examination of universality we came upon
some features novel to model building. As we
shall see [cf. Eqs. (2.2)-(2.6) below], it is neces-
sary in one example to introduce explicitly right-
handed e neutrinos in the Higgs couplings. The
necessity arises from the structure of S. Never-
theless, this neutrino remains massless. The
reason is that one discrete element of S remains
as an invariant operation even after spontaneous
symmetry breakdown. In any event the answer to
the question "Why is the neutrino massless (if in-
deed it is)?" may mell contain a clue to the struc-
ture of gauge theories. In this context, the old

answer applies: y, invariance cannot tell the whole
story since the neutrino is not singled out by this
invariance in the symmetry limit.

In another example [cf. Eqs. (2.9)-(2.13) below]
we find that implementation of strict renormaliza-
bility leads to a quadratic mass relation between
fermions. This relation is natural, in the technical
sense, and it is "type one" in a recently given
classification. '

In Sec. II8 we turn to the question of the Cabibbo
angle (9 and first show that 0 is a phenomenological
parameter (a renormalization constant) in all pub-
lished models that fait. under the heading of Sec. II.
We report here on two models in which 8 has a
natural value. In the first example, the zeroth-
order value of 8 is a pure number, namely 45'
[hence tan& =1+O(o)], a case of methodological
though hardly of physical interest. The second ex-
ample is furnished within the context of SU(2)
x U(1}x U(1). Here a model is constructed in which
8 is a natural function of the (four) renormalized
quark masses.

The final part (C} of Sec. II is devoted to a, brief
discussion of gauge models with a single pair of
charged vector bosons in which QP violation is in-
corporated. The inclusion of these effects means
that, in some ways or other, a CP-violating phase
(or phases) enter in the gauge model. We note that
in these models the phases, the fermion masses,
and the Cabibbo angle are independent phenomeno-
logical parameters.

In summary, in Sec. II the following new points
emerge: (a) We learn how to implement p, e uni-
versality in a restricted way. (b) The necessity
may arise for having right-handed neutrinos ap-
pear in Yukawa couplings to Higgs fields. (c) Nat-
ural fermion mass relations may arise as a con-
comitant to the implementation of naturalness. All
these will reappear as necessary ingredients for
the class of models discussed in Sec. III. Since
the very design of these models is based on the
notion that p, e universality and the origins of 6)

and of CP violation are inseparably intertwined,
it is no longer possible, as in Sec. II, to treat
these problems one by one. Let us briefly re-
capitulate the main idea.

The phenomenological starting point of these
models" "is the assumption that there are two
pairs instead of the usual one pair of charged cur-
rents, coupl. ed to pairs 8", , S", of charged vector
bosons as follows:

ig[(py&(1+y 5)'2+ o.p,y&(1+y 5)e+PP&y„(1+y~)p, + ' ' '] W,

+ig[py&(1+y~)X+yp y&(I+ys)e+ dp&y&(l+y~)p+ ' ' '] W2+H. c. , (I.S)
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Ren*Py5*=0 . (1.4)

Now any three of these four phases may be elimi-
nated in favor of a single phase by choosing ap-
propriate conventions. Example: %e can put e
=P=1 by redefining e and p, . And we can effective-
ly set y =1 by redefining S', -y*W„A -y~. By
this convention only 6 survives (and cannot be
eliminated) and Eq. (1.4) implies that (up to an
unimportant sign) 5 =i . Hence Cabibbo universal-
ity is arrived at via the route of CP violation. The
one single surviving phase reflects on a property
of the lepton terms as a set relative to the hadron
terms in the currents, rather than on a property
of an individual lepton term.

From the point of view of naturalness of param-
eters the following problems now arise if Eq.
(1.3) is to be implemented via a gauge model:

(1) Clearly the Cabibbo angle is to be defined by
tan&=M, '/M, ' where M„M, are the respective
masses of W„S',. Question: Is this a natural
(i.e., zeroth-order) relation? If so, we shall
have, more precisely

tane =M, '/M, '+ O(o. ) . (1.5)

If realizable this then becomes one of the predic-
tive features of such models: To calculable cor-
rections of order n, there should be two charged
vector mesons with mass ratio (tan8)~'=-,'. [Note.
Speaking futuristically, even the discovery of a
single charged vector meson might shed light on
whether Eq. (1.3) makes any sense, since in mod-
els of the present kind a 8' cannot decay both in
ES=O and M=1 hadronic (charm conserving)
channels with relative rates -tan'8 as in the single-
W models. ]

(2) It follows from Eq. (1.4} that, whatever phase
convention we adopt, we cannot have both a = P
and y = 5. Therefore, a certain dissymmetry has
to appear in the electron-type versus the muon-
type leptons. It was therefore clear from the out-
set" that p. 8 universality would be an issue. %e
are now in a position to state the problem more
precisely than was done hithertofore. Question:
Is such dissymmetry compatible with na, tural p, e
universality, if not fully, then at least in the re-
stricted sense 7

(3) Continuing with the above example of con-
ventions, set 6=e'~=i so that f=s/2. Question:

where the dots denote other terms as they may
(and indeed will) arise. a, P, y, 6 are phases:
)a) = (p) = (y( =

) 6) =1. This condition ensures pe
universality (always on a phenomenological level).
The imposition of Cabibbo universality between p,

decay and 6' and A. P decay implies that these phases
cannot all be real. In fact the latter condition im-
plies that

ls this a natural value for gT If so, we sha. ll have,
more precisely,

sing = 1+ 0(o) .

If realizable, QP violation is then characterized
by a calculable CP-violating pha. se. In obvious
language, one may then further call the QP viola-
tion "maxima, l." The impact of this maximal QP
violation is of the "superweak" kind. "

It is shown in Sec. GI how these questions can
all be answered affirmatively. In Sec. IIIA we give
a short review of the models involved and of ear-
lier comments on their calculability properties.
There we also refer to the question of the natural-
ness of the nonleptonic M=-,' rule. Section IGB
is devoted to a systematic discussion of the four
questions raised above. Once again, discrete sym-
metries are the key to the arguments presented.
Here we discover that one of the discrete syrn-
metries needed to implement the naturalness of
Eq. (1.5) is that the theory be CP-invariant prior
to the onset of spontaneous symmetry breaking (of
course all gauge theories are CPT-invariant).
CP noninvariance is then "spontaneous. " The
esthetic appeal of this particular mode of CP in-
variance breaking was first underlined by T. D.
Lee"

It may be useful at this point to state concisely
in what way spontaneity of GP violation is pertinent
to calculability properties of CP-violating effects
in gauge models. First, there is the question of
the imaginary part in K'-K2 mass mixing (the
superweak mechanism). In the present limited
state of the a,rt this effect is associated" with the
S-matrix element for the quark transition ~ -Xm', .
Since there cannot be a counterterm for this tran-
sition (it would be a four-Fermi interaction) this
transition is finite in any event, and the same is
true for on-shell QP-violating transition elements.
Second, consideration has been given to the elec-
tric dipole moment of fermions in gauge theories
with QP violation. Again there cannot be a counter-
term for such moments. '9 Thus these two effects
are calculable quite independently of the way CP
violation is implemented in gauge models. But
now there are two possibilities: (1) If the CP-
violating phase is phenomenological, then a,t least
one of these effects serves to determine its re-
normalized value. (2} If the CP-viola. ting phase
is natural, then its value is a separate prediction
of the theory to which these effects have to con-
form. It is this second case with which we are
dealing here in the realization of Eq. (1.5).

Thus we are led to classify gauge theories with
CP violation as follows:

(I) The QP-viol'ating phase {s)are phenomeno-
1.ogical. QP violation may or may not be spon-
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taneous. An example of each of these two in-
stances is mentioned in Sec. IIC.

(II) The CP-violating phase(s) are natural. This
is the case in Sec. IIIB, where CP violation is
spontaneous. We have no example where the phase
is natural and CP violation is nonspontaneous.

CP invariance is only one of several discrete
symmetries which we shall need in the present
context, the more so because we are simultaneous-
ly concerned also with the na. turalness of 8, of p, e
universality, and of the M=-,' rule. We now re-
cord our findings for the group O(4)x U(1).

(a) Alt f 4 vectors, -aft fs 4 scalar-s [f~ s

=left (righ-t-) handed fermions]. Only for the un-
physical zeroth-order value 8=45' can all natural-
ness conditions be met. For other 8 values one
cannot prevent a lack of naturalness which (under
optimal conditions) becomes manifest only to or-
der

D m pl .g vlH pn)tt

(m„m,„are a typical neutral and charged lepton
mass, respectively, m~= typical Higgs-meson
mass, m~= typical vector-meson mass).

