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A broad class of theories, called “objective local theories,” is defined, motivation for considering these
theories is given, and experimental consequences of the class are investigated. An extension of previous
analyses by Bell and by Clauser et al. shows that predictions of objective local theories and of
quantum mechanics differ, and that an experimental test of the entire family of objective local theories
can be performed. The experimental requirements are given. Objective local theories satisfying a
plausible but experimentally untestable supplementary assumption are shown to be incompatible with

existing experimental data.

I. INTRODUCTION

Two papers by Bell have shown that the statisti-
cal predictions of quantum mechanics, for certain
spatially separated yet correlated two-particle
systems, are incompatible with a broad class of
local theories. Bell’s earlier paper considers the
consequences of a physically reasonable locality
condition within the domain of an ideal Gedanken-
experviment.! He demonstrates that any theory
which satisfies the locality condition must also
be deterministic if certain quantum-mechanical
predictions are valid for the idealized case. Bell’s
further analysis shows, however, that any deter-
ministic local theories are necessarily incom-
patible with some other quantum-mechanical pre-
dictions for the Gedankenexpevimend.

Upon examining the proof in Bell’s earlier
paper, one might conjecture that it is essentially
the deterministic character of the class of theo-
ries that is incompatible with quantum mechan-
ics.? That is, if the hypotheses assumed for the
Gedankenexperiment were slightly relaxed so that
determinism is no longer derivable,® then the in-
.compatibility with the quantum-mechanical pre-
dictions will also be removed. This conjecture
is incorrect. Bell shows in his second paper*
that any stochastic theory satisfying the locality
condition is also incompatible with quantum me-
chanics.

Inspired by Bell’s first paper, Clauser elal.®
showed that his analysis can be extended to cover
realizable systems and that experimental tests of the
broad class of local theories covered by these
theorems can be performed. Although existing
two-particle sources and/or analyzer-detector
apparatuses appear insufficiently close to ideal
for the desired experiment, Clauser efal. showed
that, with a plausible but untestable supplementary
assumption concerning detector efficiencies,

deterministic local theories are incompatible with
the quantum-mechanical predictions for a realiz-
able experiment. Experimental results obtained
by Freedman and Clauser® are in excellent agree-
ment with the relevant quantum-mechanical pre-
dictions and thereby indicate that any deterministic
local theory is untenable if the supplementary as-
sumption is true. Clauser efal. in their original
proposal for this experiment restricted their dis-
cussion to deterministic local theories. Follow-
ing Bell’s second paper, however, it was noted’
that the experiment also indicates that any sto-
chastic local theory is untenable if the same sup-
plementary assumption concerning the detectors
is made. However, the question of the experi-
mental testability of stochastic local theories with
either a weaker auxiliary assumption or with no
auxiliary assumption has not previously been dis-
cussed.

The present paper extends the previous dis-
cussions of deterministic and stochastic local the-
ories in several respects: (a) In preparation for
the extension, we characterize explicitly a broad
class of theories, which we designate as objective
local theories (OLT), and discuss the fundamental
premises which motivate them. Incompatibility of
this class of theories with quantum mechanics has
essentially been demonstrated by Bell,* but the re-
sult is in a form that is not practically experi-
mentally testable. (b) We give a new incompati-
bility theorem that yields an experimentally test-
able result. (c) We show that, without an auxiliary
assumption, neither the existing results of Freed-
man and Clauser nor any future refinement of
their experiment employing more efficient de-
tectors can provide a test of OLT because the
angular correlation of the photon pairs is unsuit-
able. We note, however, that there do exist two-
particle sources which are suitable for a test.

(d) We state a supplementary assumption, weaker
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than that previously employed, and prove that it

is sufficient to ensure the incompatibility of OLT
and the experimental results of Freedman and
Clauser. (e) We construct an explicit OLT model
which reproduces the results of that experiment.
We thereby prove that the Freedman-Clauser re-
sults constitute a refutation of only those OLT
which satisfy our (or some similar) supplementary
assumption.

