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Recently, the formulation of spontaneously broken gauge theories (SBGT) without scalar
mesons was carried out nonperturbatively for Abelian gauge models. These results are
reformulated and extended to non-Abelian gauge theories using an effective Lagrangian,
which allows symmetry-breaking coefficients to be calculated in perturbation theory. These
coefficients appear in Callan-Symanzik equations for the SBGT, which differ only in what
is conventionally called the right-hand side from the Callan-Symanzik equations for the
symmetric theory. Spontaneous breakdown can only take place if these symmetry-breaking
coefficients are positive, in which case the effective Lagrangian reduces, in a certain sense,
to the Lagrangian of the symmetric theory. The question of positivity is studied in non-
Abelian theories in lowest-order perturbation theory, and it is shown how to accommodate
SBGT without scalars in the framework of asymptotic freedom. Some aspects of the utility
of the light-cone gauge for calculations in non-Abelian theories are discussed in an appendix.
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I. INTRODUCTION

There are many ways of inducing spontaneous
symmetry breakdown in quantum mechanics, and
surely the most widely studied recently is the
Higgs-Kibble! mechanism for spontaneously bro-
ken gauge theories (SBGT).? Adding Higgs scalars
to a gauge-theory Lagrangian is an excellent way
to achieve a spectrum of massive vector mesons
without sacrificing renormalizability, but there
is no phenomenological evidence for particles
associated with these scalar fields, and they are
usually given very large masses and very small
coupling constants by model builders. Another
possibility proposed recently®** is that the gauge
symmetry is dynamically broken, that is, there
exist nonperturbative solutions to the conventional
gauge-theory field equations without scalars which
contain massive vector mesons and are renormal-
izable. These works are very similar in spirit to
the classic paper of Nambu® on superconductivity,
in which the photon becomes massive (Meissner
effect) and certain homogeneous, symmetry-
breaking Dyson equations have nonzero solutions.
A little while after Nambu, Englert and Brout®
suggested that Nambu’s work might have a counter-
part in relativistic field theory.

Long ago Schwinger’ pointed out the general
kinematic basis for the appearance of massive
vector mesons in gauge theories: The vector-
meson self-energy acquires a pole at g®=0. This
pole appears in many Green’s functions, but not
in the S matrix.>** In the absence of elementary
scalar fields, the zero-mass pole has a dynamical
origin and its residues obey homogeneous Bethe-
Salpeter equations (as in superconductivity). The

10

solutions to such equations, if they exist, are
necessarily nonperturbative.

Whatever the mechanism for symmetry break-
down is, there are three major problems to be
faced: (1) maintaining gauge invariance (i.e., the
Ward-Takahashi identities), (2) controlling the
asymptotic behavior of the theory so that no new
divergences arise, and (3) calculating symmetry-
breaking masses and coupling constants, which
receive significant contributions both from the
finite-momentum regime and from the asymptotic
regime. We shall have nothing to say about this
last, most difficult, problem. The purpose of
the present paper is to give a formal prescription
for solving problems (1) and (2) for the case of
dynamical symmetry violation, without having to
struggle with solving homogeneous integral equa-
tions (as was done in Refs. 3 and 4). The pre-
scription—to be discussed in detail later—is to
calculate the coefficients of the Callan-Symanzik
(CS) equations®® from a gauge-invariant, re-
normalizable effective Lagrangian which incorpor-
ates in its structure the dynamical Goldstone bo-
sons which give the vector mesons mass. Only
the CS coefficients which appear on what is by
convention the right-hand side of the CS equations
differ from those of the symmetric theory. This
evolution of the problem from earlier efforts®:*
is precisely analogous to the evolution of the
Baker-Johnson!® approach in quantum electro-
dynamics, which is now phrased in terms of the
CS equation'!; the main difference is that there
are no Goldstone bosons in the Baker-Johnson
program.

Problem (1), gauge invariance, was not dis-
cussed explicitly in Refs. 3 and 4. These works
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use the Landau gauge, which happens to give the
correct answer, but it is not obvious (except per-
haps to very experienced readers) why this should
be so; no discussion of gauge invariance appears
in the cited works. In fact, the Landau gauge is
privileged, from the point of view of computational
convenience, but the present development main-
tains manifest gauge invariance at all stages, and
allows one to calculate in any gauge.

Problem (2)—controlling asymmetric divergen-
ces—assumes a new aspect in dynamically broken
theories. We classify symmetry-breaking mech-
anisms as either soft, or potentially divergent.
Soft mechanisms either have no divergences, as
in nonrelativistic superconductivity,® or the di-
vergences of the spontaneously broken theory can
be incorporated in those of the symmetric theory
order by order in perturbation theory (as in the
o model? and Higgs-scalar models?). In soft
theories, addition of properly chosen symmetry-
breaking terms to the Lagrangian does not affect
the perturbative renormalizability of the theory,
even though not every symmetry-breaking param-
eter is finite without renormalization. [We clas-
sify the work of Coleman and Weinberg® as a
soft theory, because the radiative corrections to
the potential can be calculated order by order in
conventional perturbation theory. These authors
have profitably used the renormalization-group
equations (CS equations with no right-hand side)
to study symmetry breakdown with scalar mesons.)
But in potentially divergent theories, naive addi-
tion of symmetry-breaking mass terms may lead
to nonrenormalizability, as in the Abelian models
of Refs. 3 and 4. In a proper spontaneously broken
theory, not only must nonrenormalizable diver-
gences be absent, but also any divergence which
requires a counterterm that is not symmetric.
Crudely speaking, symmetry-breaking effects
must disappear asymptotically, which ensures
that there are well-behaved solutions to the sym-
metry-breaking homogeneous Dyson equations.®**
In the case of asymptotic power-law behavior
(p*)"¢, € must be positive; if €<0, there is no
spontaneous breakdown (corresponding to a super-
conductor at too high a temperature). Actually,
€ refers to the rate of decrease of the symmetry-
breaking propagators relative to the asymptotic
behavior of the symmetric propagators; it is only
this concept which is gauge-invariant.

There is no general requirement that symmetry-
breaking effects vanish like a power, and there
are a number of interesting circumstances where
the decrease may be slower. In such a case the
CS coefficient B(g) (which we will show is the
same for the symmetric theory and for the spon-
taneously broken theory) has a zero at the same

place that €(g) does. (Here € appears as a power-
law parameter if 3=0; see Ref. 11.) A simul-
taneous zero always occurs at the origin g=0, and
if g=0 is a stable fixed point (i.e., the theory is
asymptotically free!*~!¢) the asymptotic behavior
of the symmetric as well as of the spontaneously
broken theory can be calculated reliably in per-
turbation theory. For asymptotically free theo-
ries, the requirement that € be positive in the
neighborhood of the origin still holds, but now
symmetry-breaking effects disappear only at a
logarithmic rate. One may also consider the
Gell-Mann-Low-Adler —Baker-Johnson pro-
gram'®!7+18 in which B(g)=0 for g#0. In general,
this leads to power-law behavior, since there is
no reason to expect €(g) to vanish at the same
point. This will be modified if €(g) does vanish,
however, but the exact circumstances depend on
the nature of the zeros of 8 and €. In principle,
we cannot say anything reliable about this pos-
sibility without going beyond low-order pertur-
bation theory for B and €.

Dynamically broken non-Abelian gauge theories
have one advantage over Higgs-scalar models, in
the case of asymptotic freedom: It is easier to
achieve a realistic vector mass spectrum. There
often seems to be at least one massless vector
meson, however, so that one does not have com-
plete freedom in choosing a mass spectrum for
dynamically broken theories either, and at the
moment there is no outstanding candidate for a
realistic dynamically broken theory, of either
strong or weak interactions, which is asymptot-
ically free.

The basic method of the present work is ex-
plained in Sec. II, using for clarity of explanation
the spontaneously broken Abelian model of Ref. 3.
To the usual symmetric Lagrangian we add
gauge-invariant symmetry-breaking terms, which
reduce to mass terms in the limit of zero coupling
constant. These terms are nonpolynomial and
nonlocal, which explains how we can achieve this
seemingly contradictory result. The final La-
grangian bears a certain resemblance to the
phenomenological Lagrangian of Jackiw and
Johnson,* with some crucial differences: Our
Lagrangian is renormalizable order by order, and
it contains propagators for massless scalars
where the Jackiw-Johnson Lagrangian would have
inverse powers of the vector-meson mass. (Be-
cause of these inverse mass powers, the Jackiw-
Johnson Lagrangian is unrenormalizable.) It
turns out that we can use perturbation theory (in
principle, at least) to calculate the asymptotic
behavior of the theory, thus avoiding the difficul-
ties of homogeneous integral equations for which
conventional perturbation theory fails. It is then
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possible to write CS equations for the effective
nonlocal Lagrangian, and recover all the results
of the earlier works.®** The coefficients usually
termed B, y are the same as in the symmetric
theory, while the right-hand side of the CS equa-
tions has now terms which specifically refer to
the symmetry-breaking parameters (called €
above). It is because we have zero-mass propa-
gators present in the original effective Lagran-
gian that we can get away with using perturbation
theory, just as Weinberg!® showed that one can
perform perturbation theory in the presence of a
bound state if pole terms are included in the po-
tential. It is worth noting that, with the aid of
Lagrange-multiplier fields, it is possible to give
a local, but still nonpolynomial description of
the effective Lagrangian, which can thus be canon-
ically quantized.