(b) A/I f ~ 4 sPinors, -all fs 4 scalars. -Again
we could push the la, ck of naturalness at best to
the order of Eq. (1.7).

(cj O(4) x U(1) x U(fj, same fermion content as
under (b). Here full naturalness can be met
strictly.

(d) Back to O(4) x U(l), left-handed quarks and
electrons (or muons) 4 spinors, left han-ded muon-s

(or electrons) in the adj oint representation of O(4).
This is the simplest model we have found so far in
which simultaneously the Cabibbo angle satisfies
a natural zeroth-order relation and is nontrivial;
CP violation is natural and maximal; p. e universal-
ity is natural and restricted; and the M=-,' rule is
natural (to the extent that the quark states used
can be integrated in a theory which includes strong
interactions). After some general comments on
the cases (a,)-(c) in Sec. IIIA we analyze case (d)
in detail in Sec. IIIB. We stress that we have
pushed this investigation rather ruthlessly to the
present level in order to show by at least one ex-
ample that the conditions studied here can actually
all be met. %e regard the complexity of the mod-
el, especially of the Higgs system, as a, clear in-
dication that these matters are far from closed.

In Sec. 1V we make a final comment on what we
believe we have learned and on what we are sure
we do not understand.

Finally, the following conclusions may be drawn
from this methodological investigation, as we see
it.

(1) In gauge model building the following three
assumptions are most often tacitly made: (a)

Cha, rge-changing weak processes are mediated by
one and only one pair of charged W mesons. (b)
p, e universality is desired to be a property of all
currents. (c) Any occurrence whatsoever of right-
handed neutrinos is tabu. For all we know, none
of these (independent) assumptions should be taken
for granted.

(2) Theoretical demands of naturalness will
constrict the choice of gauge group and content in
approaches to an electromagnetic weak synthesis.
As we tried to make clear, severe demands of this
kind already arise from the consideration of low-
energy phenomena. The criteria discussed in this
paper would seem reasonable, but we are in no
position to claim that they are imperatives. Also,
there are other constraints which deserve at least
as serious consideration, notably the naturalness
of hadronic symmetries and of the p. /e mass ratio.

(3) The reader who will have followed this tech-
nical discourse on naturalness and artificiality may
wonder, a1.ong with the authors, whatever has hap-
pened to good old-fashioned simplicity. Perhaps
the gauge-theory approach is wrong, but this we
doubt. Perhaps some essential theoretical ingre-
dients are lacking, in particular in regard to sym-
metry-breaking mechanisms. Perhaps also what
we now consider simplicity may turn out to be
deceptive, as experiment progresses; it would not
be the first time in particle physics. A linear
combination of the last two alternatives is our own
best guess.

II. GAUGE THEORIES WITH A SINGLE
CHARGED V PAIR

A. pe universality

1. Models zvith natural univexsalit J
There are two of these. In the first one, the

steinberg model, "'" the left-handed electron and

v, fields and the muon and v„ fields transform ac-
cording to two equivalent irreducible representa-
tions of the gauge group. The renormalizable cou-
plings of the charged intermediate vector boson to
leptons is characterized by one parameter, the
gauge coupling constant associated with the SU(2)
factor of the group, and is the same for electrons
and muons. Clearly muon-electron universality is
natural. Naturalness here is a direct consequence
of the gauge structure of the theory. This is a
simple translation into the language of renormal-
izable field theory of the old idea that universality
should have something to do with conserved cur-
rents, tha, t is, the transformation properties of
the weakly interacting system under some contin-
uous gl oup.

The %'einberg model is unique in that it involves
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only observed lepton states. (It is possible to
change the Abelian gauge structure of the theory-
see below. } Almost all other unified models of
weak and electromagnetic interactions involve un-
observed "heavy leptons. " The number of possible
theories of this kind is very large. A second pub-
lished model with universality properties similar
to the Weinberg model is the Lee-Prentki-Zumino
(LPZ) model. " Here the left-handed lepton fields
are assigned to gauge SU(2) triplets as follows:
(E', v„e }z, and (M', v„, p, )z, where E'and M'
are heavy lepton fields. As in the Weinberg model,
the muon and electron fields have identical proper-
ties under the gauge group, determined bytheir
assignment to equivalent irreducible representa-
tions.

Z. Two examPles of natural restricted universality

If a large number of heavy lepton states is postu-
lated, there is a great deal of flexibility in model
building. Consider, for instance, the following
problem: Can we write down a model which pre-
dicts v„e scattering with typical weak-interaction
strength, but in which v, p, scattering is sup-
pressed' The answer is yes, of course, by as-
signing left-handed leptons to triplets as follows:
(v„, y, , M )~ and (E', v„e )~ In thi. s model, the
muon and electron fields have different gauge prop-
erties. They have different U(l) gauge quantum
numbers. Nevertheless, universality is still nat-
ural for charge-changing processes. The point is
that when the left-handed leptons are assigned to
irreducible representations of the gauge groups,
the couplings of the intermediate vector boson to
the charged muon and electron currents are deter-
mined simply by the relevant Clebsch-Gordan co-
efficients. If these coefficients for the muon and
electron currents are equal, universality is nat-
ural for the charged currents; if they are unequal,
the model does not have universality.

However, our example shows that natural uni-
versality for the charged currents does not neces-
sarily extend to neutral-current couplings. In
fact, this current does contain v„v„-but no v, v,
terms. Let us now imagine that we complete the
model with a quark structure that satisfies all the
usual constraints, including Cabibbo universality.
(For this purpose one can take over the LPZ-quark
representations. ) Then the amplitudes for the pro-
cesses Eq. (1.1) are O(G) and those for Eq. (1.2)
a,re O(au}.

The Clebsch-Gordan coefficients for the charged
currents may also be equal for other reasons. As
a fanciful example, imagine assigning the left-
handed lepton fields to gauge multiplets as follows:
the electron in a 4 (gauge isospin —,),

(E, v„e,E )z, , and the muon in a 5 (gauge iso-
spin 2), (v„, )t, M, M, M )~. Now univer-
sality is natural even though the representations
are very different, just because the relevant
Clebsch-Gordan coefficients happen to be equal.
In this example the neutral current does contain
both v„v„and v, v, terms but with different weight.
Again the universality, while natural, is only of
the restricted type and the ratio of the amplitudes
of the semileptonic reactions (1.1) and (1.2} is as
4: 1.

3. Reducible ~ePresentations, artificial
uni ver sali ty

We have still not considered all possible models
with a single pair of charged vector bosons. It is
possible to relax the condition that the left-handed
electron (or muon) and v, (v„) field belong to an ir-
reducible representation of the gauge group. A
well-known example of a model involving reducible
representations is the O(3) model. " Here the left-
handed lepton fields are assigned to singlets and
triplets as follows: Triplets are (E', E'cosP
+v, sinp, e )~ and (M', M'cosP+v„sinP, p, )I, ; sin-
glets are (v, cosp —E'sinp)~ and (v„cosP-M'sinioz.
In this example, it is the neutrino fields which
transform like a mixture of singlet and triplet, not
like a single irreducible representation.

As written, this model has muon-electron uni-
versality, but here it is not natural. The reason
is that the angle P depends on the details of the
Higgs-meson couplings, the bare-mass terms,
and the spontaneous-symmetry breaking and there
is no reason for it to be the same for electron
and muon multiplets. In fact, the angles for v,
and v„must be renormalized with independent
counterterms. So while the O(3) model can de-
scribe muon-electron universality, it cannot pre-
dict it.

4. Ai ght -handed neutrinos

It may be tempting at this point to conclude that
irreducibility in the sense described above is a
necessary condition for naturalness of universality
in a gauge model, but such a conclusion would be
premature. Consider, for example, the problem
posed earlier in this section: to construct a model
in which v„e scattering is present but v, p. scatter-
ing is suppressed. One such model was given
above, but it is also possible to use reducible
representations. Consider the following assign-
ment of the left-handed leptons fields: muon in a
doublet (v„, p )~; electrons in two triplets,
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(2.1)

+ a4@teR+ 4f R)Ki + a 292eR —Oaf R}K2+"'.
(2.2)

Observe that in the first line the right-handed neu-
trino v, „appears. The couplings of Eq. (2.2) are
invariant under the following discrete operations
(AEU = all else unchanged; K, and K, are the com-
plex conjugates of K„K„respectively}:

2~ VeR —VeR& +R +8

e„-f;, Z, --Z„AEU;
0O2- —42~ &~-v.~y Ha-@2

-p'~, f„-f„, AEU,"

H2 -H2, v,z -v,z, AEU.

