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%e prove that the physical mass m is a differentiable function of the bare mass m0 down to the
critical point (defined by the occurrence of m = 0 or of the onset of symmetry breaking). %e derive
an upper bound on m'(m o). %e show that the critical exponents q, v, y, g are bounded from below by
their classical values.

The physical mass m in the (II), quantum field
model depends on the bare mass m, & 0, as well as
on the other parameters of the theory. The cluster
expansion converges for large m„and shows that
m&0 (Refs. I and 2) and that m is analytic inmo. '
As a consequence of correlation inequalities, m
decreases as m, decreases for m, in an interval
(m, „~).' According to the standard picture of
symmetry breaking in the ground state (see Ref
5), we expect that the lower end point m, , of this
interval is characterized by the condition m=0.
Two other alternatives, however, have not been
excluded: m, , =0 or (P) 440. In the Goldstone
picture m, & m, , corresponds to the single-phase
region, and mp 0 would mean the absence of
phase transitions. We expect that in a pure phase
(Q) is a continuous function of m„so we expect
(P) =0 for m, = m, , The two-dimensional Ising
model is known to behave in this manner, while
the open questions for the three-dimensional Ising
model are similar to those discussed above for

One purpose of this note is to prove that m is
differentiable in mo for mo mo, We define
m, , to be. the supremum of the m, for which m =0
or (P) 440, and we define the P,

' quantum field the-
ory using Dirichlet boundary conditions. The con-
vergence as V- ~ is based on monotonicity togeth-
er with an upper bound on the Schwinger functions.
For free boundary conditions, the upper bound
follows from Ref. 6. The generalization of this
upper bound to Dirichlet boundary conditions fol-
lows from the GKS inequality. 4' The monotonicity
is established in Refs. 4 and 8. Our basic estimate
is the correlation inequality that the four-point
connected Euclidean Green's function is negative
for mo)mo, .' ' %'e call this inequality the Lebo-
witz inequality.

To define m, choose D)0 and consider the Eu-
clidean expectation

where ( )r denotes the truncated vacuum expec-
tation value. For m, & m, „( ),= ( ) tn (I).
Then

m = lim —lnF(D)/D . (2)

The validity of (2} follows from the spectral rep-
resentation of the two-point function and from
standard properties of the two-point function. '"
We fix the Wick-ordering consta, nts and vary m,
= m, (o) by the addition of a quadratic (mass) per-
turbation, 2of: (—f)(x)': dx." We define

4m
m

g
e

To bound the derivative m', we derive a bound on
-d[lnF(D)/D]/do which is uniform in D and thus
obtain the following:

Theorem f. For each e &0, m(o) is Lipschitz-
continuous on the interval o & o, +e. If m(o) —0 as
o- v, , then m ~ (o —o,)'".

Proof. Assuming o &o„we apply the GKS4 in-
equality and the I ebowitz inequality' to obtain

0 (—[ -In F(D)/D]lg

—( 4(x)4(y))(: 4(~)': )]dx dy «
-D '4'(&) 'J(4()4(*))(4(*)4(y))B y 4(4)4

To apply these inequalities we use a momentum
cutoff as an intermediate step, in order to elimi-
nate the Wick ordering.

The contribution of the region z, g [0,D] or
I
z

I

& D to the upper bound in (4) is negligible, as D
—~ with o fixed. As a consequence,

f( p(x)p(z})(p(z)@(y)) dxdy dz

f( d (x)e(y)) dx dy
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where the z integration is restricted to
I
z

I
«D

We now justify the exclusion of these regions.
We first consider the region I defined by 0 ~ z, ~D,
lz I

& D+ D'~' T.he spectral representation for
& 4 (x)e(z)&& 4(z)4 (y)& ts

' dadb p(a)p(b)C, (x —z)C,(z —y},

where C,(x —y) is the kernel of (-n +a) '. We
choose a point m on the line xy with coo = z,. Then

I
x - z

I
-

I x -te
I
+ O(l) min & I

z -~ I'iD,
I
z -~

I }
& Ix —Kl+O(D"')+O(lzl'")

as
I
z I- ~. For a given mass a & m',

C.(x}- f
x I

'" e ~ (" ' as
I
x I- ~ .