Section III sets up a similar scheme for non-
Abelian gauge theories. The difficulties of main-
taining gauge invariance are considerably exacer-
bated, but appear to be manageable; we indicate
a prescription which seems to work, but which
has only been studied in detail in lower orders.
Some simple group theory is worked out to reveal
the signs of the € parameters in lowest order;
the only striking thing is that in an asymptotically
free theory, the fermions cannof be in the lowest-
dimensional group representation. One model is
exhibited—a parity-conserving chiral model—in
which part of the symmetry breaking is soft (in
the sense used above), € vanishes identically,
and the problem of symmetry breaking is entirely
nonasymptotic.

After the conclusions in Sec. IV, there appears
an appendix which gives certain results concern-
ing Yang-Mills theories in the light-cone gauge.?°
This is a special case (#*=0) of the ghost-free
gauges n-B =0, discussed by many authors.?!"2*
Because this gauge is ghost-free, the Ward-
Takahashi identities become no more complicated
than those of Abelian theories, and various
heuristic demonstrations are greatly simplified.
The main point of the Appendix is to demonstrate
that loop integrals can be done with no more effort
in the light-cone gauge than in any covariant gauge,
which is certainly not true for the axial gauge
n®=-1.21"22 If that were all there is to it, then
presumable everyone would rush to use the light-
cone gauge. Unfortunately, this gauge may not
even exist, because loop integrals acquire new
divergences which appear in the Feynman param-
eter integrals. However, these can be regulated
with the dimensional regularization techniques
of ’t Hooft and Veltman.?® Assuming that a con-
sistent renormalization procedure can be achieved
in the light-cone gauge, we can give a simple

heuristic demonstration of the analog of the
Schwinger” mechanism in non-Abelian theories.
The demonstration of the Schwinger mechanism
in covariant gauges with ghosts is considerably
more complicated.?

After the material in this appendix had been
worked out, the author found out about related
work of Chakrabarti and Darzens,?* who give a
special case of the general theorem in the Appen-
dix.

II. ASYMPTOTIC SYMMETRY BREAKING:

THE ABELIAN CASE

A. Review of previous work

We consider the model of Ref. 3; the model of
Jackiw and Johnson? is equivalent. The sym-
metric Lagrangian is

£5=Y (37 y-s—Mo + &' Ty, B + gy, A" ¥
_%Auvl’_éBuuz’ (1)
where
A,y =08,A,-0,A,, B,,=08,B,-8,B,, (2)

¥ =(¥,¥,) is a two-component fermion field, and
T, is the usual Pauli matrix. The bare-mass
matrix M, is a multiple of the two-dimensional
identity matrix. This Lagrangian is symmetric
under the local gauge transformations

. 1
Ve 20, B, =B, = 7 8,6, (3)
and
-, A -A 1y (4)
- y g “_g b .

The gauge invariance (4) will remain unbroken,
and we look for spontaneous breakdown of the
gauge symmetry (3). This spontaneous break-
down must respect the Ward identity

(p=p" TS (p", p)=T7,S " (p)=S~(p")1, , (5)

where I‘ff is the proper ¥ ¥ B vertex, and S7! is
the two-dimensional inverse fermion propagator.
The spontaneous breakdown reveals itself in a part
of the proper fermion self-energy proportional to
T3»

S™1(p) = p-M,~Z(p),
Z(P)=Z5(p) + 7,24 (D).

As explained in Ref. 3, the Ward identity (5) can
only be satisfied at p’=p if there is a pole in T'}:

(6)

T2(p’, p)= fl,%iﬂl?(p'.p)w- (g=p-p"), (1)

with
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T2(p, p)=2Zy(p). (8)

The associated composite Goldstone boson (g®=0
pole) does not appear in the S matrix. The sym-
metry-breaking Green’s functions I'E, T, obey
homogeneous Dyson equations, and it is shown®*
that to lowest order the linearized equation for
Zy has a solution (in the Landau gauge)

Ty (p) = OM(-p? /M)~ (62D ©)

if the parameter € has the value

€= %(a—a'), (10)
where a =g2%/4m, a’'=g"?/4n. This expression
makes it clear why the A meson is needed; if
a =0, €<0. We take it that a>a’, so € is positive.
The pole in I‘f leads to a pole in the B-meson
self-energy, and thus to a vector-meson mass
via the Schwinger mechanism.’

It is shown that, again to lowest order,

20’ 5 2
Mg(0)= e (6M )2 =~Mg?, (11)
where the B-meson self-energy is of the form

(-8 + 22 )50 (12)

A curious feature about the mass formula (11) is
that € appears in the denominator, so that I15(0)
is actually of zeroth order in the coupling con-
stants. Furthermore, € must be positive so that
M_g?, the square of the B-meson mass, is positive,
There is no limitation on the size of 6M or of My
even in the limit of zero coupling constant, as
long as we require a’/e to be finite and positive
in the limit. The theory then describes free
fermions and vectors, with a massive B and fer-
mion mass splitting. However, if such mass
terms are added to £5 in (1), the theory becomes
unrenormalizable; according to the definition
given in the Introduction, this is a potentially
divergent theory. Only if €>0 are these potential
divergences removed.

Two criticisms can be made against this develop-
ment of the theory: (1) Gauge invariance is not
manifest; (2) it is difficult to see how to proceed
in higher orders, or indeed what the actual ex-
pansion parameter is, since expressions like (11)
are of zero order, yet come from nontrivial loop
graphs. We turn to another approach which avoids
these defects.

B. The effective - Lagrangian method

It is not possible to add naive symmetry-break-
ing mass terms to the asymmetric Lagrangian

£ of (1), without destroying renormalizability.
The essential reason is that terms violate gauge
invariance [(i.e., the Ward identity (5)]. But it is
possible to add certain nonlocal, nonpolynomial
terms to (1) which are gauge-invariant in a re-
stricted sense, and which are renormalizable.
For example, the mass term

2

1
$Mp? (Bu -g aua-B> (13)

is invariant under the gauge transformation (3),
as long as (06 #0. The recipe for forming such a
term is the following: (a) Write down a naive
symmetry-breaking mass term. (b) Make a gauge
transformation (3) on it. (c) Replace the gauge
parameter 6 by g’0"'8-B. In this way, we come
to the full effective Lagrangian

Lo =Ls-Te ¢ 2%0M et 2
+ %Maoz(Bu-ap¢)2’¢=D"a-B . (14)

This has the same form as the Jackiw-Johnson*
effective Lagrangian, with one crucial difference:
The scalar field ¢ has (naive) dimension zero.

In the Jackiw and Johnson Lagrangian, the cor-
responding scalar field & has dimension 1, as an
ordinary free scalar field would; we recover
their Lagrangian by setting ¢ =Mz, @ in (14),
and removing the constraint ¢ =J°'8:B. Thus

& becomes an independent degree of freedom,
with propagator behaving like 2~%. However, our
¢ field has a propagator behaving like #~*. In con-
sequence, some factors of £~% needed for re-
normalizability are replaced by My, in the
Jackiw-Johnson Lagrangian. As these authors
point out, there may well be a hierarchy of effec-
tive Lagrangians to be used in different regimes
of momenta. Their nonrenormalizable Lagran-
gian is useful at low energies, where it reveals
clearly the pole structure (in particular, the
cancellation of the Goldstone excitation in the S
matrix, in tree approximation); our Lagrangian,
on the other hand, is to be used (in this work, at
least) only at asymptotic momenta. Actually,
there is nothing in principle forbidding us from
using (14) for all momenta, but that would get us
into the incredibly difficult problem [(3) in the
Introduction] of calculating both low- and high-
energy symmetry-breaking effects.