(2 3)

(2.4}

(2.5)

In addition, the remainder of the Lagrangian is in-
variant as well under these discrete operations.

The first two representations give the usual
charged-current structure, while the third repre-
sentation leads to no presently observable experi-
mental effects. The physics would be the same if
(N' —v, )2,//2 were assigned as a singlet, at least
until the appropriate heavy leptons are observed.
But then universality would not be natural. For
the assignment given above, on the other hand, it
is possible to implement naturalness. To see this,
we must analyze this theory in some detail.

The strategy is as follows. In Eq. (2.1), a 45'
mixing angle appears between v, and the heavy
lepton E'. lf this angle is natural, then p, e univer-
sality will be natural for the charged currents. In
turn, the 45' mixing will be natural if the Higgs
coupling needed to give mass to the electron-type
leptons forces us to have mixing at 45'. This can
happen when the symmetry group of the Lagrangian
is not just SU(2}x U(1), but SU(2) x U(1) x S, where
8 is a group of discrete symmetries. %e now ex-
plicitly exhibit Yukawa couplings invariant under
such an enlarged symmetry group. For the muon
system everything is as in the %einberg model.
For the electron system we introduce two real
triplets of Higgs mesons, H, and H, (t= 1, Y=O)
and two complex triplets, K, and E, with /=1,
Y= 1 (we write the electric charge as Q= t, + Y).
All right-handed fermions are taken to have t= 0
and the appropriate weak hypercharge. Consider
now the following set of interactions:

a[(p 2$+~)NRH, + (p, —$2)v,RH2]

a 2@2ER+42+R) 1 a 2@2ER 4+R)K2

(H)= h, , (H)= 0
(')

(')
K, = 0 [, K, = 0

(2.6)

then we will have achieved the proper mass diag-
onalization including a null mass for the e neutrino
(h„k„and k, shall be nonzero). Now the Higgs
meson self-couplings do allow vacuum expectation
values with the properties given by Eq. (2.6) for
some region with nonzero measure in the space of
renormalized parameters In parti.cular, (H2} =—0
is allowed because Eq. (2.5) tells us that the Higgs
potential cannot contain terms linear in 0,.

The reader may well be confused at this point
about the reason for introducing v,~ and H, in the
first place, since the nonintroduction of v„, cus-
tomary in all gauge models proposed so far, is in
itself a sufficient ground for having a vanishing
neutrino mass. The idea is that v,„is necessary
for naturalness of the form Eq. (2.1) with the
gauge group SU(2) x U(1). We will show below that,
without v,~, naturalness can only be achieved by
enlarging the gauge group.

As was stated in the Introduction, the strict
masslessness of the neutrino, in schemes like
these, is associated with a discrete symmetry
which remains valid even after the spontaneous
breakdown of symmetry. In the present case, this
is the symmetry given by Eq. (2.5).

As a last example in this section of natural re-
stricted universality, we shall show how this can
come about via the extension of SU(2}x U(1) not

Note that because of Eqs. (2.3) and (2.4) the iwo

triplets have become an irreducible representation
of the enlarged group. These transformations
have the following important properties:

(a) Not only are the couplings in Eq. (2.2) invari-
ant under the transformations Eqs. (2.3), (2.4),
and (2.5), but furthermore, these transformations
determine these Higgs couPlings uniquely (up to
the values of the coefficients a„.. . , a„of course).
An obvious way to verify this is to ~rite down first
the most general set of trilinear couplings between

g, » H, » K, » and the right-handed fermions
which is compatible with the invariance under the
continuous group SU(2) x U(1). Then by imposition
of the discrete invariances (2.3)-(2.5) one arrives
at Eq. (2.2).

(b} If the vacuum expectation values of the Higgs
multiplets are as follows:
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only by discrete symmetries but also by continuous
ones. Here it will not be necessary to introduce

ten above give the theory we want, with the ad-
ditional constraint that the fermion masses satis-
fy a quadratic zeroth-order relation:

5. The gauge group Sp(2) x U(g) x Ut'g) nP(e)+nP(E') =M'(f )+M-'(F') . (2.13)

Q= t3+S+g, (2.8)

so that the electromagnetic field is given by e 'A„
=g Ap+gR Bp +gR Cp with e = (g +gg +gR )
The representations may be labeled as (f)R ".

We now make the detailed assignments as fol-
lows: (v„, y. )~ is (-,')~ ~"", y, and g, are (1)~'".
All right-handed leptons shall be SU(2) singlets.
For p R we take Q=S (=-1), while for the electronic
lepton fields E„', FR', eR, and f„we take Q = R.

We shall need two real triplets H, and H, of Higgs
mesons of the type (1)"' and two more, K, and K,
which are (1)". These shall enter in the g, ,
couplings. [For the muon doublet we will have a
Higgs doublet (—,')~~2'0~, as in the familiar SU(2)
x U(1) case. ] We assume that the Lagrangian is
invariant under the following discrete symmetries:

[1] 4X
—a2, &R-&R~ &R —fR

K2--K, H2--H2, AEU;

[2] g--g, H, H,
FR- -&R fR--f R AEU .

(2.9)

(2.10)

We further assume that the following symmetry is
broken only by mass terms:

[3] &R - &R - -&R &R - -f R - -&R

K, -K2, K2--K„Cp -Cq, AEU, (2.11)

where C„ is the gauge field defined in Eq. (2.7).
Now the most general Yukawa couplings consistent
with these symmetries and with the gauge sym-
metry are

1[(ER41+FR4)K1+ ( Rll fR4)K2]

+ &,[(Z„g, —FR&,)K, —(&Rgg+f Rlg)Kg]

+a F„[(g +g )H, +(g —g )H ]+H.c. (2.12)

The Higgs-meson self-couplings allow vacuum
expectation values such that (H, ) =0, (H, ), (K, ),
and (K,) nonzero; and (K, ) e(K,). These vacuum
expectation values with the Yukawa coupling writ-

Let us again start with (v„, g )~ as a doublet and
with the triplets g„g, given in Eq. (2.1). However,
we are now going to consider these multiplets as
representations of the gauge group SU(2) x U(1)
x U(1). This group has the covariant derivative

Dq ——8„—i( gA„ t+gRB„S+gRC„B) . (2.7)

We choose the charge operator to be

Observe that this is a natura/ mass relation since
it is dictated by the symmetry of the system and

by the vacuum expectation values for the H and K
fields stated above.

The reader will note similarities between Eqs.
(2.3) and (2.4) as compared with Eqs. (2.9) and
(2.10). On the other hand, Eq. (2.11) is quite a
different thing from Eq. {2.5). Let us enlarge on
the role of Eq. (2.11). The symmetries Eqs. (2.9}
and (2.10}allow Higgs-meson self-couplings of the
form u{K~tK2)(H,H2)+H. c. Now if (K, ), (Km), (H, )
are all nonzero, this term gives a direct tadpole
contribution to (H, ) which spoils the naturalness of
the condition (H, ) =0. The symmetry [3] is spe-
cifically designed to forbid this term. But this
symmetry is not consistent with SU(2) x U(1) struc-
ture. It is at this point that the need for the ex-
tension by another U(1) factor becomes manifest
(always as an alternative to the extension discussed
previously. ) Symmetry [3] cannot be an exact sym-
metry of the Lagrangian because one can show that
in zeroth order it implies )(K,) )

= ((K,) ~
and there-

fore m(e ) = m(F'), so it must be broken by mass
terms. That is, we must include in the Lagrangian
terms of dimension less than four which break the
symmetry. The renormalization of the dimension-
four terms can still be done with a symmetric
counterterm, as is obvious by power counting.
Thus we can forbid the term (K,K, )(H,H2) but still
include terms like K~tK, —K~K, which break the
symmetry" between K, and K,. These considera-
tions determine the form of the Lagrangian.

One can again use the catchword irreducibility
to describe naturalness of universality in this
model. We reiterate, however, that here one
means irreducibility under the full symmetry of
the Lagrangian which may contain a complicated
discrete group in addition to the gauge symmetry.

Finally we note that the Higgs system described
above is such that two massive neutral vector bo-
sons appear. We shall not be interested in the de-
tails of the necessary diagonalization process, ex-
cept for one qualitative observation about the two
neutral currents coupled to these vector bosons.
It is clear from the quantum number assignments
given above that a v„v„ term will generally appear
in both these currents, while v, v, terms will not
appear in either current. Thus we have another
example of restricted universality with different
orders of magnitude for the processes (1.1) and
(1.2).
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8. The Cabibbo angle

2. Remarks On SU(Z) &«(~)

We begin with a brief description of the way 8

appears in the four-quark version of SU(2) x U(1),
for two reasons: first, in order to show that 8 is
not calculable in this model; second, in order to
give some indication of what it may take to promote
8 from a renormalization parameter to a calculable
quantity.