II. OBJECTIVE LOCAL THEORIES

We will formulate and motivate objective local
theories in the context of the experimental ar-
rangement shown schematically in Fig. 1. A
source of coincident two-particle emissions is
viewed by two analyzer-detector assemblies 1 and
2. Each apparatus has an adjustable parameter;
let a denote the value of the parameter at apparatus
1, and b that at apparatus 2. In Fig. 1, a and
b are taken to be angles specifying the orienta-
tions of the analyzers, e.g., the axes of linear
polarizers for photons, or the directions of the
field gradients of Stern-Gerlach magnets for
spin-} particles. However, neither of these
particular interpretations of the parameters a
and b is essential for the discussion which fol -
lows; a and b may denote the values of any ad-
justable parameter at apparatus 1 and 2, respec-
tively. Finally, in addition to an adjustable com-
ponent and a detector, each apparatus may (and in
practice does) contain various other components,
such as additional filters to shield the detectors
from unwanted radiations, etc. Since we require
that these additional apparatus components re-
main in place during the experiment, we will ig-
nore them in the discussion. Similarly, we ignore
and assume constant any other macroscopic vari-
ables, such as those describing the source-ap-
paratus geometry.

Analyzer 2 Analyzer |
Detector 2 Source_ a Detector |
0 - 3
y
| S —
| S —
Apparatus Apparatus
2 |

FIG. 1. Scheme considered for a discussion of objective
local theories. A source emitting particle pairs is viewed
by two apparatuses. Each apparatus consists of an an-
alyzer and an associated detector. The analyzers have
parameters, a and b respectively, which are externally
adjustable. In the above example, a and b represent
the angles between the analyzer axes and a fixed refer-
ence axis.

During a period of time, while the adjustable
parameters have the values a and b, the source
emits, say, N of the two-particle systems of in-
terest.® For this period, denote by N,(a) and
N,(b) the number of counts at detectors 1 and 2,
respectively, and by N,,(a, b) the number of simul-
taneous counts from the two detectors (coincident
counts).® If Nis sufficiently large, then the en-
semble probabilities of these results are

pl(a) =M(a)/N ’
p2(6)=N,(0)/N, 1)
plz(a) b)= N,z(a, b)/N.

Consider one of the two-component emissions
from the source. Physical theories, classical,
quantum-mechanical, and presumably more gen-
eral ones as well, characterize a physical system
with a state. Moreover, during the system’s ex-
istence, its state in general evolves. Consider
the state specification of the above system at a
time intermediate between its emission and its
impingement on either apparatus.'® Denote this
state by A. Note that we do not necessarily make
a commitment to the completeness of this state
specification, i.e., it may or may not describe
the ultimate essence of the system at the chosen
time. But neither do we make any restriction on
the possible complexity of A, nor do we assume it
has any special characteristics; in short, we as-
sume no model. As the state described initially
by A subsequently evolves, it may or may not
trigger a count at apparatus 1, and similarly it
may or may notdo soatapparatus 2. The initial state
A, if it serves the same role as in existing theo-
ries, will suffice to determine af leas! the proba-
bilities of these events.!! Let the probabilities of
a count being triggered at apparatus 1 and 2 be
p:(, @) and p,(, b), respectively, and let p,,(x,a,b)
be the probability that both counts are triggered.'?

Since, in general, every system in the ensemble
emitted by the source may not have the same ini-
tial state, we allow a mixture of states. Letp(\)
be the normalized probability density character-
izing the ensemble of emissions.!® In terms of the
quantities just defined, the ensemble probabilities
given in Eqgs. (1) are

pl(a)=fr D p()p,(, @),
pa6) = fr D pA)p,00, b) @)

prala b) = J;d?\p(ﬂpm()\, @ b),

where T is the space of the states A. The formula-
tion (2) is quite general. Nothing so far has been
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assumed that is not satisfied by quantum mechan-
ics. It suffices in Eqgs. (2) to let A define a quan-
tum state and let p(A) define a distribution over
quantum states implicit in a mixture.