Some readers may well recoil at the prospect
of a Lagrangian which is both nonlocal and non-
polynomial. It is easy to remove the nonlocality
by adding to (14) a Lagrange-multiplier term

-x(O¢-2+B) (15)

(the first term can be integrated by parts, so that
it depends only on first derivatives) and ignoring
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the constraint written in (14). The new constraint
equation (J¢ = 8- B is not, in fact, different from
that of (14) (¢ =0"'8-B), since there is no legit-
imate free field of dimension zero which could be
added to ¢. If x is taken to be a gauge-invariant
field, then the sum of (14) and (15) is gauge-
invariant also (always assuming the gauge pa-
rameter 6 is such that (J6#0). As with any gauge-
invariant Lagrangian, the free propagators of the
vector mesons are undetermined, and we must
add special gauge-breaking terms, in a well-
known way.? Then the final £ ., is

Lo=Ls-Te ' 20N T, o' 20y

+ 3Mgy*(B, -8, ¢)*~x(O¢p -0 B)
1 2 2
Ty [(3-A) + (8-B)?] . (16)

(We could use different gauge parameters X for
A", B", but that only complicates the writing.)
Without the last term, (16) can be canonically
quantized in some noncovariant gauge, e.g., the
Coulomb gauge. The A fields are treated conven-
tionally. All four components of B,, and x and ¢
as well have nonvanishing canonical momenta;
however, these six momenta are constrained by
one relation (the 0 component of the field equa-
tions for B, ). The only point of carrying through
the canonical quantization is to make sure that
there are no covariant seagulls of the type dis-
cussed by Gerstein et al.?® and Finkelstein ef al.?s;
in fact, there are none. Therefore, the Feynman
rules following from (16) including the covariant
gauge-setting terms, are the naive ones based on
the interaction-Lagrangian part of (14), with free
vector propagators:

~guy +(1-A)ky Ry k™2

AL =
Hv K-ie ’
s _ —Guvthk kT Ay,
Buv P-Mp® + i€ P (17)

Of course, A=0 is the Landau gauge. These
Feynman rules generate poles in the integrands
of Green’s functions (and in IT;, itself), which
are clearly to be identified with a composite
Goldstone excitation.

As we have stated several times, this Lagran-
gian is renormalizable. There are two aspects to
this: First, the propagator of the ¢ field is just
Ak~* as is appropriate for a dimension-zero field.
Second, the equations of motion derived from (16)
show that the source of the B field is conserved
(which is not the case for the Jackiw-Johnson
Lagrangian). This key result, which is a con-
sequence of the gauge invariance of £ ., allows us
to derive (at least formally) the Ward-Takahashi

identities for proper B-field vertices; they can
be verified order by order in perturbation theory.
For example, (14) shows that, to O(g’), the
proper vertex g'T'} is

r2=1,y,-2i0M,T 5’;‘3, (18)

where g, is the outgoing B-field momentum. This
vertex satisfies

¢ TE(p'-p)=1,5"H(p)-S~X(p")7, (g=p-p"),
(19)

with S™!(p) = p-M,-7,6M,; (19) is the Ward-
Takahashi identity (5). In higher orders (19) con-
tinues to be satisfied, as the exponential terms

in (14) correct for the string of commutators which
are created when the 7,”s arising from (19) as
applied to an internal vertex are moved to the

left or the right of the fermion self-energy part.
As is well known, the identity (19) allows us to
reduce the number of independent renormalization
constants of the theory, as we discuss below.

Even assuming that £, in (16) generates a
perfectly well-behaved theory, what relation does
it have to spontaneous symmetry breakdown? If
there are in fact two new physical parameters
6M,, Mg, which do not appear in the original £,
then we are simply discussing another Lagrangian,
and not a spontaneously broken solution to £5.

The point is that the necessary conditions for
spontaneous breakdown to be described in Sec. IIC
force 6M, and My, to be zero, but do not force
their renormalized counterparts to zero. (Of
course, any bare-mass parameter is only well
defined when a cutoff is introduced into the theory;
we mean that when, e.g., 6M, is expressed in
terms of renormalized parameters and a cutoff

A, the limit A - of 6M, is zero.) In effect, 6M,
and Mg, play the role of weak magnetic fields
placed on an unaligned ferromagnet; the resulting
spontaneous magnetization is independent of the
weak external field.

We shall use £ to construct Callan-Symanzik
equations for spontaneously broken gauge theories,
which will thus yield a perturbation-theory al-
gorithm for the asymptotic behavior of these
theories.

C. The Callan-Symanzik equations

There are two coupling constants and three mass
terms in £ .4, and it is quite straightforward to
write down the CS equations for a renormalized,
one-particle irreducible, amputated vertex I'®:%:

(D+B%+B’;E—2My,>r=zsr. (20)
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T’ describes a process with N; fields of type i,
each with anomalous dimension y (i =1, 2,A, B).
The operator D is given in terms of renormalized
masses M, OM, My by

<] 0 0
D=M — L 2.
M 7 +6Ma(6M) + My o (21)

the dimensionless functions 8, g’, % are all finite
and depend on renormalized coupling constants
and mass ratios. The mass derivatives on the
left-hand side of (20) or in (21) are applied holding
the venormalized coupling constants fixed. How-
ever, on the right-hand side of (20) we shall need
the same mass derivatives with urnrenormalized
coupling constants held fixed; we denote this
operator by D. The relation between them is
simple: D=D+ B(3/3g) + B'(8/3g’). On the right-
hand side of (20), AT is formed by (1) applying
the operator D to the unrenormalized vertex T,
expressed in terms of bare masses and coupling
constants; (2) multiplying the result by II1(Z,;)"/?,
that is, by the same factor which changes I, to I'.
Another way to say it is the following: Expand I,
in powers of the unrenormalized mass operator

M=MT¥ +Te ¢ 226 M7, ¢ '™2°¥
“%MBOZ(B;L _au¢)2, (22)

replace 3" by DINY, and then renormalize. Only
the first two powers of Il matter for the leading
asymptotic behavior. I is essentially the trace
of the stress-energy tensor T,, and there are
general arguments®® that the matrix elements of
T,, are made finite by multiplying by I1(Z,;)"?

(at least if there are no elementary scalar fields).
The action of D on 9 is expressed in terms of
three functions §6;, defined by

DInM,=1+ 5,
Din6M,=1+5,, (23)
DInMg,=1+5,.

If one accepts the argument that the matrix ele-
ments of M, like those of 7, ,, are made finite by
1(Z,,)!”> and makes the obvious remark that DI
is renormalized with this factor [since the left-
hand side of (20) is so renormalized], it follows
that the §; are separately finite. With the aid of
(23), we express the right-hand side of the CS
equation in terms of

DI =+ (1+6,)M,T¥ +(1+ 6)F e~ ¢ 25 M1, &' 2°¥
~(1+6,)Mp2(B, -8, ¢)*. (24)

Let us make these arguments concerning the re-
normalization of the mass operator U more pre-
cise. There are three terms:

<Mo=M¥ ¥,
M, =Te ' 2% M, 't 2%, (25)
mz = _%MBOZ(B;J _au ¢)2 .

The last term, 9U,, has no divergent skeleton
graphs, so it may be rendered finite without intro-
ducing any new renormalization constants, as we
argued in the previous paragraph. Next, consider
the effect of I, and N, on the two fermion prop-
agators. The fermion proper self-energy has the
Dirac-matrix decomposition

Zi(p)=A; B+ B; (i=1,2). (26)

It is easy to see by counting y matrices that A;
may contain only even powers of i, B; only odd
powers. But all skeleton graphs containing
2,4,6,... M vertices are superficially conver-
gent, so the divergent parts of the A; are indepen-
dent of 9. Therefore the cutoff dependence of
A, and A, is the same, and is given by the cutoff
dependence of the symmelric zero-mass theory.
It follows that the two wave-function renormaliza-
tion constants Z,; (i =1, 2) are each finite factors
multiplying a common divergent factor (so their
ratio is finite). It then follows that each of the
two B; are rendered finite by factoring out this
same infinity. In particular, their difference
B,-B,=2Z, is rendered finite, but =, is the two-
fermion matrix element of 9, [plus finite skeleton
graphs of O(J%, ...)]. So there are no new re-
normalization constants for two-fermion matrix
elements of 9M,, and it is known!! that there are
none for 9M,. The Ward-Takahashi identities (5)
or (19) then show that the vertex renormalization
constants Z,,, Z, 5 have the same cutoff depen-
dence as Z,;. The asymmetric part of I'7, which
has odd powers of I, in it, therefore has the
same cutoff dependence as the symmetric part of
either vertex or either fermion propagator. The
only remaining superficial divergence is in the
B-meson self-energy, corresponding to graphs
of O(9M,?), but the divergence is only logarithmic
and can be removed by mass renormalization.
Therefore the vector-meson wave-function re-
normalization constants Z,,, Z,y differ by finite
factors from what they are in the symmetric
theory.

These facts have important consequences for
B, B’ and the y: They are the same as in the
symmetric theory. This follows directly from the
definitions

w=%tDInZ,, (i=1,2,A,B),
ﬁ=§gﬁanzA,

Zyg Lo Z
r= 1o 2B 42143
B'=3g"DlIn <~—-————Zmz >

27
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The dimensionless functions Z depend on mass
ratios, or on ratios of cutoff to mass. But D
gives zero when applied to a mass ratio, so the
above formulas probe only the cutoff-dependent
parts of the Z’s; we have just shown that they are
the same as in the symmetric theory. This result
is somewhat analogous to the c-model result!?
that all the divergences of the spontaneously bro-
ken o0 model can be reduced to those of the normal
model. In our case, we still have to deal with the
cutoff dependence of M, and My,. However, there
are no infinities in the 8; defined in (23).

D. Calculation of the CS coefficients in lowest order

All the coefficients B, 8, ¥, 6, can be read off
from well-known quantum-electrodynamic calcu-

—J

lations; to lowest significant order, they are

go a a

ga _ - -
Q. B’'= ) YA—3_11’ YB= 37’

B= T 3

w

+a’ 3 28)
a+a
‘yl=‘y2=<-z1r—>)t, 60=-2—w(oz+a').