Thus,

C,(x —z)C, (z -y) «C, (x -a))C, (a& —y)e

Furthermore, we see from the translation in-
variance of the integrands that the numerator and
denominator both have magnitude O(D'e ). Thus
the region II defined by 0 «z„«D, D- Iz I

«D
+ D"' contributes to the numerator at most the
magnitude O(D" 'e D), and is negligible in the
limit D- ~. Similarly, the region III defined by

z, -D+ D"' and the region IV defined by D+ D'~'
& z, & D are negligible in (4) in the limit D- ~.

Let XD be the characteristic function of the inter-
val I

z
I
«D and let

f (*)= J(((*)((*)&x,( )(,

g (*)=
J (((*)((&)&x,(K)d),

so that the numerator in (5) is the L, inner prod-
uct &f, g&. Again, as D- ~, the angle between f D

and ya or between g~ and ya tends to zero. Thus
as D-~,

where 6=D"'+lzl'". Thus we see that the inte-
gral over region I is bounded by e times the
integral over a strip of unit width about the line
xy. Hence the integral over region I is negligible. or

&f, x&&x, g& „(I)
fix fl'

f( p(x)(t)(z)& dx dzf & (t&(a))p(z }&dw dz

2Df& y(x)y(y)& dxdy (6}

where the integrals extend over
I
x I, I y I, or I z

I

~D. We now show that we may replace the sup in

(6) by the value at z, =0 or D. Let

lt& =e '"" y(x)n, F(t}=&tlt&,
l xl ~D

so the numerator in (6) is G(t) =F(t)F(D —t), with
0 & t =z, =&co D. Note

(-I)"E'"'(t) =(I IH" It» 0,

canonical commutation relations ensure fpda = I.
Thus integration of (8) down to o =o, completes
the proof of the theorem.

Furthermore, if the mass is defined for a limit
of Dirichlet data in a strip of finite width L, the
mass m(o) is upper semicontinuous. This follows
since m(o, I,) is continuous and decreasing to m(o)
as L-~. Thus

m(a) = limm(o, +z).

G "(t) =F"(t)F(D —t)+F(t)F"(D —t)

—2F'(t)F'(D —t) .

By the Schwarz inequality, F'(t) «F(t)"'F"-(t)"',
so from (7) we have G"(t) & 0. Thus G(t) has its
maximum value at an end point T =0 or D. It fol-
lows that (6}factors to give

m'& &t)x/0 dx =& paa ' da~ 2m

(8)

Here p(a} is the spectral measure for the two-
point function. The existence of a Hilbert space
ensures that p(a)da is a positive measure, and the

We remark that our bound (8) also yields an in-
equality for the mass m as a function of the bare
mass mo.

Theorem 2. Assume a pure P,' interaction
which is Wick-ordered in the bare vacuum for a
field of mass m„ the bare mass.

(a) Let e & 0. The mass m (m, ) is Lipshitz-con-
tinuous on the interval m, & m, , + ~.

(b) Assume mo, c 0, and m (m, }-0 as m, —m„, .
Then the mass m is bounded by its classical val-
ue, with a logarithmic correction,

m 2 I/2

m ~ m, ' —m, , '+3wln
mo, c

This theorem concerns the change of variables
a-mo', since we now Wick-order in the bare
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mass m, . In Ref. 11 we saw that the change in
Wick ordering constants due to the change in bare
mass yields

("")(0)=
)

(4)(x)4)(0))dx-e ".
Thus from (11)we obtain

1+3&~o
do'

mo
(10) 2 v —( «» p «» 2 v . (12)

From this combined with theorem 1, we infer the-
orem 2a. From (8), we then obtain

dm' dm dg
d

2-2m
d d 8 -1+Schmo

mo e mo

which on integration yields (9).
The inequality (9) yields an inequality on the

critical exponent v governing the mass. Assuming
thatm(m, ,+e)-e' as e-O„we see that v &-,'.
(We give another elementary proof of this bound
below. ) The value v =-,' is the classical value pre-
dicted by mean field theory or the Goldstone pic-
ture, while the value v =1 occurs for the two-di-
mensional Ising model (see Hef. 12). We believe
that v =1 is more likely for f,' than v = v,~

=-,', but
we believe that v ~ —,

' is the best which can be ob-
tained by methods which do not depend strongly on
dimensian, such as those used here. We note that
Symanzik" has also used the Lebowitz inequality
to bound an exponent.

We note that other exponents can also be bound-
ed by their canonical values. The long-distance
anamalous dimension g is greater than its classi-
cal value zero,

q-0=q„,
as follows in two dimensions from the observation
that the two-paint function is a monotonic decreas-
ing function of

~
x —y ~

(see Hef. 10). In greater
than two dimensions, the free field has an m- 0
limit, so the proof that )}»0 is a straightforward
consequence of the Kallen-Lehmann repr esentation.