The model in question has two quark doublets N
=(tP, X,)z, X'=(lp', X,)I, , X,=5Icos8+Xsin8, P.,
=-51sin8+X cos8, (a)z, = (I+y, )a/2. Further there
are four singlets O'„, Xs, Xs, 6's, (a)e ——(1 —y, )a/2.
(We leave aside the lepton structure. ) The charge-
carrying current contains the terms
f(g,6'~y„X~+gPzy„XL, + ), where g, =Zcos8,
g, =gsin8. g is one of the coupling constants of the
group and is subject to renormalization. If g, and

g, suffer independent renormalization, then 8 is
not calculable. Note the distinct ways in which g
and 8 make their appearance: g enters via the
group structure; 8 enters via the details of mass
diagonalization.

The reason that 8 is not calculable in this model
is that this quantity does not enter the theory in
any other way than Lhe one just indicated, and can-
not enter into any natural zeroth-order relation.
In order to see this in detail, w'e must examine
the other quark interactions in the model, namely
their couplings to a scalar field doublet H. These
couplings can be written as

(fP+e+f 2N'+s+f 3&+s+f 4&'5'~)ff

+ (f4'5Ie+f 8» s+f 8"'&a+fs&'~ s)ff+ H'

tan8= 1+0(a) . (2.16)

The model in question has the same quark con-
tent as the LPZ model, "namely, two left-handed
triplets, with representation (1)'. [We may label
the representations by (t)", t =weak isospin, Y'

=weak hypercharge, and @=t, + Y.] The right-
handed quarks are singlets, (0)o. If one employs
a minimal set of scalar multiplets, namely' one
real scalar triplet (1)' and one complex triplet
(1)' in order to give mass to all quark states, then
8 is noncalculable for the model. By the same
argument as given above, one arrives at Eq. (2.15).
However, if one uses a pair of (1)' and a pair of
(1)' multiplets, then 8 can be calculable if its
zeroth-order value is 8=v/4.

The argument goes as follows: Take the two

I.-quark triplets to be

argument shows that the lack of naturalness of Eq.
(2.15) becomes manifest at first in order
G(m~- m„)(me, —m ).) Therefore we learn two
things:

(a) 8 is a purely phenomenological parameter.
(b) Eq. (2.15) indicates that a way to seek for a

calculable 8 is to ask for shared constraints which
apply to the couplings of quarks to vector mesons
as well as scalar mesons. In this section we
again explore the existence of additional discrete
symmetries as a means to implement such shared
constraints.

As a first example, consider an SU(2) xU(l)
model in which 8 is calculable for a special zeroth-
order value, namely 8=45'. Of course, the rela-
tion tan8=1 is hardly of any practical interest.
Here it will merely serve as a first instance of a
natural relation in which 8 enters, namely

where H= n+*. The eight f, are a new set of
coupling constants each of which is subject to in-
dependent renormalization. Up to a common fac-
tor e/M~, f„.. . ,fs can be written as

f, =m„cos8', f, = ~m isn"8,

f, = -m„sin8', f, = m~cos8",
(2.14)

fr=f4=0

8 8i 8lI
(2.15)

which are examples of artificial relations in the
sense explained in the Introduction. [A simple

where m„, rn, ~, 8', 8" suffer independent re-
normalizations. The phenomenological introduc-
tion of 8 in the model is of course based on the
notion that 6', $", @ and X shall be zeroth-order
mass eigenstates. This last condition implies
that

IP

(5I+X)/W

(2.11)

corresponding to 8=v/4 Both th. e charged and
the neutral vector currents are invariant under
the transformation

(2.18)

all else unchanged. If we are able to extend this
invariance to the full I agrangian, then we shall
have derived Eq. (2.16).

Introduce the following scalar multjplets: H, H
which are both (1)' and Z', K' which are bo& (1)'.
Consider the following set of Higgs couplings
(a„.. . , a, are constants):
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a, [(g '+ g ')31 + (g ' —g ')&„]H'+a,[(i)}'+g ')3I —(g ' —g ')&„]H'+a,[g 'd'„+ g '6" ]K'

+ a,[g '6's - g '5'„']K'+ a,[g 'q„+ g 'q„']K'+ a,[g 'qs —g 'q„']K'+ H.c. , (2.19}

))s--) s 6's-4'z

q„—q„', K'--K', AEU. (2.20)

(2) They are also invariant under the discrete
symmetry

which have the following three properties:
(1) They are invariant under Eg. (2.18) provided

we extend the transformation to

different representations as compared with Sec.
II A.

We introduce a four-quark model via the follow-
ing representation content: There are two J-
quark doublets

(2.21)

Together with the gauge invariance and the sym-
metry (2.20), this symmetry forces the Yukawa
couplings to have the form (2.19).

(3) The set of Higgs couplings Eg. (2.19) and the
symmetries (2.20) and (2.21) do not imply any un-
wanted mass degeneracies. In this connection
note that the vacuum expectation values (K'}
= (0, 0, A. '), (K ) =(0, 0, X ) are such that the invari-
ances Eqs. (2.20) and (2.21) do not imply any con-
nection between A.

' and A.'; similarly for H' and
H .

We have now derived Eq. (2.3) but for one point.
It should be ascertained that also the lepton-Higgs
couplings are compatible with the discrete sym-
metry under consideration. This is easily done
as follows: (1) Use the same lepton representa-
tions as in LPZ." (2} Use lepton couplings to
K' to generate mass for the charged leptons. (3)
Let all lepton states be invariant under the dis-
crete transformations Eqs. (2.20) and (2.21).

The same value 8= v/4 can also be obtained in
the Weinberg doublet model, provided a third dis-
crete symmetry is introduced. This is simply
seen by omitting q and q' from Eqs. (2.1V) and

(2.19)-(2.21). Indeed it may seem that this is all
that is needed. However, it is now necessary to
invoke the additional symmetry

-&', HR--H~, g„--g~, A, „--A.~, AEU .
The price paid here is the introduction of four
Higgs doublets instead of the usual single one.

The above is an example of a zeroth-order value
for 6} which is a Clebsch-Gordan coefficient. Our
next example is of a quite different kind.

( )( 1/2, 0) e (0)( 1,0)
2 (2.24)

and similarly for muonic leptons.
Evidently the scalar multiplets needed to gen-

erate lepton mass are distinct from those which
yield quark masses. For the former purpose one
(-,') ~~' suffices. For the latter, we introduce
three doublets called Q, X, and g each of which
are (-,')~' '~2). Obviously these Higgs fields give
mass to the charged and to the two neutral vector
mesons. For the present purpose the precise
nature of the neutral vector normal modes does not
concern us. In any event the usual constraints on

gauge models imposed by the bound on strange-
ness-changing effects can be met.

Just as for the case considered previously we
now seek for a natural symmetry shared by the
vector-meson and the scalar-meson interactions.
The vector-meson couplings are invariant under

C„--C„,
(2.25)

all else unchanged. This invariance applies also
to the following Higgs coupling:

Here P~, P J. each are linear combinations of the
physical states gz, , 6'~ (Q= —,') encountered in Sec.
II81, and likewise for NL, , N~ in regard to g&, X~
(Q= ——,'). The precise choice of these combinations
will occupy us shortly. There are four R-quark
singlets:

S'» S",: (0)'~'~') h' X' (0)'"'-~')

(2.23)

The leptons are assigned as follows:

2, Extension to SU(Z) x U(1) x U(1)

The covariant derivative for this group was
given in Eq. (2.V). We also define Q as in Eg.
(2.8) and will continue to label representations
as (f} ~ s). However, here we shall operate with

+ c(P„y + 57„f})q~+ d(Psg+ P„'q)4 ~+ H.c. ,

(2.26}

provided we extend (2.25) to
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zy Pz +~- -PRy Cq - -C]

(2.2'l )

X ly '9 X ~

Equation (2.2V) does not yet force the Yukawa
couplings to have the form (2.26), but we can im-
pose a second discrete invariance

iX, g- —ig, +~ -i%I, AEU . (2.26)

Now the form (2.26) is unique. Note that (2.27)
and (2.28) do not affect the leptons and their Higgs
doublet, so for what follows we can ignore the
entire lepton sector.