[Recall that X is the gauge parameter defined in
(17); A =0 is the Landau gauge.] It only remains
to calculate 6,, 6,. To O(g’), the B-meson con-
tribution to the mass comes from inserting the
effective vertex (18) in the usual self-energy
graph and using the g2 part of 9, [see (25)]. It is
important to observe that the graph for M, has
fermion 2 as an intermediate state. The formal
expression for M, using only the y, 7, part of the
effective vertex (18) and the propagators (17) is

—(1=2) (=M + 6M,)

s 12
M,=M,+ oM, + <& f

d4k[2(ﬁ —¥)—4(M,—6M,)
(2m)*

k2 (p_k)z

where we have dropped all masses in denomin-
ators, since they do not contribute to the diver-
gent part. However, we have carefully saved

all mass dependence in the numerator. A similar
expression holds for M,, with the sign of 6M,
reversed. Subtract the two equations, and use the
simple cutoff procedure

d4 2
—ieTk»inzlnXI}—z- =in* L, (30)
where A is the cutoff, and M? is any combination

J

2ng
k2

Finally, there is the contribution of the O(g"?)
term in 9,, namely, 2g"2¥6M,7,¥ (0 8- B)?,
which cancels off half of (32):

’
ﬁM(C’-—ZGMof—" AL. (33)

The sum of (31), (32), and (33) yields

3(a-a’)J L,

6M=6M, [1+ o

(34)
which is gauge-invariant; now using (23) we find

5= -237 (@-a’), (35)

also gauge-invariant. Note that 6, =2¢, where €
[defined in (10)] is the asymptotic power of the

ks oMy (§-) 22 [ g v+ 1-0 B

7 } +O(8M?) + A-meson terms,
$=M

(29)

r

with dimension 2 of masses which occur in the
theory. The result is (including the A terms)

M@ = 5 (M,-M,)

=6M0%>1+L[43 (a-a’)- %] } . (31)

Note that this graph is gauge-dependent.

Next, calculate the graphs with A7, at one ver-
tex, —2i8M,r k" k72 at the other [see (18)]. There
are two equal graphs, so we get the necessary
result by multiplying one graph by two:

v

} +finite - + 46M, — o M (32)

r
symmetry-violating propagator.

If we had used the homogeneous-integral-equa-
tion approach®:* we would have included a sym-
metry-breaking vertex part with Goldstone pole
at only one end of the fermion line. In this way,
the contribution (32) would be cut in half, and
there would be no contribution (33); the results
for OM are unchanged. This reveals the computa-
tional significance of the Landau gauge in these
earlier works: In this gauge, the Goldstone poles
do not couple internally. (It is a useful coincidence
that to lowest order the fermion anomalous di-
mensions are zero in this gauge.) In the present
approach as well the Landau gauge greatly
simplifies matters, since I, becomes a naive
mass term and there is no nonpolynomial part to
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the Lagrangian.

Turn now to the computation of the symmetry-
violating part of Hfu. Here it is necessary to be
less cavalier about the cutoff procedure. We can
use conventional Pauli-Villars regularization, or
much more conveniently the dimensional regular-
ization of ’t Hooft and Veltman.?® A simple ap-
proach, valid for single-loop graphs, is merely
to set

=3 =0 (36)

and then use the logarithmic regulator (30). It is
not allowed to drop masses in the propagator
denominators ab initio, because Hf,, is quad-
ratically divergent before regulation. However,
after using (36), propagators may be expanded in
powers of mass, and finite terms dropped.

At asymptotic momenta there is no purely ki-
nematic way of isolating the symmetry-violating
terms inI1},, as there was for the fermion
propagators. We must define the symmetry-
breaking self-energy I1,/, as that part which van-
ishes when 6M, and My, are set to zero (keeping
the cutoff finite). It is clear that odd powers of
0M, cannot appear, as the leading corrections to
the one-fermion-loop graph are O(6M,?); there is
no contribution from Mgy? to a one-loop graph.
There are nine graphs: Three have conventional
T,% vertices and insertions of two I, vertices in
all possible ways. Four graphs have one Gold-
stone vertex -2i6M,7,k, k™% and one I, correction;
one graph has two Goldstone vertices; and the
ninth graph comes from the O(g'?) part of I, [see
above (33)]. This last graph is a seagull contain-
ing a closed fermion loop; its main role is to
cancel a quadratic contribution to the two-Gold-
stone-vertex graph. If the rule (36) is applied, the
ninth graph does not contribute to the divergent
part.

The first three graphs (with conventional Y
vertices) combine to give a result which can be
rewritten as

0= Tk [dpi e (ln, S ln, S(p)}
37)
= '?r"" (6M,)* L g, , + finite, (38)

using the regulator (30). All the rest of the graphs
have one or more Goldstone-pole vertices, and
they give a contribution which changes the -g, ,

in (38) to -g,, + B,k k7%, thus ensuring gauge
invariance. The integral (37) is just what occurs
in the homogeneous-integral-equation approach,®*
only it converges because of the power-law de-
crease of Z,(p) [see (9)]; for such a power-law

decrease, replace L by (2¢)”}, as in (11). There
is a profound difference in interpretation: Eq.
(11) refers to I, at k=0, while (37) and (38) are
to be used to find the asymptotic behavior of I ,,.

The remaining CS parameter §, is found by
using (38) to write

Mp? =My + iﬂ“— (M, L (39)

and then using (23)

4a’ (6M)?
just like 3, and 0,, this coefficient is gauge-in-
variant and positive.

E. “Solution” of the Callan-Symanzik equations

Can we use the coefficients calculated in Sec. IID
to rederive the homogeneous-integral-equation
results (9), (10), and (11)? In a certain sense
this is possible: We arbitrarily set 3, f’=0, and
use the rest of the CS coefficients as calculated.
If we save B and B’ to lowest order, the asymp-
totic solutions to the CS equations make no sense,
because the theory is ultraviolet unstable (as all
Abelian theories must be for sufficiently small
coupling constants g, g’). To set 8, B’'=0is to
mimic a situation in which there is an ultraviolet-
stable fixed point, where the coefficients §; are
all positive, as we have calculated them. This is
the same as the Baker-Johnson!® approach to
quantum electrodynamics.

The CS approach to the fermion propagator with
B, B’=0 has already been discussed thoroughly by
Adler and Bardeen.!! For the symmetric part of
the inverse propagator, we quote their results:

-p?\~7 -p? y-80/2
Ss"l(p)’zr:l_n ﬁA (_M_z> +MB (W) y

(41)

where y =7, =y, is the anomalous fermion dimen-
sion, M can be chosen without loss of generality
as the renormalized symmetric mass [M= (M,
+M,)], and A and B are dimensionless functions
of mass ratios and coupling constants, independent
of p. We briefly indicate how a similar result is
found for the symmetry-violating inverse propaga-
tor, denoted by -Z,(p) 7, as in (6). By construc-
tion, Z, is of first order in the mass operator M,
and only the 9%, term is relevant (higher powers

of M, are not asymptotically leading). With the
help of (24), the right-hand side of the CS equation
for Z,(p) is simply (1 + 6,)Z(p), so (20) becomes

(D=29)Z,(p)=(1 + 6,)Zy(p). (42)
The solution to (42) is
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__pz -Y=8,/2
Zy(p) ~ OMC(—W—) , (43)
p >
where C is a dimensionless function of coupling
constants and mass ratios. Note that 6,, in (35),
is twice € given in (10), so that (43) agrees with
(9) in the Landau gauge (y =0). The significant
point is that the gauge-dependent term (-p*/M?)"7
factors out of the full inverse propagator so that
it is gauge-invariant and physically meaningful
to compare the ratio of the symmetry-violating
term with the symmetric term; if 6,>0, I,
vanishes with respect to the g part of the sym-
metric self-energy.

The defining equation (23) for 6, is a differential
equation which yields the cutoff dependence of the
bare-mass splitting:

A2 -b1/2

6M,=06ME <T43> , (44)
where 0M is the venormalized mass splitting, and
E is a cutoff-independent function of renormalized
mass ratios and coupling constants. If 6,>0, 6M,
vanishes as the cutoff approaches infinity. This
is an essential requirement for spontaneous
breakdown, for it means that £, in (14) is really
the same as £ (at least if My, vanishes in the
limit, which we show below).

