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~2The conclusions of this discussion axe applicable in
any gauge since b„(0) is gauge-invariant.

~3The additional reduction from the azimuthal {p) inte-
gration can also be anticipated from Eq. (3.4).

~4T. D. Lee and M. Nauenberg, Phys. Hev. 133, B1549
(1964).
T. Kinoshita, J. Math. Phys. 3, 650 (1962).

~6%e do not antisymmetrize the intermediate-state
fermions because we are simultaneously ignoring anti-

symmetrization between the displayed fermions and
those arising from cut vacuum bubbles. Dividing out
vacuum bubbles and ignoring antisymmetrization is
equivalent to properly antisymmetrizing states includ-
ing vacuum, -bubble contributions and then dividing out
only the vacuum-bubble contributions from antisym-
metrized states.
While M is gauge-independent, M, , &i'~, and M, are
gauge-dependent. These expressions are for the Feyn-
man gauge.

PHYSICAL HEVIE%' D VOLUM E 10, NU MBER 2

Photon pair creation in intense magnetic fields*

15 JULY 1974

Wu-yang Tsai
Department of Physics, University of California, Los Angeles, California 90024

Thomas Erber
Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60626

(Received 4 April 1974)

The vacuum polarization of photons in intense, homogeneous magnetic fields is recal-
culated, using a proper-time method presented by Schwinger. This result is applied
to compute exactly, in closed form, the photon absorption coefficient due to pair creation,
~~~ ~, corresponding to the polarization of the photon parallel or perpendicular to the plane
of the photon momentum k and the homogeneous magnetic field H. Specializing this general
expression to the high-frequency, weak-field limit yields

4i'3 ' dv 2 2
&t~, ~(~)- &»» ~H — — I.(1-~v ),~, ( + v ),jE»3

2 1 —v2 3 '' 2 6 A(1 —v2)

~~~~~ I k~ = ~. & =
~t (s&/~') (~/~) sm&, ~„=eH/ n, and ~ is the angle between k and H. Com-

paring this expression with those obtained in the prior computations, we find that ours is more
compact and much simpler in form and that ours is a simplied version of theirs.

I. INTRODUCTION

The possible existence of magnetic fields of the
order 10"-10"G in the vicinity of pulsars' has
stimulated interest in the investigation of various
quantum-electrodynamical processes in intense
magnetic fields. The absorption coefficient for
photon splitting, ' the power spectrum for synchro-
tron radiation, and the cross section for Compton
scattering' have been calculated recently by using
the proper-time technique. " The energy strag-
gling and the radiation reaction for synchrotron
radiation' and the probability for the transition
of a relativistic electron to its ground state, i.e.,
the synchrotron-spectrum-"tip" problem, ' have
also been investigated by using the exact relativ-
istic electron wave functions in the conventional
approach.

Another interesting process which might be of
great significance in an astrophysical context is
the direct creation of electron-positron pairs in

intense magnetic fields. ' This possibility was
first discussed about two decades ago by Robl"
and Toll", Toll's results were subsequently con-
firmed by a number of independent calcula-
tions. " " However, their results were obtained
under the restriction of high-energy photons in
weak magnetic fields. These authors" "based
their calculations on the conventional method of
first computing the amplitudes for pair creation
using the exact wave function, and then squaring
the amplitude, and summing over the appropriate
final states to obtain the total conversion rate.

The purpose of the present paper is to use the
proper-time method to calculate the vacuum po-
larization in homogeneous magnetic fields —thus
avoiding the use of the exact electron wave func-
tion —and then to extract the total probability of
pair creation ~ tI „by means of the optical theo-
rem. In this may, we are able to obtain an exact
result in closed form [Eqs. (46)-(49)], which be-
comes particularly simple in the high-frequency,
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weak-field situation [Eq. (58) ]. Comparing this
result [Eq. (58) ] with those obtained in the prior
calculations, " "we find that ours is more com-
pact and much simpler in form. In fact, we are
able to show (in the Appendix) that ours is actually
a simplified version of theirs.

Since the present discussion depends heavily on
the Lagrangian for vacuum polarization, Z ", we
will first rederive it in Sec. II, using an approach
slightly different from that employed by Minguzzi"
and Adler. ' The utilization of Z~' in the calcula-
tion of the absorption coefficient and the index of
refraction is then outlined in Sec. III.

II. VACUUM POLARIZATION IN INTENSE
MAGNETK FIELDS

Vacuum polarization, to order a in the radia-
tion field, can be calculated exactly using the
proper-time method. ' " Schwinger' has illustrated
the calculation of this process, without external
fields, by two methods: (1) by a perturbative ex-
pansion in the radiation field (Sec. VI of Ref. 5)
and (2) by the extension of the proper-time tech-
nique (Appendix A of Ref. 5}. If we wish to ex-
tend these calculations to include external fields,
we still have a choice of either of the two methods.
Adler' and Minguzzi" used the second method;
here we will rederive their results using the first
method.