When the Higgs mesons develop vacuum expec-
tation vaLues, the quark mass matrix becomes

(2.29)

which involves five parameters which we take to
be real for simplicity (this can be done naturally
by imposition of a CP invariance). In terms of
these five parameters, we can express the eight
physical quantities, four masses and four angles
which describe the zeroth-order mass eigenstates.
Therefore, there are three zeroth-order relations
among these eight quantities. One of these involves
only the Cabibbo angle and the quark masses. It is

[-(m~, 2 —mz')(mz, —m~2)(m~, -m&2)(mz, '-mz')]~2 (m~, mz+moma)(m~, m~+mzmz)
—,sin28 =

2 2 2 2(m~, -ma )(m~ -m~ ) (m~,m~+ m ~m~)

{2.30)

This result has its physical limitations. Its
consistency demands (among other things) that
~'&~', contrary to naive-quark-model ex-
pectations. Nevertheless, we believe it is of
some interest to display two distinct categories
in which 8 attains a natural value, whether a nice
one or not: one in which 8 is a "pure number" as
in Eq. (2.16), and one in which 8 is a natural func-
tion of particle masses as in Eq. (2.30).

C. Comments on CP violation

As is well known, important constraints on

gauge models follow from the requirements that
~bS~ =1 and ~b8~ =2 effects shall be sufficiently
suppressed. Thus it is customarily assumed that
XX and gA. terms shall be entirely absent in neu-
tral currents. Beyond that, additional suppression
is needed even for (nS~ =1, 2 effects mediated by
two virtual vector bosons, and by real Higgs
scalars. In standard SU(2) x U(1) models (except
one to which we shall come presently) this is
achieved as follows: The 6', Q A. quarks appear in
the following two equivalent representations
(again, 3I,=31cos8+X sin8, A, =-3lsin8 ~X cos8):

Here the 8' is an additional quark which (in some
sense or other) is charmed and . . . denotes the
(possible) presence of other particles. In addition,
&„and A, „are assigned in such a way that they do
not contribute to the effects in question. Then the

~=2 transition%&-g A. due to exchange of a,

virtual 8"', 8' pair is proportional to

2 2 —2

n sin 8
~p PPl g I

(2.31)

where n = ~», . The mass ratio suppression is due
to the action of the Glashow-Iliopoulos-Maiani
mechanism. ~ It is this need for some such ad-
ditional suppression which has led to a prolifera-
tion of quark states typical for all gauge models
in their present state of development. (Contribu-
tions due to virtual Higgs exchange are most often
ignored on the ground that the Higgs-scalar
masses may be assumed to be sufficiently heavy. )

For our present discussion, the occurrence of
the sin'8 factor is of interest. It shows that the
Cabibbo angle plays the role of the real (CP-con-
serving) "mass mixing" parameter in the E-Z
system. Thus this mixing is phenomenological to
the extent that 8 is phenomenological. In all gauge
models with CP violation proposed so far, the
imaginary (CP-violating) mass mixing enters via
the introduction of one or more new and additional
angles which appear in phase factors. We shall
briefly indicate here that in those gauge models
which fall under the heading of this section, these
additional angles are also phenomenological pa-
rameters, much like the Cabibbo angle.

Consider for example a variant of the SU(2)
x U(1) variety with representation content:
(6', 3I,)&, (6",X,)l„(6",3lcosg+9. sing)„, all
doublets; all other quark states singlets. An up-
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per bound on ~IF) follows from physical constraints
on ~M( =1 neutral current effects. On the other
hand, this typically "on-shell" model also has a
lower bound on ~II such as to give the right order
of magnitude for CP-violating effects.

(For this as for any on-shell model, the non-
leptonic ~bi) =-,' rule for CP-violating effects re-
mains unexplained. ") A value for P -10 ' appears
acceptable at this stage.

The most general Higgs system which couples
to the quark states can contain the weak isospin
representations: singlet (mass terms), doublet,
and triplet. Such a general system was used in
Ref. 22. It is clear that under such circumstances
there is no possibility for natural mass relations.
As a result, the parameters f, 8, and the fermion
masses are an independent phenomenological set.
What happens is the occurrence of a new and rela-
tively imaginary coupling constant igsinQ which
is subject to separate renormalization.

The question arises whether it is possible to
restrict the Higgs system in such a way that con-
straints appear which involve quark masses as
well as parameters 8, f, the constraints being due
to diagonalization conditions. This is possible by
restricting the Higgs content in such a way that
triplets are not introduced. The ensuing con-
straint relations" have not encouraged us to pur-
sue further the question whether an appropriate
Higgs system would guarantee that 8, f are nat-
ural.

The gauge model briefly reviewed here is of the
"small parameter" variety, in the sense that an
additional parameter (p in this case) is introduced
for the explicit purpose of generating CP-violating
effects. The smallness of these effects is as-
sociated with the smallness of the parameter in
the scale set by 8, the "real" EE' mixing param-
eter. The main point we wished to bring out is
that, in general, one must be prepared for the
fact that such a parameter is phenomenological.

This also applies to a recently studied variant
of the O(3) variety where CP violation is spon-
taneous. " Here the neutral current effects enter
differently and the phases can be introduced in
such a way that they are unconstrained by 6S = 1
effects (and may therefore be large). The number
of Yukawa eouplings between Higgs mesons and
fermions, allowed by strict renormalizability, is
too large to permit the phases to appear in nat-
ural zeroth-order relations involving only fermion
mass and 8, so that these phases remain phe-
nomenological. Their sines enter as proportional-
ity factors in all CP-violating effects, the scale
of which is set by the magnitude of Higgs-meson
masses and Higgs-field vacuum expectation val-
ues 17y26

III. GAUGE THEORIES OF THE O(4) X U(1) TYPE

A. Some general features

The covariant derivative for this group is given
by

D„=s„—ig(Xq t+C„p) ig'B-q j',
with tx t= it, p x p =ip. t and p commute and so
does the weak hypercharge F with both. The
electric charge operator is Q=t, +p, + Y, so that

(3.1)

g = eWlsiny, g' = e/cosy, gg i(g 2 ~ 2ga) -xi 2

(3 2)

V= ~ [(A'+ C')cosy —RW siny] .

8"' and their conjugates represent singly charged
vector fields (we suppress their p, index); Z, V are
neutral. Moreover, all these fields are eigen-
states of R: W' and Z are R-odd, the others (and

the electromagnetic field) are R-even.
Equation (3.3) is a trivial rearrangement in the

symmetry limit where all vector bosons are
massless. However, we shall wish to retain
8"', Z, and V as zeroth-order normal modes
upon spontaneous symmetry breakdown. This
major constraint has the following implications:

(1) The vacuum expectation values of the Higgs
mesons must satisfy R invarianee in order to
guarantee that the zeroth-order vector-meson
mass matrix be R-invariant.

(2) In turn, the Higgs surface must be con-
strained in a natural way so as to force the R in-
variance of the vacuum expectation values.

(3) In turn, the Higgs-fermion Yukawa couplings
must be naturally compatible with all symmetry
conditions implied by (1) and (2) and must properly
diagonalize the fermion mass matrix in the tree
approximation. This strongly delimits the choice
of fermion representations. All these points will
be explicitly demonstrated in the example dis-
cussed in Sec. IIIB.

Let us suppose that this is achieved and that,
moreover, after spontaneous symmetry breaking
the charged-current couplings given by Eq. (1.3)
and the condition Eq. (1.4) are natural. 2' Then

and y is the mixing angle of the theory. The re-
flection operation R with respect to O(4) is
R: t —p. Introduce the following orthonormal set
of gauge fields (which are all orthogonal to the
electromagnetic field):

W'=-,'[A'-C'-i(A'-C')],
W' = —,

' [A' + C ' —i(A + C ')],
(3.3)

Z= ~ [A'-C'],
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p, e universality will be natural for charge-carry-
ing currents, the CP-violating phases will be
natural, and the Cabibbo angle will satisfy the
relation Eq. (1.5). Furthermore, in a model of
this kind, the charged vector bosons do not me-
diate strangeness-changing (and charm con-
serving) nonleptonic weak interactions. Instead,
these interactions are mediated by the neutral
Z boson, and it is possible to implement a natural

rule.
In all published models, the 8 invariance of the

Higgs system is unnatural.
(a) O(4) x U(l). The first model of this kind to

be proposed was based on the group O(4), a
special case of O(4) xU(1}. Left-handed fermions
(f ) were taken to be 4-vectors in O(4). How-
ever, no representation for the right-handed fer-
mions (f~) was found" which was consistent with
B invariance of the vacuum expectation values of
the Higgs mesons. As a result, an O(a) logarith-
mic divergence in the Cl'-violating part of the
W'-lV' mixing was generated by single virtual
lepton loops." Indeed, it was for this reason that
the study of O(4) x U(l) was initiated.