The CS equation for 117} presents some interest-
ing developments. The full symmetry-violating
inverse propagator consists of the bare-mass
term Mg.?, plus the contribution of the one-loop
graphs [see (38)]. As mentioned before, terms of
o(9m,) or O(IM,IN,) give identically zero, so we
need only keep terms of O(,?) or O(9IN,) on the
right-hand side. From (24), D *=29M,
=2(1+ 6,)9M,% Dow,=2(1+6,)M,. Then the CS
equation for the scalar symmetry-violating func-
tion I®¥ is (recall that 8’ =0 means y; =0)

DB =2(1+ Gl)nfv+ 2(1+ éz)nfv’ (45)

where 112" is the sum of all insertions of 3%, and
I2Y is the sum of all insertions of 9,. Of cour se,
n8"=m2"+ 12", There is no physical significance
to the breaking of I1%¥ into two separate parts,

and we desire to use one differential equation, i.e.,
(45), for one quantity I18", not for the separate
parts. The only way that this is possible is if
8,=0,, which yields with the help of (35), (40),

and the fact that 5, =2¢,

2 ’
M= =2 (oM )? (46)

—precisely the relation (11) derived from the
homogeneous-integral-equation approach. If
indeed 6,=0,, (45) is easily solved, when we re-
member that I1?Y, the coefficient of -g, ,+k, k, k>

in II2%, has dimension 2:

%Y ~ F(6M 2(-k2/M?)" %1 , (47)
k —>o0
As usual, F is a dimensionless function of mass
ratios and coupling constants. Also (23) can be
integrated to yield the cutoff dependence of Mg,

Mg, =MgG(A2/M?)™ 72 (48)

It vanishes as A — =, but the ratio Mg,/6M, is
finite.

The condition 6, =0, is not arbitrary or coin-
cidental; it is essential to the soft asymptotic
behavior (47). The point is that the 15V and 15"
are not this soft; only their sum is. The ve-
normalized I18Y, calculated to second order, is
(asymptotically)

8 =My2— 31‘:‘— (6M)1n (Mﬁz) . (49)
If these are the first two terms in the expansion
of a power-law (—k?/M?*)%¢, then Mg® and (6M )
must be related as in (46). Any other relation
leaves an asymptotically constant piece, which we
reject.

The fact that in a spontaneously broken theory
not all the renormalized masses are independent
is not surprising, but it forces us to reinterpret
the meaning of the mass derivative D. In fact,

D should be the sum over independent masses only
of mass derivatives. It suffices to say that D is a
distributive operator which counts mass dimen-
sions, without specifying in detail which masses
are dependent and which are independent.

II. EXTENSION TO THE NON-ABELIAN CASE

As usual, going from an Abelian gauge theory
to a non-Abelian one is not exactly straightforward.
There are the usual ghosts,? plus nonlocal cou-
plings of Goldstone scalars like ¢ to the vectors,
and a complete analysis of this problem has not
been carried out. Fortunately, the only really
new dynamical feature which differentiates the
two cases—the presence of two-vector inter-
mediate states in IT* Y —turns out to be trivial, in
O(g?) so that there is a closer resemblance to the
Abelian case than might have been expected.

In Sec. III A we develop the effective Lagrangian
approach, and then we do some second-order
model calculations of CS coefficients. This may
actually be sensible for the asymptotically free
models. We have not made a serious effort to
find any realistic models.

A. The effective Lagrangian approach

First, let us develop the notation. A Yang-
Mills theory is characterized by the real, totally
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antisymmetric structure constants €,,. of a
compact Lie group, and by a set of vector fields
B} which transform as the adjoint representation
of this group (under global gauge transformations).
For simplicity we consider explicitly only semi-
simple groups; the extension to non-semi-simple
groups is quite straightforward. By virtue of the
Jacobi identity the real antisymmetric matrices
(T%)y. = —€,4. Obey the group commutation laws

[1°, T )=€4. T° . (50)
When convenience and clarity permit, we drop
the group indices and use conventional matrix

notation. Also useful is the cross-product nota-
tion A XB, where

(AXB)=¢€gu, A’B°, (AX)®=¢,,A°. (51)

Consider first the pure Yang-Mills Lagrangian,
with no fermions:

-1 a )2
£YM__4(Gpu ’

(52)
G,,=9,B,-8,B,+ gB, XB,,

where g is the coupling constant. The equations
of motion are

-D,G"'=0, (53)
where the covariant derivative operator D, is

D,=d, +gB, X . (54)
Independently of the equations of motion, there is
the identity

D,D,G*” =0. (55)

The Lagrangian is invariant under the gauge trans-
formation

B! =a(d)B, - % B(8)a, 6, (56)

where, in terms of the local gauge parameters 6%
6=T6°, a(0)=e®, BE)=(eP-1)F. (57)

Just as in Sec. II, we desire to add a mass
term to (52), which is gauge-invariant in the re-
structed sense (that is, for gauge functions obey-
ing J6* #0). Of course, the simple construction
(13) fails. The necessity of a gauge-invariant
mass term is to be found in the identity (55): If
a new term £’ is added to £yy, so the equations
of motion become

-D,G*V=8", (58)
(55) requires the constraint
D,S” =0. (59)

This is equivalent to the statement that the action
integral f d*x L' is gauge-invariant, as one may

verify by using the infinitesimal form of (56):
Bﬁ"'Bu'él' D, 6+ (60)

and integrating (59) by parts.
Suppose that we could find some scalar fields
¢° whose gauge-transformation law was (¢
= T a ¢a )
a(@)=a(@)a™(6). (61)

This is a nonlinear transformation on ¢, whose
form can be given explicitly for infinitesimal 6:

¢'=6-p(-B)0 (62)
= $=0-3(pX0) - .

It then follows from the usual group-composition
laws that the field

— 1 a
Qi (B, 0]= [a<¢)Bp-g¢ 830, 0 (63)
is gauge-invariant:
Qi [B’, ¢']=Q; [B, ¢]. (64)

Moreover, the field
Re=[a"3)Q,]°= [Bu—g%BTBNJ (65)

(T means the matrix transpose; this form follows
from a~'8=p7) transforms homogeneously under
the gauge group, from (61) and (64):

R.[B,¢]=R,[B’, ¢'1=a(6)R,[B, ¢] . (66)

Now consider the equations of motion following
from the Lagrangian

£'=%#2Rv21 (67)

where p is an arbitrary (group-scalar) mass pa-
rameter, introduced only for the purpose of
giving £’ dimension 4; it has nothing to do with
the physical vector masses to be discussed later.
To find the variation of £’ with respect to B, is
quite simple, and the result [termed S" in (58)] is

SU=IJ.2<BV—gl ﬁrau¢> =“2Rv . (68)

The variation of £’ with respect to the scalar
variables is also straightforward, but lengthier;
what is not quite so straightforward is to show
that these scalar equations of motion can be
factored in the form

BD,S"=0, (69)

with S” as given in (68). The trick is to use the
identity (71) below which follows from an identity
well known to students of Yang-Mills theories:
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da
-1 92 _ b
a 56, =8,T" . (70)
The identity
8B 0Bea _
20, - 20, =Bup Bee €vae (71)

follows from differentiating (70) and invoking the
commutativity of differentiation with respect to
¢, and observing that the T?® are linearly inde-
pendent for semisimple groups.

The importance of the factorized form (69) is,
of course, that the scalar equations of motion
automatically respect the constraint (59), which
is necessary from the vector equations of motion.
[Note that 8 is not singular, and can be factored
out of (69).] This self-consistency ensures that
our supposition (61) concerning the gauge-trans-
formation law of the field ¢ is indeed true. To
verify this law, solve Eq. (69) for ¢ as a power
series in g:

o8]

+0(g%). (72)

2
1
¢=—é’— a-B-ﬁm— [%(a-B)x—ET 9-B+B, X0,

ol=

The infinitesimal gauge-transformation law for
B,, Eq. (60), directly verifies that

P'=p-6-36x6+0(g?) (13)

as required by (62) (always assuming 06#0). If
¢ is solved correct to O(g¥), it will gauge-trans-
form correctly to O(g¥~!), because (60) contains
g~ tin it.

With the help of ¢, we can construct a gauge-
invariant field corresponding to any gauge-co-
variant field. For B, the gauge-invariant field
is @,, and for the fermion fields we wish to in-
corporate, the corresponding construction is

eta%a (74)

where the ¢, are the Hermitian generators for the
representation carried by ¥. These fields allow
for the building of symmetry-breaking mass
terms for both fermions and vectors, analogous
to (14).

The next step is to write down the complete
Lagrangian, with fermions and mass-splitting
terms, as well as a set of Lagrange multiplier
fields x° to enforce the scalar-field equation (69),
and finally some gauge-setting terms:

£=8s-Fe 't %M, et OW + 3 Tr {Q, Mp,* Q" }
v _i T )__1_ . 2
xD (B,, P BT0,0 ) - 55 (8-B)?, (75)

where £¢ is the symmetric Yang-Mills Lagrangian,
including fermions, and the asymmetric bare-

mass terms 0M,, Mpg,” are matrices. Because of
the complexity of the condition expressing ¢ in
terms of B, [the first-order terms are given in
(72)], it is very much more difficult to manipulate
this Lagrangian than in the Abelian case. In
addition, of course, the naive Feynman rules
based on (75) must be supplemented with the usual
ghost-loop terms? and possibly other determinantal
terms.?®2° The author has not yet carried out the
relevant analysis, but hopes to do so in another
publication. One thing is clear: The Landau
gauge leads to a tremendous simplification of the
Feynman rules, since any 8+B term which occurs
as one end of an internal B line gives zero. Thus
in proper vertices, 3+B can only appear at the
external (off-shell) meson vertices. This fact
allows us to draw certain ostensibly gauge-
invariant conclusions, although these must be
regarded as tentative until a manifestly gauge-
invariant analysis is done.