Hereafter, we focus our attention on a special
case of formulation (2) in which

b12(X, @, 0)=p, (A, alp,(, b) . (2%)

What considerations motivate this factored form?
Clearly, if each source emission consists of two
well-localized subsystems, e.g., a pair of objec-
tive particles, and there is no action at a distance,
then the factored form is a reasonable locality
condition. More generally, the factored form is a
natural expression of a field-theoretical point of
view, which in turn is an extrapolation from the
common-sense view that there is no action at dis-
tance.

Fields propagate and can impinge upon different
localized objects, among them pieces of apparatus.
Since A describes the field initially,'* and the pa-
rameter « is associated with only one apparatus,
it is reasonable that there is a well-defined prob-
ability p,(x, @) that that apparatus will be triggered.
The impingement of the field on this apparatus will
naturally modify the field. However, if the events
marking the action of the field on two pieces of ap-
paratus (triggering or not in each case) have space-
like separation, then the reaction upon the field
due to impingement on the first apparatus will not
have time to affect the part of the field impinging
the second apparatus, and conversely. Hence,
the probability p, that the second apparatus will be
triggered will not depend on whether or not the
first has been triggered, or upon the choice of the
parameter « at the first apparatus, or even upon
the presence of the first apparatus. A similar as-
sertion of independence holds for p,, whence (2’)
follows. In view of the foregoing motivation of Eq.
(2’), we call any theory in which it holds an ob-
jective local theory.'®

It should be recalled that the wave function was
introduced by Schrodinger from a field-theoretical
point of view, and most physicists have continued
to think of it field-theoretically, whatever their
precautions when they are on guard about the
character of quantum mechanics. Hence, we con-
jecture that Eq. (2’) is implicit in the thinking of
many physicists.'® Whether or not this is correct,
it is apparent that quantum mechanics is not of the
form (2’). For many two-quanta sources, every

emission is described by the same pure state, sug-
gesting that this quantum state be identified with
one value of A, say A\’, and that p(A\)=6(x =1’) (no
mixture). However, when the two-particle quan-
tum state is not a simple product of single-par-
ticle states but is instead a superposition of such
products, the quantum-mechanical probability p,
does not in general admit the factorization (2’).
The only alternative for saving Eq. (2’) is to iden-
tify the quantum-mechanical pure state with p(n),
i.e., with a mixture of other states A».}” But, as
we shall see, this identification is impossible for
some quantum-mechanical pure states.

III. EXPERIMENTAL CONSEQUENCES

Measurement of the probabilities (1) requires
not only the numbers N,(a), N,(), and N,,(a, b),
which are directly observed quantities in a counting
experiment, but also the number N, which is gen-
erally unobservable in an experiment counting
microsystems. In practice, the number of emis-
sions N occurring during any time period is usually
deduced from the counting data for that period,
since intervening counters will in practice depo-
larize (if not destroy) the systems. But this de-
duction always depends upon the currently ac-
cepted theoretical description of the whole phe-
nomenon—the source, the apparatus, and their in-
teractions. That is, N is actually deduced from
Egs. (1) themselves with the p’s supplied by the
theory at hand. Clearly, any such method of
determining N must not be employed in an experi-
mental test of competing theories. Therefore, in
this section, we derive a consequence of Eq. (2')
which is experimentally testable without N being
known, and which contradicts the quantum-me-
chanical predictions.