(b) &(4)x U(&), vector model He. re the f are
again 4-vectors (Y=O), but the f are O(4} scalars
with F=Q, the electric charge. Higgs mesons
are also 4-vectors (with either F=O or X=+1).
In this model, the vacuum expectation values of
the Higgs mesons could be chosen to be A-invari-
ant, but the choice was unnatural: The logarith-
mic divergence mentioned above persisted. It
was then noted that this divergence coul. d be elim-
inated by requiring the equality of two neutral
lepton masses. "

At this point, the present authors took up the
problem and began by inquiring whether this mod-
el with the lepton mass relation could have a nat-
ural A invariance of the Higgs system. We dis-
covered that it did not. However, by enlarging
both the Higgs and the lepton system we could
"push back" the lack of naturalness so that the
leading order in which the logarithmic W'-W'
mixing divergence appears is given by Eq. (1.7).
We were able to show, furthermore, that this re-
sult cannot be improved further, except for the
uninteresting case 6= 45' (where all naturalness
conditions can be met). We were not content with
the argument that the coefficient of this logarith-
mic divergence is quite small. Considerations
such as these led us to consider the whole ques-
tion of the Higgs system in more detail and stimu-
lated the investigations of this paper.
(c) O(4) & U(1), sPinor rePresentations. Mean-

while, it was noted" that most of the same weak
interaction properties could be incorporated in an
O(4)xU(1) model in which the f ~ transform as 4-

, sin6}cos6) .
Q

(3.4)

In the context of a gauge theory this introduces
new demands of naturalness (since in general
gQ g MQ AI wi 11 suffer independent renor maliza-
tions). This was emphasized by Bdg, who re-

spinors. In this kind of model, there are neces-
sarily "elastic" neutral currents {though not for
both v, and p„). For pure spinor models we were
again unable to ensure naturalness. Although, as
noted in Ref. 15, the Cp-violating mixing is finite
here to O(n) without any lepton mass constraints,
the strict implementation of the needed g invari-
ance causes trouble, once again to an order which
cannot be improved beyond Eq. (1.7). However,
by enlarging the gauge group to O(4) x U(1}x U(1)
and enlarging the lepton content, we were able to
implement naturalness in pure spinor models.

In the next subsection, we will describe in detail
an O(4) x U(1) model which can be made natural.
It employs the quark spinor structure of Ref. 15,
but is hybrid as far as leptons are concerned. For
the latter, the left muon- (or electron-) type states
transform as spinors, while the left electron (or
muon) states transform like the adjoint representa-
tion of O(4). We shall discover a number of natu-
ral mass relations between the fermions. Amongst
these there appear zeroth-order mass degenera-
cies of neutral lepton pairs. This is reminiscent of
what was tried" for the vector model. But now

these degeneracies are truly natural.
Before turning to this, we make a brief comment

in regard to the naturalness of the nonleptonic ~I
=-,' rule, since the appearance of this rule is one
of the themes for all the gauge models considered
in this section. To the extent that the isospin
assignments of the quark states used in these
models ca.n eventually be part of a sensible strong-
interaction picture, the gI = —,

' rule is natural to
these models, in the sense that no constraints are
involved on coupling constants and/or masses to
implement the argument. " One may ask the same
question for alternative schemes to arrive at this
rule. There are two main ideas here: (1) octet
dominance, where the ~I=-2 rule emerges due to
strong-interaction enhancement effects (from the
point of view of weak-electromagnetic gauge theo-
ries, the question of naturalness is moot here),
and (2} the sehizon scheme" where the nI = —, rule
comes about via the b,I= —, cancellation between a
neutral vector-meson coupling (constant g„vec-
tor mass M, ) and a charged coupling (constant g,
vector mass M). It is readily seen that (possibly
up to a known Clebsch-Gordan coefficient) the
schizon scheme demands the validity of the rela-
tion
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cently obtained a realization of the schizon scheme
in the context of a gauge model. "

We conclude this subsection with two remarks
on the order of magnitude estimates for electric
dipole moments given elsewhere. " First, these
estimates for the O(4)x U(1}vector model remain
unaffected but, as said, the neutral heavy lepton
degeneracy employed there is not natural. Sec-
ond, these qualitative estimates apply as well to
the natural model to be discussed next.

B. A detailed example

In this section we discuss in detail the simplest
model we know of with the following properties:
ge universality (restricted) is natural; CP viola-
tion is natural and maximal, and CP-violating
effects depend in leading order only on fermion
and vector-meson masses and the gauge coupling
constants; the Cabibbo angle satisfies Eq. (1.5),
and there is a natural bI =

& rule for nonleptonic
strangeness-changing processes. As mentioned
earlier, this model is based on the gauge group
O(4) x U(1) with the right-handed fermions O(4)
singlets and the left-handed fermions transform-
ing as 4-spinors and six component tensors (in
the adjoint representation).

In the present stage of development, any model
in this class always has a counterpart in which
the representation content of electronic and
muonic leptons are interchanged. Physically,
one case differs from the other, for example, in
the way v, and v„enter in the neutral currents.
The case to be described next allows to 0(G} for
v„+N- v„+zero charm hadron system, while the
corresponding v, reaction is forbidden to this
order. The alternative solution allows for "elas-
tic" v, but not for v„processes. Now to the ex-
ample.

A 4-spinor is a pair of doublets (u, t/) where u

transforms as a doublet under the SU(2) subgroup
generated by t and v transforms as a doublet
under the SU(2) subgroup generated by p. Under
the 8 operation, u and v are interchanged.

The left-handed muonic leptons transform like a
pair of 4-spinors with Y = —&.

.

(p. +M )/W2 t I

' ' (p M)/-W2! t '

(3.5a)

(o +0 )/hj2/ k(o —0 )/hj2)

where v, is supposed to be a second massless
neutrino.

The left-handed quarks transform like a pair of
4-spinors with Y= &.

( 6'+(P' / 6' -d"
u,&2=( , t/, h/2 =

(('%+X)/hj2+q' t {,(-%+X)!v2 —r'!t
(3.5b)

( q+'Y } ~ ( q —'r
u4 2=/ ), t/4 2=/

\&"-»//g -"'/. L-(~ ~ »//g gI.
q', x' are neutral. 6", q, and x are positive.

The six-component tensor representation is a
pair of triplets (U, V}, where U transforms like a
3-vector under t and V transforms like a 3-vector
under p. In other words, (U, V) transforms like
(t, p), so this is the adjoint representation. Again,
the R operation interchanges U and V. The elec-
tronic leptons transform like a pair of these rep-
resentations with Y= 0:

( g' ~ h'

U,WP = (v, + N )/v 2 + x
( g' —h'

V,h/2 = f[-(v, +N'}/W2+ x'],

UF2 =

g' -g'
V,&2= &[(v, X')/Wa+X']

(3.5c)

All right-handed fermion fields are O(4) singlets
with Y=Q. We will have to include right-handed
neutrino fields, for naturalness, even though the
neutrinos are massless. However, before we dis-
cuss the Higgs-meson system and the Yukawa
couplings in detail, a few comments are in order.

{I)The charged currents do have the form Eq.
(1.3) where all additional terms involve heavy
fermions so far unobserved. This is easily veri-
fied from Ref. 15, Eqs. (6)-(8) which hold for
any representation content of O(4) x U(1). Indeed

since the quark structure Eq. (3.5b) is as in that
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paper, the detailed hadronic contributions to all
currents are as given explicitly in Ref. 15.

(2) The required form Eq. (1.3) could also have
been achieved with a much simpler f system
(t'or example, either four 4-vectors in all" or
four 4-spinors in all") if it mere not: that me are
concerned here about na, turalness.

(3) It is also this concern which leads us to in-
troduce the spinor (u„v, ) which, as the alert
reader mill have noticed, only involves unob-
served fermions.