Consider, for example, the contribution of the
two-vector loop (plus associated ghosts and sea-
gulls) to the vector self-energy. It is possible
that the loop could contribute to the (matrix
generalization of the) CS coefficient 6,, in order
g2. If so, there is a term in 12}, which is
proportional to the square of meson masses, and
has the kinematic structure &, k,k~%. To find such
a term, one writes out £ to O(g?) [which means
finding ¢ to O(g?®); we spare the reader the un-
illuminating corrections to (72)] and seeks for
vertices or seagulls of the appropriate form in
the Landau gauge. Many candidates go to zero in
this gauge, and only one vertex survives:

£1=gTr{B“M802<Bux—1;a-B>§ Feee (76)
When coupled with an ordinary Yang-Mills vertex
from £, it yields the right sort of term, but with
vanishing coefficient: The scalar self-energy Il
has as a factor

€ aca €pca (M 2-M,?) =0, (77)

where M_? is an element of Mg,?, assumed to be
diagonal without loss of generality.

If this conclusion is verified by the full gauge-
invariant analysis, it means that the O(g?) calcu-
lations of 6, and 6, can be carried out in rather
obvious analogy to the Abelian calculations of
Sec. II. Below, we list the results of such calcu-
lations, to show what bearing the choice of group
representations has on these coefficients.

B. Simple group -theoretic considerations

Remember that two vector mesons were needed
in the Abelian case to achieve 4,> 0, as needed



for spontaneous breakdown. The extra Abelian
meson coupled to the fermion number current may
or may not be necessary in the Yang-Mills case,
as we shall see, but if it is necessary, the re-
sulting theory is not asymptotically free. Since
our O(g?) calculations only make sense if the
theory is asymptotically free, we confine our-
selves for the most part to simple groups.

Let us first calculate the components of 3,
={6!} for a parity-conserving, pure vector group
(no axial-vector mesons). There is one 6! for
each irreducible representation ¢ occurring in the
fermion mass matrix

6M,=)_ 8M'P* (78)
i

where P! are matrix representatives of appro-
priately chosen symmetric traceless tensors. One
easily finds, in analogy with the Abelian result
(35), that

3a
5‘1 = 5; Ay, (79)
where A; is defined by
S ePe=NP (80)
a

and a =g2%/4n. The A! are calculated by commuting
t° through P!, thus producing the Casimir opera-
tor 75 ¢,2. Define: N is the dimension of the
group (=7n*-1) for SU(n); C,(A) is the Casimir
operator ) T,? for the adjoint representation A;
C,(R)=27t;2 for the fermion representation R.
Let P! be the projector for a symmetric, traceless
tensor of rank i (the tensor’s indices are those of
the adjoint representation, which hasi=1). Then
we find
i _ i (N+i=2
A —CZ(R)-E<—N-_1—)C2(A)- (81)
From this we can read off the main features which
determine the sign of A'. Large i tends to make
A negative, which is bad; thus in SU(3) with
R=A=8, i=1 corresponding to octet breaking
yields A'>0, but i =2 corresponding to 27 yields
A*< 0 (i =2 gives A' <0 for all groups, for R =A).
If C,(R) is too small, it is also bad. For SU(r)
the Casimir operator for the spinor (fundamental)
representations is conveniently chosen to be
C,(S) = (n*~1)/2n, corresponding to C,(A)=n. (81)
then shows that A*< 0 for all i; in O(g?), there can
be no spontaneous breakdown of SU(n) with the
fermions in the fundamental vepresentation. Even
with this proviso, there is plenty of room left for
asymptotic freedom, which requires'®

4

C,(A)> n—N;d(R)Cg(R). (82)
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There can be two sets of fermions in the adjoint
representation, with (82) satisfied and A*> 0.

Now consider the vector-meson masses. The
analog of the Abelian mass formula (39) is [see
(37) also]

(Mg?)gp=(Mpo?),,

a

5 Tr{(¢t,, 6M,][¢, 6M,]L} .  (83)

The trace in (83) is non-positive-definite, which
corresponds to a non-negative-definite set of 6;.
Just as for the fermions, one may analyze Mg? in
terms of irreducible representations; more than
one always contributes because Mg? is not trace-
less. In the simple case where M, is a number
times a fixed generator ¢, of the group, one finds
that (M%), ,~(T,?),,. Then there is at least one
massless vector (M, =0) corresponding to the
nonbroken Abelian symmetry generated by {,. The
appearance of massless vectors can be avoided if
the fermion representation is sufficiently large,
but then the constraint (82) of asymptotic freedom
is in danger of being violated. As an artificial
example for SU(2), the fermion representation
with isospin I =% is asymptotically free (barely),
allows positive A’s for /=1 and 2, and can give
mass to all three mesons. When some masses
vanish, there are corresponding 6,’s which van-
ish; this is irrelevant since they refer to the
asymptotic behavior of symmetry-breaking self-
energy parts which vanish identically, because

of the conserved subgroup which gives rise to the
massless particles.

Turn now to parity-conserving chiral groups;
here each vector meson has an axial-vector part-
ner, and the left- and right-handed fermion rep-
resentations R;, Ry occur symmetrically:
(R,,RR)® (Rg,R,). There is an interesting can-
cellation in the fermion mass operator, which
makes this object finite in lowest order. But the
mass operator will not vanish identically if the
vector mass M, is different from the axial-vector
mass M,. This mass difference is, in turn, non-
zero if the fermion mass operator does not vanish
identically, but again it is not divergent. These
theories are therefore not potentially divergent
but instead they are soft, and the considerations
of the present work do not apply. Whether spon-
taneous breakdown actually takes place or not
can only be decided by investigating the nonasymp-
totic part of the theory.

Finally we consider parity-violating groups, in
which the left- and right-handed fermion repre-
sentations occur asymmetrically. For each
simple subgroup, there is a lowest-order sym-
metric Yukawa vertex
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a1+ pts + Y 3(1-w)ts, (84)

where 3(1x ) are the projection operators for
right- and left-handed fermions. The symmetry-
violation fermion mass matrix takes the form

M:MR%(I’LYS)*'ML%(I‘?%) (85)

and TCP invariance means that MI=MR. The phys-
ical masses are the positive eigenvalues of
(MyMg)'2. M, (or Mg) can be decomposed into
irreducible tensors as before; calculations
analogous to those of the parity-conserving groups
yield formula (79) but with A* defined as

S tiPRtg =N P (86)
a

or by (86), with L and R interchanged. If this
formula gives A' =0, it means that the symmetry
breaking (if any is possible) is soft, not poten-
tially divergent, and the asymptotic considerations
of the present work are inapplicable. This happens
for any fermion field (such as a two-component
neutrino field) with only one chirality, for then
either ¢t =0 or t4 =0. Thus in the Weinberg mod-
el3! only the photon couples both chiralities and it
gives a positive 6, for the electron, as in Baker-
Johnson!® electrodynamics. Of course, the Wein-
berg model is not asymptotically free.

For the mesons, the mass formula from which
the 6,’s can be derived is

[+

(Mg?) g5 = (Mgg’)y o

Tr{ts MgMt2 +t% M, Mpth
—2t8 Mpt M, } L (87

(where the L outside the brackets stands for the
cutoff-dependent logarithm). Again, the trace is
non-positive-definite, yielding non-negative-
definite 5,’s.

There is at least one weak-interaction model
which is asymptotically free and which spon-
taneously breaks down without Higgs scalars: the
Georgi-Glashow®? model with two or fewer fer-
mion triplets.

Armed with all the CS coefficients calculated in
ths section, plus those referring to the symmetric
sector'®!® one may carry out an analysis of as-
ymptotic behavior such as that given in Sec. II.
However, for asymptotically free theories it is
consistent (and necessary) to keep 3 in the CS
equations, and this changes the asymptotic be-
havior from a power of momentum to a power of
the logarithm of the momentum, as is well known.
However, the condition that 6% and &% are positive
leads to symmetry-breaking Green’s functions
which vanish asymptotically compared with the
symmetric Green’s functions. Let us define

coefficients a, b, ¢ by power-series expansions of
B, v, 8; near the origin:
Blg) =-ag?+---
v(8)=bg®+++- (88)
6,(g)=c;ig%+ .

For an asymptotically free theory, a>0, and we
define a spontaneously broken theory as one for
which §;>0, that is ¢;>0. We now read off from
Eq. (4.16) of Gross and Wilczek'® that, for ex-
ample, the Af part of the fermion self-energy has
the asymptotic behavior [cf. (41)]

r < pg >* -b/ a ( 9)
A~ |[In( -5 J , 8
S e
while the symmetry-violating self-energy behaves
like [cf. (43)]

A P> - (2b+cg)/2a
Th(p) ~ OM,C, [m (- M2> } . (90)
fadt

With ¢;/a>0, Z,/A vanishes asymptotically. As
before, the bare symmetry-breaking masses
vanish, but only logarithmically, in the limit of
infinite cutoff:

et B (i )
M, ,=0M'E 1111—W—2 . (91)

Similar conclusions hold for the vector self-energy
and bare mass.