Let @ and a’ be two orientations of analyzer 1,
and let b and b’ be two orientations of analyzer 2.
The inequalities

0<p,0,a)s1,
0<p,(,a")s1,
0<p,(0,0)<1, ®)
0sp,A,0") <1

hold if the probabilities are sensible. These in-
equalities and the theorem in Appendix A give

-1 51‘)1(}\, a)pz()\, b) —P1(7\) a)pz()\’ bl) +p1()\; a')Pz(M b) +.D1()\y al)pz(ky b’) —1)1()\, a,) —on\, b) < 0

for each A, Multiplication by p(A) and integration over A gives

-1 prz(aa b) —Pm(a; b") +P12(a’s b)"'.t’lz(“': b")=p,(a’) —pz(b) <0 4)
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as a necessary constraint on the statistical pre-
dictions of any OLT. If, for some reason such as
rotational invariance, it is found experimentally
that p,(a) and p,(b) are constant, and that p,,(a, b)
=p1.(¢) holds, where ¢ =|b — | is the angle between
the analyzer axes, then (4) becomes

-1<3p,,(¢) =p,(8¢) =p, —=p,<0. (4")
Here, a, a’, b, and b’ have been chosen so that
la-bl=|a’-b|=|a’-b|=3la-b'|=¢

The upper limits in (4) and in (4’) are experimen-
tally testable without N being known. Inequalities
(4) and (4’) hold perfectly generally for any sys-
tems described by OLT. These are new results
not previously presented elsewhere. The relation-
ship between them and the previous inequalities of
Bell is discussed in Appendix B.

IV. INCOMPATIBILITY WITH QUANTUM MECHANICS

We now present the conditions under which the
predictions (4) and (4’) are incompatible with those
of quantum mechanics. Consider an experiment
with a configuration as described above whose
quantum-mechanical predictions take the following
form:

p12(@) = anym, f18l€} €2 + €le2F cos(ng)] ,
pxzé"hfxei s (5)
by= %nzfzef .

This general form is characteristic of many cor-
relation phenomena, e.g., the spin-3-spin-; cor-
relation Gedankenexperiment introduced by Bohm!®
and used by Bell,!** and the actual experiments of
Freedman and Clauser,® Wu and Shaknov,'® and
Kasday efal.?° Inserting the predictions (5) into
(4’) and selecting the optimum value ¢ =45%n, one
finds that the condition for a violation of the upper
bound is

nge,[V2(e_/e,PF+1]>2 . (6)

Here for simplicity we have taken , =n,=7, f,

=f, €l=€?=¢,, and €. =€e®=¢_. Thus, a correla-
tion experiment with values in the domain specified
by (6) is capable of distinguishing between OLT
and quantum theory. Although experiments are
possible for which this is the case, there are at
present no existing experimental results satisfying
(6), and thus none which are in violation of (4’)
and/or (4).

Consider next the specific example of the photon
pairs emitted by a J=0-~J=1-J=0 atomic cas-
cade. A source of such pairs was used in the ex-
periment of Freedman and Clauser. Figure 2 is a
diagram of their experiment; it is clearly of the

configuration discussed in the previous section.
For this arrangement, the predictions are given
by Egs. (5) with n=2 and the following identifica-
tions®: 7; is the quantum efficiency of detector
i(=1,2), and

= =il
el=el+el and €' S€y—¢€, .

Here ¢} is the efficiency of polarizer i for light
polarized parallel to the polarizer axis, and e,,‘, is
the efficiency for light polarized perpendicular to
it. The function f, =f,=f(6) is the probability that
the J=0-J=1 (J=1-~J=0) emission enters ap-
paratus 1 (apparatus 2),

F(6)=4(1 = cosb) , (7)

with 6 being the half-angle of the cones subtended
by each detector aperture. The function g=g(8)

is the conditional probability, or angular correla-
tion factor, that if the J=0-J =1 emission enters
apparatus 1 then the J=1-J =0 emission will enter
apparatus 2,

_3 [G,(0)F +3[G,(0)
g(@)-g : 1-ccfs93 (8)
Finally,
F=F(0)= 2[6,(O)f 9)

G2(6) +3 63(9)

reflects a depolarization effect due to noncollin-
earity of the two photons and approaches unity for
infinitesimal detector apertures (6 —0). The func-
tions G,, G,, and G, are given in Ref. 5.