(4) The detailed discussion of the currents in
this model is not our present concern, except for
the remark that the natural p, e universality here
is restricted to the pairs of currents coupled to
8' and 8". Indeed, the neutral vector meson Z„
[see Eq. (3.3)] is coupled to the operator I, —p„
from which it follows that the amplitude for Z- v„+ v„ is O(G}, while the amplitudes for Z„- V,

+ p, , or e+e, or v, + v, are each O(Gn). The neu-
tral vector meson V„ is coupled to t, + p, —Q sin2y

[y as in Eq. (3.2)]. Thus the associated current
contains v„v„; p. p; ee but no v, v, terms, so that
the (calculable) ratio for rates of the processes
Eqs. (1.2) and (l. l) is proportional to o'. (We
repeat that lack of universality for certain cur-
rents does not imply lack of ealeulability for mod-
els of this kind. )

(5} The model is free of anomalies. This is still
true, even if me replace the eight integrally
charged quarks by eight "color" triplets of frac-
tionally charged quarks, where the color SU(3)
commutes with the weak and electromagnetic
gauge group.

(6) If we were not concerned about naturalness,
we could give arbitrary masses to the fermions
with only three representations of Higgs mesons:

one 4-spinor with Y= 2, one 6-tensor with Y=0,
and one 6-tensor with Y= 1. Instead me will need
ten 4-spinors with Y= —,', three 6-tensors with
Y=O, and two 6-tensors with Y= 1 and the fermion
masses will satisfy various mass relations.

The basic strategy in constructing the model is
to write down a set of Yukama couplings such tha. t
when the Higgs rnesons develop 8-invariant vacu-
um expectation values, the fermion masses are
generated consistent with Eq. (3.5). The Yukawa
couplings should have enough discrete symmetries
to ensure their uniqueness and furthermore, these
symmetries must prevent the appearance of Higgs-
meson self-eouplings which would spoil the natu-
ralness of the R-invariant vacuum expectation val-
ues. The list of discrete symmetries mill include
CP and an R invariance, which in general will be
different from the A invariance of the vacuum ex-
pectation values. These two symmetries aet non-
trivially on all the fields. There will also be sym-
metries which act, for instance, only on the
muonic lepton fields. Because of these latter sym-
metries, the strongest constraints on the system
are always obtained by considering only a piece of
the model, either the muon system, the quark sys-
tem, or the electron system at any one time. So
in what follows, we mill discuss the three subsys-
tems separately.

First consider the muon system. The Higgs
mesons needed to generate the fermion masses
are 4-spinors with Y= 2» which are pairs of dou-
blets (u, P). To ensure R invariance of the zeroth-
order vector meson mass matrix, we must require
that for each such pair the vacuum expectation val-
ues satisfy (n) =(P). The muon system requires
four such spinors. The Yukawa couplings are

A[u, n, v»+v, P, v,R+u, a, Os+ v, P, M ]+sB[(u, u, +v,P, )ps+ (u, u, + v,P,)o„+(u,n, —v,P, ) M+s(u, n, - ,c)PO]s

+ C[(Q, o, + V,P,)g„—(u, n, + v,P,)o„-(u, a, —V,P,}M„+(u.,n, —v,P,)O„]+H.c. (3.6)

Here (n, P}=i(T, a*, T,P*) is a 4-spinor with Y = —,'.
The constants A, B, and C are real, so CP is a
good symmetry. Suppressing space-time vari-
ables, the Higgs mesons transform as follows
under CP: e& —e; and P;- Ia; for i =1 to 4. Under
the R symmetry, the fields in Eq. (3.6) transform
as folloms: o.; —I3; for i =1 to 3, n4 —-p4, u, -U2,

2 ~1» PR OR» MR OR» WR R» MR OR

This is not the R invariance of the vacuum expec-
tation values, because of the transformation n4——P4 instead of o,4—P4.

In addition to these tmo symmetries which act
nontrivially on the electronic leptons and the

+1 1» PR }lR» (3.7a)

Pl- -~1» "OR -"OR» (3.7b)

0 0
+2 +2» OR OR» (3.7c)

(3.7d)

quarks as well as on the muons, we introduce the
following symmetries in order to force the Yuka-
wa couplings to have the form Eq. (3.6).

Separate conservation of muon number and o
number:
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l 2& ~l I 2& 4 +4& ~4 ~4
0

Ql Q2, Vl V2~ V&R ORy

VOR MR~ PR OR~ MR QR

o.,- n, - -n„p,- p, - -p„
-Vl~ V2 —-V2~ ~0R- —~0R ~

0 0
MR ™R,P R™R-PR, OR OR -OR

(3.7e)

(3.7f)

m =m =0 m„0 =moo
V~ U0

2 2 — 2 2m&- +m„-'=m, +mo-
(3.8)

so that of the eight muon-system masses, only
four are independent. Our task now is to show
that these vacuum expectation values are natural.

First consider the condition (n, ) = (P,) = 0. Be-
cause of the symmetries (3.7a) and (3.7b), these
vacuum expectation values are necessarily ex-
tremal, because n, and P, must appear quad-
ratically. For some range of the parameters in
the scalar-meson potential, (o,) =(P,) =0 will
minimize the action. Similarly, the condition
(o, ) = (P,) will be extremal (and minimal for
some range of parameters) if the Higgs-meson
self-interactions are invariant under the inter-
change u; —Js;. This is a sufficient, not a neces-
sary condition, but for the muon subsystem it is

In each of these, if a field does not appear, it is
unchanged by the transformation. With the ex-
ception of Eq. (3.7f) (which is to be broken by
quadratic Higgs terms), these transformations
are required to be exact symmetries of the La-
grangian.

If the Higgs mesons develop the vacuum expec-
tation values (n, ) =(P,) =0, (a;)=(P;)e 0 for i =3
to 4, and (n, )4 (a,), then the fermion mass eigen-
states are as shown in Eq. (3.5a), with the mass
relations

satisf ied.
The only terms which could spoil this invariance

are those in which an odd number of e4 or P4 fields
appear, because, if there are an even number, the
true R invariance of the Lagrangian, which in-
volves o.4 —-P4, has the same effect as the R in-
variance we want, o4 —P4. The quadratic self-
couplings are obviously invariant, as are the
quartic terms which involve only e„P„n„and
132. The quartic terms involving only n3 p3 Q4,
and P4 are also invariant because of the symme-
try (3.7e). So the only possible problems are
terms like (o, u, )(n, n, ) or (a, n, )(o, n~) or others
of this type. The first term is forbidden by Eq.
(3.7f), while the second is forbidden by Eq. (3.7f)
and CP. Finally, Eq. (3.7f) cannot be an exact
symmetry of the Lagrangian because it would im-
ply (a,) = + (n,) which would yieid unwanted mass
degeneracies among the charged leptons. So, as
said above, this symmetry must be broken by
mass terms.

This concludes the discussion of the muon sec-
tor. Before going on to a similar study of the
other sectors, we should emphasize that the
tricks we have used here to enforce naturalness
are not special to this model. Indeed, features
like the appearance of right-handed neutrino
fields, discrete symmetries broken by mass
terms, and the quadratic mass relation have al-
ready been encountered in the discussion of sim-
pler models. Here they are all necessary, along
with the existence of a pair of neutral lepton fields
degenerate in zeroth order. %'e expect that some
of these features will be necessary in any model
in which naturalness depends on discrete symme-
try structure.

For the quark sector, we need six more 4-
spinors with y'=

& (n;, P;) for i =5 to 10. The Yu-
kama couplings are

D{(u,n, + V,P,)qso + (u, a, + V,P,)~„'+ (u, n, + V,P, )q'„—(u, o, + V,P,)r~)

+E{[(u,—u, ) u, + (V, —V,)P, ]a~ + [(u, + u, ) a, —(V, + v,)P, ]Re)

+ E{[(u~—u~) B~ + (v~ —v~)PB]Xs+ [-(u~ + u) Qs + (V~+ v4)PS]Xs)

G{+( a,uV, P+,)6' +(su, a, Vg+, )q +(uu, a„—v,P„)fP„+ (u,a„-v, p „)r )

+H{(u~ 5~O+ v3P~O)(Ps —(u~Q~O+v4P~O)qs —(using —v~PQ)6 e + (u4Q~ —V~Pg)t'~) + H.c. (3.9)

Again we want ( n, ) = (P;) for all i, and ( a,) s ( a,)
and (o.,)e (n„) . The constants D —H are real, so
CP is a good symmetry, and again takes n;-o.