If we assume the existence of an isolated single-
particle state of mass m (this is proved for X

small') then the field-strength renormalization
constant Z is defined by

G (('}= j(o(x)o(O))8 d*

Z
"

p(a)da
p +m m2+s & +a

Let & be the critical exponent for Z, Z-&~. Since
0 «Z «1, we have &

~ 0. As discussed in Ref. 1,
g =0 is the classical value and is compatible with

the existence of zero-mass particles. Since p is
positive with total integral 1,

Z/m' & (:(2) (0) «1/m'.

Let y be the critical exponent for the susceptibility
G(a) (I))

It is a reasonable hypothesis (apparently not ac-
cessible at present to proof) that m ' &O(1)Zm
and y =2v- (, improving the bounds (8) and (12),
respectively.

From the Lebowitz inequality we obtain, as in

(4), (8),

«(I+3)(m, ')

x @@@g @04(g

=(I+3)(m, ')G 2 (0)'. (13)

Integrating (13) down to the critical point yields

e -C-=—'' [(:4(x}'::C(y)':)

—(:@(x)':)&:@(y)*:)j dy

- l l (@(*)ob))'6= ) J ~"'(P)'dP,

where again we use the Lebowitz inequality. From

G(,) (p)
p(a)da
P +a'

we find that

p(a)p(b) ln(b/a) „„2
~

~2d

&O(m ').
Here we employ an elementary estimate on
(b —a} "ln(b/a), and hence we infer

Qf ««2v.

G"'(0) ' & m, '- m '+3)(ln
o, c

from which we obtain y ~ 1 = y„, and by the upper
bound in (12), v & —,

' = v„. We summarize these
bounds as follows:

Theorem 3. Suppose mo, , &0 andm-0 as mo
-mo, . Then the exponents q, v, y, and & are
bounded from below by their classical values,

0 v ~ yo1, &~0.

We raise the question whether other field-theory
exponents are also bounded by their classical val-
ues.

Finally, we remark a simple inequality on a,
the exponent for the specific heat C:
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Calculability conditions are discussed for local gauge theories w'ith Higgs-type symmetry breaking. We

focus on the naturalness of p,e universality, the naturalness of the Cabibbo angle 8, the naturalness of
CP-violating phases, and the naturalness of the noiileptonic bI = 2 rule. In this context we examine

many published gauge models and construct others to illuminate the questions at hand. We note that

naturalness of p,e universality for charged currents does not necessarily imply universality for neutral

currents (natural "restricted" universality), and we emphasize the need for v„-beam experiments. For
SU{2)XU(1) and SU{2)XU(1)XU(1) we give first examples of how a nontrivial natural 8 can appear.

Models with CP violation are classified as to whether their CP-violatirig phases are natural or not. For
O(4)XU(1) we give a first example in which all the above naturalness criteria can be implemented.

Here the natural p, e universality is necessarily restricted. The principal tool used in these investigations

is the strict renormalizabiiity relative to " gauge group enlarged by discrete symmetries, and the union

of representations reducible under the gauge group to irreducible ones under the enlarged group. To
implement this program, it is sometimes necessary to introduce Higgs couplings involving right-handed

neutrinos; here the zero neutrino mass is associated with a discrete symmetry which remains unbroken

upon spontaneous breakdown. We also find that strict renormalizability can lead to mass relations

between fermions. In 0{4)XU(1) models, such mass relations as well as right-handed neutrinos are

iiecessary ingredients. Furthermore, for these models the spontaneity of CP violation acquired an

operational significance, namely, as a discrete symmetry necessary {but not sufficient) to give a
CP-violating phase a natural value (90'). While the models we discuss are rather cumbersome,

particularly due to the complexity of the symmetry-breaking mechanism, we expect that the tools we

have developed may well have wider applicability.

I. INTRODUCTION

Many gauge models of weak and electromagnetic
interactions have been devised in the last few
years. The basic strategy for their construction
consists in a reconciliation of field-theoretical
and phenomenological requirements. From the

side of field theory one insists on the renormal-
izability of the scheme as the principal predictive
theoretical tool. From the side of phenomenology
one attempts to incorporate all the known regular-
ities of the weak interactions. What is known here
almost entirely concerns the rather low-energy
and low-momentum-transfer domain. Indeed, it is