Inserting Eqgs. (8) and (9) into (6) one finds that
because of the relatively small value of g(6) con-
dition (6) is no¢ satisfied for any value of the de-
tector half-angle 6, even if the analyzer and de-
tector efficiencies are ideal (n=¢,=€¢_=1).2
Therefore, for cascade-photon experiments, the
quantum-mechanical predictions are compatible
with (4) even in the domain of ideal apparatus. The
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FIG. 2. Schematic diagram of apparatus and associated
electronics of the experiment by Freedman and Clauser.
Scalers (not shown) monitored the outputs of the dis-
criminators and coincidence circuits. (Figure after
Freedman and Clauser.)
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insufficient magnitude of the angular correlation
factor g(0) is a consequence of the fact that an
atomic cascade is a three-body decay, the atom
being the third body.

However, for correlated particles produced in
certain two-body decays, the quantum-mechanical
predictions violate (4). The annihilation of ground-
state positronium into two y rays or the dissocia-
tion of a spin-0 or a spin-1 molecule into two
spin- particles produce correlations of the form
(5). Since these are two-body decays, g(6)=1
holds even for small 6 (provided the center-of-
mass velocity of the decaying object is sufficiently
small). Even with g=1, inequality (6) imposes
rather stringent conditions on the efficiencies of
the analyzers and detectors. But there appears to
be no a priori reason why such conditions cannot
be achieved in practice. This question will be the
subject of future work.

V. CONSEQUENCES WITH A SUPPLEMENTARY
ASSUMPTION
Until a correlation experiment employing highly
efficient analyzers and detectors is performed on
two-body decays,? it is desirable to exhibit a
physically plausible supplementary assumption

which makes the existing cascade-photon experi-
ment applicable as a test of OLT. In this section
we state an assumption, weaker than the one pre-
viously presented by Clauser efal., and prove that
it is sufficient to make OLT incompatible with ex-
isting experimental results. In the next section
we prove, with an explicit OLT model, that this
or some other supplementary assumption is neces-
sary for such an application.

The assumption is that, for every emission a,
the probability of a count with a polarizer in place
is less than or equal to the probability with the
polarizer removed. Let « denote the absence of
the polarizer, and letp,(x, ») denote the probability
of a count from detector 1 when the polarizer is
absent and the emission is A. A similar probability
p2(, ©) may be defined for apparatus 2. Thus,
our assumption is

0<sp,(\, @) sp, (A, 0)s1, (10)

for every A, and for all values of a and b. We
call this the no-enhancement assumption.?®> We
now make an argument analogous to that which led
from (3) to (4). Inequalities (10) and the theorem
of Appendix A yield immediately the result

—p15(%, ) <piala, b) =py,la, b')+p,(a’, ) +pyp(a’,b") = pp(a’, ©) =pyy(o, b) <0, (11)

where
Pualn )= [ @ pAp,0, 29,0, 3)
r

for all x and y. With the same conditions used in
writing (4’), (11) becomes

P1z(°°, w) < 3plz(¢) ‘P12(3¢) -pxz(a” ) "p12(°°: b)<0.

(11')

Note that all terms in (11) are joint probabilities
for coincident counts at the two detectors. In-
equality (4), in contrast, contains the two terms
b, and p, which are probabilities of a count at a
single detector. The upper limit of (11), or (11’),
is identical to the previous result of Clauser efal.,
but their derivation was restricted to deterministic
local theories and employed an auxiliary assump-
tion stronger than the no-enhancement assump-
tion.

The quantum-mechanical prediction for p,(¢)
in the cascade-photon experiment was given in
Egs. (5) and (7)-(9). The predictions for the
other joint probabilities occurring in (11) are®

plz(ali w)= %Tllnzf(G)g(G)ei ,
D1z, b)= MM, f(0)g(0)e? , (12)
D1a(e0, ) =11, f(6)g(6) .