&

and Pq -P ] .
The 8 invariance is n; —P; for i = 5, and 7 to 10,

0 0-P„u3—„u4 —V4, qR rR, XR —-XR
rR

The invariance peculiar to the quark sector are
quark number conservation and the following:
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+5 +5& t 5 I 5p +6 +61 t6 I 6& ~R ~R7 R R
0 0 0 0

7 7& I 7 I 7& 8 8& I 8 ~8& R Rt ~R R

+9 + I ~9 +1o +10 I 10 t 1 +R +R R R QR 'VR +R +R

(3.10a)

(3.10b)

(3.10c)
0

+6 +6 I 6 ~6 +10 +10 +10» 10 3 4 U3 ~4 R ~R R R ~R R ~B ~R

(3.10d)

0 0 I I
+8 8 I 8 I 8 +9 +9 +10 +10 +4 +4 ~3 ~3 ~R +B +R +R

I;3.10e}

Q ~ Q p ~ p (3.10f)

(to be broken by quadratic Higgs terms).

&9 O'10- -&a~ ~9- -~10 -~9~

+R +R +R& 7R +B }IB
(3.10g)

invariance is @;-X»- -Q», tr'» —~», U1 V1,
U2 ——V2, XR-tXR, XR- SXB, XR--SAR, V,R--SV,R
hR hR & GR GRg fR fR
invariances are

(to be broken by quadratic Higgs terms). These
symmetries force the Yukawa couplings to have
the form (3.9) and also ensure that (a,.) =(il, ) is
extremal by forcing the Higgs-meson self-cou-
plings to be invariant under the interchange c)»»—P». The quark masses satisfy the quadratic
mass relation

0 0 0 0
X1 X1& +R +R & XR XB

4, —-42, X2- -X2 &R- -~R0 y0

43 43 N X3 X3 7 ~eR ~eR

43% X2 X3P 2 2& 2 2

XB +R ~eB~ GR ~R

(3.13a)

(3.13b)

(3.13c}

(3.13d)

mP +WP~ ~q +~r ~ (3.11}

Equation (3.10f) is to be broken as indicated in
order to prevent (o,) =(n,) which would suppress
strangeness-ohanging nonleptonic decays. Equa-
tion (3.10g) is to be broken in order to prevent un-
wanted mass degeneracies.

For the electronic lepton system, we need three
tensor Higgs-meson representations with Y'= 0,
(Q;, }t;) for i =1 to 3 and two with Y= 1, (g;, e;) for
i =1 or 2. The Yukawa couplings are

l((V, Q, +iI',}t,)x —(U Q, —iV }t,)X }

HR +Ra +R ~R& +R +R

1 2& 1 2& ~1 @1& ~2 ~2& X3 X3

0 0 + + +
&R

ea ER& fR PR (3.13e)

These symmetries force the Yukawa couplings to
have the form (3.12). Now if the Higgs mesons
develop the vacuum expectation values (@,) = (}I,)
=0, (Q;) = (}t;)40 for i = 1 or 2 and (g;) =(~;) w0

for i = j. or 2, then the fermion mass matrix is
consistent with (3.5c} with the mass relation

xO=mX (3.14)

+ [(V, + U, )Q, —i (V, —V, ) ]}tv,„}
+K((U,P, + V, &D, )g +s(V,g, + V, &D, )G„'}

+ I-((U,4.+ V,~,)g& —(U.4, + V,~.)Gs}

+M((U, g, —V, &D,)h„"+ (U, g, —V, Cu, }H„}
+ N ((U,g, —V, &0,) '„h—(U,g, —I'~g, }H

+ 0((U,g, + V,e, )e +a(U, g, + V,~,)E„}
+ P((U,g, + V,~,)e„+ (U, g, + V,~,}E„}
+ Q((UA, —V,~,)fs+ (U,4, + V.~,}Fa}

+ & ((U,y, —Vi~.)jz —(U.g. —V2u2)Pz} + H. c.

(3.12)

Here (g;, rD, ) = (ff, re~) is a tensor with Y= -1. The
constants I-R are real so the CP invariance in-
volves (f)» Q», X» -X», $» g», (d» ~» . The R

All naturalness conditions can be met, as fol-
lows. The condition (P, ) =(y, ) =0 is extremal be-
cause of the y, invariance (3.12c). In this case,
we do not need an additional quadratic mass rela-
tion to ensure the R invarianee of the vacuum ex-
pectation values, because terms which involve one
of the }I's linearly, such as (@ g)(~ lt), do not
affect the vacuum expectation values as long as
electromagnetic gauge invariance is not spontane-
ously broken. So here again, R invarianee is nat-
ural.

The reader ean check that terms which couple
Higgs mesons from different subsystems do not
spoil naturalness.

Vfe are still not quite finished. All of the Higgs-
meson vacuum expectation values we have dis-
cussed so far contribute equally to the 8"' and W'

masses, so we need some additional Higgs struc-
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ture to avoid the unphysical result, tane= 1. This
is easily remedied with a real 4-vector Higgs me-
son whose vacuum expectation value contributes to
the W, mass, but not the W, mass.

IU. A FINAL COMMENT

We got involved in this investigation by asking
what seemed to us at the time to be a rather sim-
ple question: Could the desirable properties of
the O(4)&&U(1) model be made natural'? We have
found an answer, but in the process have discov-
ered the very much more important fact that the
question itself is far from simple. We could not
have foreseen the labyrinth of technical difficulties
into which this problem had led us. Possibly,
some of the difficulties were self-inflicted, due to
our adherence to Higgs-type symmetry breaking;
but we know of no other way to ask these detailed
questions. We must also admit that we still do not

know all the rules of the game we are playing.
The problem is this: There are certain proper-

ties which we wish to implement naturally, for
instance, 45'angles in the fermion mass matrix
or [as in O(4) x U(1) models] symmetries of the
zeroth-order vector meson mass matrix; so the
Higgs-meson structure of the theory must be
tightly constrained. Not only the Yukawa couplings
but also the Higgs vacuum expectation values must
be forced to take very specific forms. In some
cases, we can satisfy al1. these constraints by im-
posing discrete symmetries on the Lagrangian,
while in others we can prove that the constraints
can never be satisfied. But our results have been
obtained at least partially by trial and error. We
feel that there must be general strategies for the
construction of natural models and further that
such general results would be a very important
advance in the study of the structure of gauge
theories.
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A number of new dual models are presented. They use operators which satisfy parastatistics
commutation relations. The properties of these operators are outlined, and the construction of L and

6 gauge operators from them is described. New amplitudes in which these paraoperators occur instead

of, or in addition to, the usual operators are given, and their properties outlined.

I. INTRODUCTION

The concept of a hadron as an extended entity
in space has recently received considerable
impetus. In a series of investigations' it has been
shown that the infinitely many independent degrees
of freedom associated with the states of a dual
model may be interpreted as the transverse
harmonic oscillations of a relativistic string.
Furthermore, Mandelstam' has derived scatter-
ing amplitudes for such interacting systems that
are closely related to those obtained in the dual
resonance model. If the dimensionality of space-
time is regarded as a parameter, they can in-
deed be made to coincide. An attractive feature
of the interacting-string approach is the relative
ease with which fermions are incorporated into
the theory. In common with the operatorial ap-
proach this is achieved by introducing extra
degrees of freedom in addition to the harmonic
excitations which synthesize the motion of the
string in time. The resulting Neveu-Schw'arz-
Ramond (NSR) modei3 has a striking internal con-
sistency which has characterized all dual models
with unit-intercept trajectories and an appropriate
gauge algebra. At a certain dimensionality of
space-time the meson and fermion sectors de-
couple from negative-norm states and Pomeronic
singularities may be interpreted as particles.
Even the spectrum of states that appears in the
meson sector is intriguingly related to that
observed in nature. However, many of the un-
physical aspects of dual models are highly eor-

related and a satisfactory resolution of these
difficulties has yet to be found.

In this paper we report on the results of an in-
vestigation into the limitations that an alternative
method of quantization imposes. In this way we
depart from all previous procedures that employ
canonical Bose or Fermi commutation relations
for the fields that enter into the theory. It must
be admitted that the motivation for this approach
stems from the physical interpretation of a dual
hadron as an extended system that can sustain
excitations in addition to orbital and spin degrees
of freedom. It is natural to enquire whether
additional quarklike modes might not behave dif-
ferently under quantization, particularly in the
light of nondual quark models that require a
symmetric three-quark baryon. This raises the
question of paraquantization schemes and perhaps
the problem of paraparticle scattering. We in-
vestigate these problems below in the context of
dual physics by systematically exploring the
possibilities of replacing the existing dual models
(which have orbital and spin excitations) by

parafield models. For reasons that will be
specified it appears that a satisfactory scheme
arises only when additional (paraquarklike) fields
are introduced. It is then gratifying to discover
that the ensuing model can be made ghost-free
in four dimensions if the paraquark fields are
rank three.

In Sec. I we review the relevant parts of classi-
cal parafield theory that we require. Section II
deals with the problem of constructing operators