IV. CONCLUSIONS

We have given a prescription for calculating,
in principle (and even in practice, for asymptot-
ically free theories), the asymptotic behavior of
the symmetry-breaking Green’s functions in
gauge theories without scalar mesons. A neces-
sary criterion for spontaneous breakdown is that
the CS coefficients 6,, 0, be positive at the UV
stable fixed point, but of course this is not a
sufficient condition, any more than the necessary
condition that a bound~§tate Schroédinger wave
function behave like e~'¥!” at infinite » ensures
the existence of the bound state. The rate at which
the symmetry-breaking Green’s functions de-
crease compared with the symmetric ones depends
on the nature of the zeros (if any) in §, and 8,
at the fixed point; for asymptotically free theories
the decrease is only logarithmic, which may well
mean in practice that symmetry-breaking Green’s
functions will not be observed to decrease relative
to symmetric ones.

No realistic models which are asymptotically
free and which allow spontaneous breakdown with-
out scalars have yet been found either for the
strong or the weak interactions (unless the Georgi-



Glashow model with no more than six fermions is
realistic). In the strong-interaction case, re-
moving all massless vectors requires a number
of fermions so large that the conditions of as-
ymptotic freedom may be violated, yet the flex-
ibility in models without scalars seems to be
greater than in models with scalars.’ (Of course,
if the broken strong symmetry is a color group it
may not matter that all vector mesons be mas-
sive.)

These results were based on an effective La-
grangian which is nonlocal and nonpolynomial but
renormalizable, and which is gauge-invariant
only for gauge functions 6 obeying 006 #0. £ is
not gauge-invariant for constant 6, and the author
believes that there is no renormalizable £.; which
is invariant for constant 6. The reason why only
restricted gauge invariance is possible is that
the operators which implement global gauge trans-
formations—the charges—do not exist for spon-
taneously broken theories.®® However, the current
densities do, and it is these which generate local
gauge transformations if 6(x) is sufficiently well
behaved at spatial infinity, through the operator
Q[6]= [d®xJ°(x)6(x). A similar thing happens in
superconductivity, where the eigenstates of the
Hamiltonian are not eigenstates of the charge
operator.

One final question: Since gauge-invariant me-
son fields [Eq. (64)] and fermion fields [Eq. (74)]
are available, why not write any old Lagrangian
down in terms of these fields, and call it gauge-
invariant? (Note, incidentally, that the symmetric
Lagrangian £ is invariant under the substitution
of gauge-invariant fields for ordinary ones.) In-
stead of sticking to symmetry-breaking mass
terms, one could also add symmetry-violating
vertex terms and presumably retain renormal-
izability. While no firm conclusion can be drawn
yet, it seems unlikely that such a shotgun approach
will succeed. We demand that the symmetry-
breaking terms all vanish asymptotically, and a
preliminary investigation shows that it is difficult
to get vertex symmetry breaking to vanish as-
ymptotically when it appears in the Lagrangian.
In the homogeneous-integral-equation approach,
one would have a new set of homogeneous Dyson
equations to solve, along with those that already
exist for the propagators and Goldstone vertices.
Each homogeneous equation imposes special
constraints (akin to the positivity of 8,, 8,) on the
field theory of a type not usually considered. It
appears that the minimum number of such con-
straints is embodied in the program described
here and earlier,®* and it may well be that only
this program can be consistently interpreted as
spontaneous breakdown of a symmetric gauge
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theory. Whether or not this is really true clearly
merits further investigation.
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APPENDIX: YANG-MILLS THEORY
IN THE LIGHT -CONE GAUGE

For some time, it has been known that the
Yang-Mills Lagrangian can be canonically quan-
tized in the gauge n,B"=0, where n, is a fixed
spacelike or lightlike vector,?"*?? and that there
are no Faddeev-Popov ghosts in these gauges.
The absence of ghosts effects an astounding
simplification of the Ward-Takahashi identities,
which makes it well worth investigating such
gauges. Unfortunately, as Mohapatra’s papers?®
show, it is extremely tedious to do loop integra-
tions in the spacelike gauges #*<0. The purpose
of this appendix is twofold: first, to show that
loop integrations can be done quite simply and
covariantly in the light-cone gauge »*=0, which
is quite often invoked for Abelian theories,?® and
second, to show that in a formal and heuristic way
the light-cone gauge is useful for understanding the
problem of spontaneous symmetry breakdown in
Yang-Mills theory in a way analogous to the homo-
geneous-integral-equation approach for Abelian
theories.’** This heuristic utility rests directly
on the simplified Ward identities, and can best be
appreciated in comparison with Sarkar’s®® dis-
cussion of the Schwinger mechanism in conven-
tional covariant gauges with ghosts. The light-
cone gauge suffers from one great drawback:
Loop integrals in momentum space sometimes
lead to Feynman-parameter integration diver-
gences of the type fo dZ/Z (in four dimensions).
It remains to be seen whether this drawback is
fatal or not.

There are two approaches to the light-cone
gauge; one is to consider the Lagrangian with a
gauge-breaking term added,

1
L£=Lyy ‘27(”"3)2’ (A1)

and pass to the limit A =0; the other is to impose
the constraint n-B=0 on £y, before writing down
the field equations. The two approaches differ
only trivially. The author knows of no published
work on quantizing £ yy at equal times in the
light-cone gauge, but Tomboulis’s work,?® in which
he quantizes £y, on the null plane in this gauge,
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can easily be transcribed to equal times with a
few minor changes. In this second approach, the
free vector propagator is

_ Puv(‘l)
Auu(q)"" q2+z'e ’ (AZ)
where
nyqy + nyqy) 2nyn
Puy=gp,,— ( pqv vy q Ry ,

nq (n-q)f
n'P,,=q¢"P,,=0. (A3)

The last term of P, , yields a seagull (term with
no ¢®=0 pole) in A, ,. However, it is easy to
show that there are seagulls in the interaction
Lagrangian which just cancel this last term, so
the propagator is, effectively,

_ _Quv
Ay = 22+ic’ (a4)

- (nugv+ nvqy)
Q _guv‘T_

, 7"Q,,=0.  (A5)
In the first approach, based on the Lagrangian
(A1), the propagator is

Ay, =- Ly udy (a8)

BYo gt +ie (nq)?

Note that (A4) and (A6) agree when x=0, and that
the resulting propagator is Zomogeneous in the
components of #*. As we shall see, the loop
integration rules do not destroy this homogeneity,
so every Feynman graph of the theory is homo-
geneous in #*. This simple fact allows us to write
down the complete kinematical dependence of
self-energy graphs on #* without doing any calcu-
lation of the graphs, a property which is definitely
not true for the spacelike gauges n°<0. The
kinematical dependence is governed by the Ward-
Takahashi identities, just as in covariant gauges.
The Ward-Takahashi identities are easily
derived by making an infinitesimal gauge trans-
formation of the variables of integration B, in the
Green’s function generating functional W(j )**:

W(J)=f[dBu] exp%ifdx[zm_

(AT)

Thus we find

{—-)l:n-an“[bﬂ J+a Pgr x| JGJ%W(J)=0.
e

The corresponding expression for gauges with
ghosts is considerably more complicated.’* One
simple consequence, found by differentiating
(A8) once with respect to J?, is that the vector

Lonyea,e|.

self-energy IT,, is conserved: ¢"II,,(q)=0.
There are two possible forms for I1,,,, instead of
only one as in covariant gauges:

nuu=9u un1'Puun2r (A9)

where 6,, =9, 9,-¢q zgu yand IT,, II, are scalar
functions of ¢2, independent of n*. In a covariant
gauge, masslessness of the Yang-Mills vector is
ensured kinematically in the symmetric case (no
pole in I1,), but here masslessness only occurs if
also I1,(0)=0. To show this, recall® the rules for
transforming from one gauge to another, say from
the Landau gauge to the light-cone gauge. One
solves the equations n*B’(6) =0, where B'(6) is
the gauge transform of the Landau gauge field

B, [see (56)], for 6, with the result

1 ;
B& =Bu_au(ﬁ n'B>+O(BZ). (A10)

Then the propagator in the light-cone gauge,
A,, , is given in terms of the Landau-gauge prop-
agator, A(“,),, by

Al =R, Ry g AR+, (A11)
where

qu Mo
Ruot =gpu_ ;ﬂ__q_ )

"R, =0, g°R,q=0 (A12)
and the omitted terms in (A11) which come from
the O(B?) terms in (A10) have no pole at g?=0. It
is then simple algebra to show that I1,(0)=0. [In
quantum electrodynamics, where the O(B?) terms
in (A10) are missing, one can show I1,(g)=0.]