These predictions violate the upper bound in (11')
provided

€. [VZ(e_/e,PF(8)+1]=2 (13)

holds. As before, we have used the optimum val-
ue ¢=221"and set e}=€2=¢, and e =€Z=€_.
Note that neither the angular correlation factor
nor the detector efficiencies appear in (13). The
apparatus of Freedman and Clauser satisfied (13),
and the experimental results, which confirmed the
quantum-mechanical predictions, substantially
violated the upper bound of (11’). Consequently,

in view of the theorem just given, any OLT that
do not admit enhancement are untenable.?*

VI. NECESSITY OF A SUPPLEMENTARY ASSUMPTION

To prove that an auxiliary assumption is neces-
sary if the cascade-photon experiment is to refute
OLT, we exhibit an explicit OLT model which re-
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produces the results of that experiment. Since
the experimental results are in agreement with
the quantum-mechanical predictions, it suffices to
construct a model which reproduces these pre-
dictions. For simplicity, however, we exhibit the
model only for the ideal case in which the detec-
tors subtend infinitesimal solid angles [ -0 and
F(8)~1]. The extension of the model to the finite
solid angles of the actual experiment [6=30° and
F(6)=0.99] introduces nothing new, and the ad-
ditional complexity obscures the point. With these
simplifications, the predictions to reproduce are

D12(9)/p13(, ©) =z(e}e? +ele? cos2¢) ,

p1la, °°)/P12(°°’ ©) =3¢, (14)

P12(°°, b)/Plz(‘”, °°)= %Ef .
Only ratios could be measured, since, with N un-
known, the actual values of the p’s were experi-
mentally inaccessible.

The model is as follows: Each emission pair
consists of two particles, such that particle 1
travels along the + z axis to apparatus 1, and par-
ticle 2 travels along the — z axis to apparatus 2.
Both members of the pair possess a common state
variable A which is simply an azimuthal angle;
that is, it specifies a direction perpendicular to
the flight axis from some reference axis (see Fig.
3). The ensemble of emitted pairs is character-
ized by a normalized isotropic density

ax

p().)tﬂ =

Osas<2r. (15)
2m

From the same reference axis, we specify the
orientations of polarizers 1 and 2 by the angles a
and . With the polarizer removed, the probability
of a count at each detector is a constant, indepen-
dent of A:

px()\: °°)=01 ’ (16)
Pz()" °°)=Cz . (17)

The probability of a count at detector 1, given an
emission A and the setting a of an inserted polar-
izer, is

Polarizer B

o
>

Detector W,
8 -

Analyzer
axis

Photon B

P, @) =3c,[e} +elcos2(n - a)] . (18)
At detector 2, the probability is
p2(, b)=3c,mel/5 (19)

for b-36<Asb+30and m+b—36 <A <T+b+36;
p2(, b) is zero otherwise. Here 6 is a function of
the ratio €2/€2, and is defined by the relation

(sind)/6=€2/€2 . (20)

Clearly, this model is an OLT provided the prob-
abilities (16) through (19) are less than unity.
Evaluation of the ensemble probabilities yields

Diala, b)=ic,c,lete? +ete? cos2(a=-b)] ,

pola, ©)= %Clczd ’
D12(°°, b)= %clczef ’
P1a(, @) =cc,

which agree with the quantum-mechanical ratios
(14).

Note that for some values of the polarizer pa-
rameters ef and €!/e! the model is enhancement-
free. Since the function p,(A, a) is less than
p.:(, ) for all physically sensible values of €,
and € _, it is enhancement-free in general. To see
this note that, since 0<¢, <¢, <1 holds for any
polarizer, it follows that 0 <e!/ef <1 and
ef <2[(e!/e})+1]"* also hold. However, p,(, b) is
enhancement-free if and only if

€2<26/7. (21)

The values €2~1.00 and €2/€2~0.94 of the Freed-
man-Clauser apparatus do not satisfy (21), and
therefore, as expected from the theorem of the
previous section, the model requires enhance-
ment to reproduce the experimental results. Note
finally that, even with enhancement, p,(A, b) re-
mains sensible provided the constant ¢, of the
model is sufficiently small. The value of p,(A, b)
is sensible for all » and b provided c, < 26(me?)™2.
For the actual values of the experiment this condi-
tion is ¢, <0.38.

Polarizer A
a
\ \
/’
Detector A
Photon A Analyzer
axis

FIG. 3. Coordinate system for OLT model. Photon particles A and B carry the same azimuthal direction A, which,
along with the analyzer orientation @ or b, determines the probability of a count at the associated detector.
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VII. CONCLUSIONS

Physicists have consistently attempted to model
microscopic and macroscopic phenomena in terms
of objective entities, preferably with some defin-
able structure. The present paper has addressed
the question of whether or not the existing formal-
ism of quantum mechanics can be recast or per-
haps reinterpreted in a manner which restores the
objectivity of nature, and thus allows such models
(deterministic or not) to be made. We have found
that it is not possible to do so in a natural way,
consistent with locality, without an observable
change of the experimental predictions.?®
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APPENDIX A: TWO INEQUALITIES

We prove the following theorem: Given six num-
bers x;, X, ¥, ¥s X, and Y such that
O<sx <X,
Osx,<X,
0<y, <Y, (A1)
0<y,sY,

then the function U=xy, = x,y, + %Y, + %V, = YX,
- Xy, is constrained by the inequalities

-XYsUs<O. (A2)

To establish the upper bound, consider two
cases. Firstassume that x; > x, and rewrite (A2),

U=(x, = Xy, + (9, = N+ (0 = x,)y; -

We have thus assumed the last term to be nonposi-
tive. Inequalities (A1) require the first two terms
to be nonpositive, and the validity of the upper
bound is demonstrated for this case. Next assume
the other alternative, i.e., that x;, <x,, and use
this assumption to bound U, thus:

U= % (9, = y5) + (% = X)y, + %(y, = ¥)
< %, (3, = y2) + (o = Xy, +%,(y, - Y)
= (% - Xy, -x(y, -V <0.

Thus, the upper bound is established in general.

The proof of the lower bound follows from a con-
sideration of three cases. First, assume x,> x,.
The validity of the lower bound is apparent by in-
spection when written in the form

U+ XY= (X = 2)(Y = 3,) + %9, + (%, = %)y ,

since (Al) requires all three terms to be non-

negative. Similarly for the case y, >y,, inspection
reveals the correctness of the lower bound when
written

U+ XY= (X=2)0Y =9+ 259, + %, (3, =¥,) «

Finally, suppose neither of the two previous cases
holds; that is, x,<x, and y, <y,. Then write

U+ XY=(X=x)(Y -y,)
- (% = %)Y, =)+ %y, .

The sum of the first two terms in non-negative
since now (X~ x,) = (x, = x,)>0 and (Y -y,)

> (y, -y,)>0. By (Al) the final term is also non-
negative. Q.E.D.

APPENDIX B: INEQUALITIES (4) AND
BELL’S THEOREM

Inequalities (4) assumed the arrangement of
Fig. 1, where each apparatus consists of an ana-
lyzer with a single-channel output followed by a
photomultiplier. Bell* considers a two-channel
apparatus, e.g., a birefringent polarizing crystal
followed by two photomultipliers, one photomuli-
plier monitoring the ordinary ray emerging from
the crystal and the other monitoring the extraor-
dinary ray.?” Letp; (A, a) denote the probability of
a count in the ordinary channel of apparatus 1, and
p1(\, a) denote the probability of a count in the ex-
traordinary channel, for the orientation a of the
analyzer and initial state A of the emission. Let
P, b) and p5 (A, b) be similarly defined for ap-
paratus 2. Bell considers the correlation function
defined by?®

Pla, b)= fr B oM pT 0, ) =pr (%, a)]

=P1+2+(aa b) _p:z.(a; b)

—bi (@, )+ (a, b)
(B1)
i (a,b)= fr dxpM)pI0, api, b)

forj, k=x1.