This furnishes an amusing illustration of the
breakdown of the Goldstone theorem when manifest
covariance is given up (for further discussion,
see the original work of Higgs.! It is no longer
required that self-energy parts, vertices, etc.,
have zero-mass poles in order for spontaneous
breakdown to take place; here IT1,(0)#0 is enough.
For another example, suppose we add (to the free
theory) a gauge-conserving mass term of the type
(13). The free propagator now becomes

Quv _Augy

Byv == q*-Mg +ie  (n-q)? (a13)

instead of (A6). There are no zero-mass poles
in this propagator, but there are in the corres-
ponding covariant gauge free-field theory [Eq.
an].

The Ward-Takahashi identity for the proper
three-meson vertex is derived from (A8) by two
differentiations and then stripping off some
propagators; the result is

er%cu(p) q,v abc[A u(q)—l_Afju(r)_l])
(A14)



10 SPONTANEOUS SYMMETRY BREAKING WITHOUT SCALAR... . II 515

where F‘i’fv is the proper vertex for the three
vectors (py,a), (q,,b), (r,,c), and the outgoing

momenta obey p+ g+ =0. This is indeed satisfied

by the free-field Green’s functions:

raxbucu =€apc [(P_q)ugp)\+ (q"'r))\gu vt (r—p)pgv )\] ’
(A15)

- 1
v l(q)=_ngpu+ququ+xnpnv; (A16)

and can be formally verified “by hand” in higher
orders.

We may now copy the homogeneous-integral -
equation approach®:* reviewed in Sec. II for the
case of spontaneous breakdown. If, in the exact
A, ! formed from (A9), either Il has a pole or
11,(0)#0, the identity (A14) implies that I'{}S, is
singular at p=0, g=7. But now there are two
types of singular symmetry-breaking vertices:

(L o 2) ee Y@ -ag L@+

(A17)

where the omitted terms are not singular at p=0,
and Aﬁ‘ﬁ(q)" is the symmetry-violating inverse
propagator. Again, there need be no Goldstone
pole at p*=0; n-p singularity will do. If we cal-
culate the two-vector contribution to the vector
self-energy in analogy to the calculation of the
fermion-antifermion contribution,?®* it is clear
that the Goldstone pole in (A17) contributes to the
pole in IT,, while the other term contributes to
I1,(0) #0. However, in fact there is no contribu-
tion, because at the other end of the loop there
is an ordinary vertex €®¢ which when multiplied
into (A17) and summed over the intermediate-
state group labels b, ¢ gives zero. (This also
happens in the Landau gauge; see Sec. III.)

The light-cone gauge, with its simple Ward-
Takahashi identities, will be useful if loop inte-
grals can be done with no more effort than in
covariant gauges. We give here an integration
theorem which is very useful and covers all one-
loop graphs. We do not discuss the question of
overlapping divergences which might occur in
multiloop graphs.

Theorvem. Let

K N
F(p; q,, @)= [ n (p-@) [H n(p=a,) |
i i

(A18)

-

be a general rational function of scalar products
of »* with the integration variable p* and other
vectors ¢*, @". Then, in d-dimensional space
(in the sense of ’t Hooft and Veltman?%),

fd,, _F(p;4,Q) q;,Q,)

I(g, Q, k)= (P k) M]

dd
=F(k'q;,Q,-)fM—_k)s‘g_W

[Re(l-3d)>0]. (A19)

In short, scalar functions involving »* can be
factored out of every loop integral.

Proof. Firstlet K <N in (A18). Then by partial
fractions F can be written as a sum of different
terms like (A18), in each of which the numerator
is 1 (i.e., K=0). So it suffices to show (A19) for
K =0 to cover all K < N. Use the identity

- =%if dae " e(a) (A20)

to write (A19) (with K =0) as

I= (gz)"fHda ela; )fd" expl —;n Z;’za ilb = L q‘)].

(A21)

By translation of variables p~p -k,
1= ()" [ Tdasela,)expl ~in-Taylk - q,)]

x fatp 2 Zaol

M?)

The integral over p is an invariant function of ar-
gument y* =) a,;n"*, thus a function of y?2 only, but
y2=0. (A19) follows at once. It is clear from this
proof that »% =0 plays a vital role in achieving the
simple result.

The proof for the case where K — N is any fixed
positive integer can be established by means of a
sequence of formulas which are used when the in-
tegrand is a tensor of rank K — N. These are all
established by differentiating the fundamental re-
sult (A19) with respect to #*. Although a general
formula can be given, it is rather unwieldy. Dif-
ferentiate (A19) with respect to #* and rearrange:

d?p

F(b;4i, Q) _ 23
fddppu _'_I_)i—' F(k)qth)J-d p—T+2(l 1)[3kuF(k qi, Qj)j]fDl-i ’ (A )
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where D =(p —k)?> — M?. By dotting this formula
into n¥, (A19) is immediately proved for K =N +1,
since the derivative in the last term of (A23) has
n" as a factor. By further differentiations one
proves not only (A19) for all K> N, but also all of
its derivatives such as (A23). It should be noted
that if the integrand is homogeneous in M of de-
gree J so is the integral (A19) or any of its k de-
rivatives.

Although these formulas are formally simple,
they are troublesome in two aspects. The first is
that one loses convergence of integrals at a faster
than usual rate by adding tensor indices in the
numerator of (A19). Consider (A23) with d =4,
1=2, F=1. The integral with or without the p* is
logarithmically divergent (barring triangle anoma-
lies). However, if F is a nontrivial function of n*,
the last term on the right of (A23) is quadratically
divergent. In order that Yang-Mills theory be re-
normalizable in this gauge, it is necessary that
such quadratic divergences be absent. Fortunately,
gauge invariance does seem to remove them.
These more-divergent-than-usual terms always
have the most factors of »* absorbing the tensorial
index structure. Consider the P,,II, part of the
self-energy (A9). We have already argued that
I1,(¢q) vanishes (at least in the symmetric case) as
g®—~0, and the expression for P,, in (A3) shows
that an extra factor of ¢ must be supplied in the
n,n, part. The requirement that the coefficient of
n,n, vanish like q* can be used to reduce what
would naively be a quartic divergence to a “loga-
rithmic” one.

We have used quotation marks here because of
the second troublesome aspect, which might be
far more serious. The vectors k, ¢;, @; in (A19)
are linear combinations of external momenta with
Feynman parameters. In four dimensions, it is
quite possible to produce divergent integrals over
Feynman parameters of the type fodZ/Z. These
are not spurious divergences, but real ones; they
appear in the imaginary part of integrals and can
be directly traced to the fact that » - p can vanish

for an on-shell (p% = 0) vector meson. They would
thus appear in any application of the Cutkosky
rules. (At least they would appear in Cutkosky
rules applied to off-shell Green’s functions; the

S matrix should be independent of »* and have no
such problems.) One might be tempted to call
them infrared divergences, because n:p can never
vanish for a massive on-shell meson, as long as
the components of p are finite. But they are really
ultraviolet divergences, because as the compo-
nents of p become infinite with p* = M? fixed, n - p
is of O(p,~') and not O(p,) in certain kinematical
configurations.

All is not necessarily lost, though. The extra
divergences appear to be no worse than logarith-
mic, and they can be regulated by staying away
from d =4. (The parameter integral will look
something like deZa"’ .) So the vector-meson
self-energy behaves like In?A? instead of 1nA2, in
second order. These extra logarithms never af-
fect the number or kind of renormalizations nec-
essary to make the theory finite, nor do they in-
terfere with making gauge-invariant renormaliza-
tions. Sometimes (but not always) a factor of Z
appears in the numerator to cancel out the Z™?
coming from the loop integral. However, in view
of these new and peculiar difficulties, it is only
fair to say that the light-cone gauge may not exist
for non-Abelian gauge theories. It does seem to
exist for Abelian gauge theories; for example, we
have already remarked that in quantum electrody-
namics the photon self-energy is the same function
in the light-cone gauge that it is in any covariant
gauge. If this gauge does exist, it will have inter-
esting implications for the CS equations, a subject
to which the author will return in another publica-
tion.

After the work reported in this appendix was
completed, the author was informed of work by
Chakrabarti and Darzens, covering some of the
same points.?* These authors have given a special
case of the integration formula (A19) which they
have derived by other means.

*Work supported in part by the National Science Foun-
dation.
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The classical electromagnetic interactions of a nonlinear spinor field are studied in perturbation theory.
When Pauli terms are included, the model describes with reasonable accuracy (within the assumed
approximations) such properties of the nucleons as spin, charge, magnetic moment, and the proton
mass. With no other information one can calculate the proton-neutron mass difference, which comes
out of the wrong sign and of the same size as in quantum electrodynamics.

I. INTRODUCTION

The purpose of this paper is to explore the clas-
sical electrodynamics of a nonlinear spinor field
as a possible model of elementary particles.

Since the work by Rosen! the interaction of elec-
tromagnetism with other classical fields has been
studied by many authors. These attempts have not
been in general very successful, one of the reasons

probably being the lack of satisfactory solutions
for the “free” (noninteracting) classical fields.
The absence of free solutions invalidates the use
of perturbation methods, since the free zero-order
states are a necessary first step for the perturba-
tive procedure.

It has been shown, however,? that the classical
theory of a spinor field with a positive (Jy)* self-
interaction provides a satisfactory model for a