Using the fact that each square bracket in (B1) is
bounded by +1, he proves that P is constrained by
the inequalities

-2<P(a, b)-Pla, b')+P(a’,b)+P(a’,b") <2 .
(B2)

Note that for a direct experimental test of (B2) the
number of emissions N must be known, and that in
actual practice this probably cannot be found with-
out either destroying or at least depolarizing the
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particles. [If N can be found, (B2) suffices for an
experimental test.] Here we wish to show the re-
lations between (4) and (B2).

First, (B2) is a corollary of (4). In an experi-

ment employing two detectors (+ and -) behind
each double-channel analyzer, inequalities (4) are
still applicable and provide four sets of inequali-
ties,

-1 <pit(a, b) -pika, b") +pik(a’, b) +pik(a’, b') = pi(a’) - p2(6) <0, (B3)

where j =+1 and £=x1 indicate which detectors are
considered. Multiplying the inequalities for which
j #k by -1 and adding these to the inequalities for
which j =k, we obtain (B2).

Second, with Bell’s formulation, (4) is not an
immediate corollary of (B2). For a given analyzer
setting @ and emission A, there are three possible
results at apparatus 1: a count in the + detector,
a count in the — detector, or no count in either
detector. Let p{(A, a) denote the probability of no
count, Clearly

pr, @) +pr(x, @) +p3(, @) =1

r

holds, which implies
pi, @) =pr (A, @)=2p7 (A, @) +p20, @) =1 .  (B4)

With (B4), and a similar expression for apparatus
2, the expression (B1) defining the correlation
function becomes

Pla, b)=4p%;(a, ) =2p} (@) =2 -p; (b) +1
+2p17(a, b) +2p7; (a, b) +p33(a, b)
-p%a) -p3(d) . (B5)

Insertion of (B5), and similar expressions for
P(a’, b), Pla,b’) and P(a’, b’), into (B2) yields

-1-Q<p, (a,b)=pg, (a,8)+p1, (@', b) +p1, (@', b)) =p[(a') —p, (b) < -Q, (B6)

where

Q=3[p17(a, b) +p3; (a, b) + 3p75(a, b) —p17(a, b") =p3; (@, b") - 3pi3(a, b') +p 17 (a’, b)
+p3s (a', b) +3p05(a’, b) +p1,(a’, b) +pY; (a', b)) + 3p75(a’, b') = p2(a’) —p3(d)] .

If we could establish that @=> 0, then the upper
bound of (B6) would be identical to the experi-
mentally useful upper bound of (4). No reason is
immediately apparent that this is so, and unfor-
tunately the terms %5, pJ, and pJ occurring in @
are unobservable, since they are probabilities of
nothing happening. Thus auxiliary assumptions,
and/or auxiliary experimentation as well, are
necessary to test (B2) or, equivalently, (B6).

However, if Bell’s formulation is modified a¢
the beginning, his method of proof can be employed
to obtain (4). Consider, instead of the correlation
function (B1), the function

P'(a,b)= f dxpM)[2p: O, @) -1][207 (r, 6) 1]

=4p. (a, b) =207 (@) =207 (0)+1 . (BT

Since each square bracket in P’ is bounded by -1
and +1, Bell’s method is applicable and yields

-2<P'(a,b)-P'(a, b')+P'(a’, b) +Pla’, b’) < 2.
(B8)
Using Eq. (B7), inequalities (B8) become

-1 S‘b;; (a9 b) —P;;(a, bl) +P;2+(a', b)

+p1, (@', b") =pi(a) =p; () <O,

which, suppressing superscripts, is (4). In the
context of a double-channel experiment, the three
other sets of inequalities given in (B3) can be ob-
tained in similar fashion.?®

*Work by one of us (J.F.C.) was supported by the U. S.
Atomic Energy Commission.
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With the interpretation of an observation as making a
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