In quantum electrodynamics the processes with
all "external" particles restricted to being photons
can be described generally by the Lagrangian"

Z(A) =;i —e "~ (Tre ""+c.t.),dS 2

() 8

where, for the interaction of a photon with an

electron, we have

X=H' —eoF,

where

Xo = II' —ea'F,

X, = e(II8 +8II + of ) + e'8' .

The Lagrangian for the vacuum polarization,
which we shall designate by 2 ', can then be ob-
tained by expanding Tre "~ to quadratic power in

8, while treating the external field exactly, using
the formula'

Tre "r=Tre '"o —is Tr(e " oÃ, )

"d}
T (

-'Is(1-Q)leo/2 ~
2 ~ I 2

-' (i+ 3rc i2 at }

The resulting expression is

( 2
sds e "" (I, + Io + c.t.),

where

d5—Tr[e """'"oi'(118+8II+of)
1 2

In the following, without loss of generality, we
will choose the external magnetic field to be in
the + s direction, such that Fy2 F2 0 The
evaluation of I, and I~ then follows closely the
methods described in Sec. VI of Ref. 5. In partic-
ular, for I„we have

0

I, = —Tr (dx')(x'(s} ~x')8'(x')

= 4Zz cos z — (dk)8 "(-k)8„(k},2i

since'

OF = -cr F"'
2 )I P

(x'(s)
~

x') -=(x'
~
e "xo]x') =Ze'*'o,

1 z z=seH.(4x}' s' sinz'

(12)

and the trace, Tr, operates both on the spin in-
dices and on the space-time coordinates. The
contact terms (c.t.), which will be determined
later, are designed to satisfy the appropriate
physical normalization conditions. To discuss
processes in external fields, we specialize F to
be the linear combinations of the external fields,
F„,= a„A, —a„A „, and the radiation field, f„,
= a„8„—a„8„, and rewrite Eq. (2} in the form

II ~
= II)1 —e8]1, II ~ =P~ —8+ ~

gF=oF+gf,

ir3co e frigo(II e-seer}--
k TSC s T3l' f 28FT'i

x(r) —= e "axe " o=x+D(r)II,
e28ET 1 1+~

D(r}=, 7. =s

(14)

(15)

(16)

8„(x}= 2,e'"8„(&),(dk)

The evaluation of I, proceeds as follows: By using
the relations'

X Xo+3Cg (4) we obtain
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( q)( )g„( )g. (k)

dv—Tr
j 2

dx'(x'(s)~ [(211e ~ —q)„+(ye " ')„(ye 'q)+q„]e"*['][(211-k)„+y„yk+k,]~x')

(20)

(21)e'b = (b [+a, b])e'

to show that

The next step is to use the identities (for a and b

commuting with [a, b])
0+5 eoebe [o,b ] /2

&x (s))11„(x)=0, (25}

Then we move e~' " ' to the far left and e"' "~"

to the far right by using Eq. (21). Next, with the
help of the evaluation'

ace(~) C4fgX(~) aq(y -tt)X

d, .= [D(T)/D(s}1,.
5 = --,'iq(1 d) rD(r)—q.

(22)

(23}

(24)

(x'(s ) I Ii „rr, I
x') = (x'(s ) [ x') —,(26)Ds)

as well as the identity

e"~[d + eED(r) ]r =d,

we obtain, after taking the trace,

1~=4Jcosz dk Q" -k)Q" 0)

where

seer

, 2 D(s) +[(1-2d)k]„[k(1—2d)], +2tans . k„k, +It„„sinz

(ke 2se('k}(e2ePT) (ke assr) (e 2IPrk}-

+tanx (ke" 'k}(e~ ')„, —(ke ~ k) e ~~ — —(ke " ')„(e ~ 'k)„+(ke ~ ')„( k"es)„ (29}

5'= 5(q- -k)

1 —v', coszv —cosz 1 —v'
4 2z sinz

$„=0"—,k, '=k„'+k„'.
e xl

(30)

2i—g~~ +

we obtain the result

and utilizing integration by parts,

"Oo, ,(o ")
dv—e~'2k(I —2d)kd„, , (32)

1

These expressions have been simplified by using
the fact that the integrand should be symmetric
in v. Substituting Eqs. (11) and (28} into Eq. (3),

2(') = -—', j (dk)[2u( k)8'(k}M (k)

where

(33)

M„„(o]=
o ( —o " '

o
*oo(*e"'([((—oo]o]„[o((—M(]„oo((—oolod„„

0 1

coszv —cosz-+2tanz . 4'„0, +8„„+c.t.sinz (34)

The structure of the contact term can now be in-
ferred from the photon propagator normalization—
specifically, that as II- 0 and 4' -0, M„, must
vanish. The explicit result is

c.t. = -(k'g„„-k „k„)(1—v') . (35)

Equations (33)-(35) are the exact expressions for
the vacuum polarization in homogeneous magnetic
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fields.
Before proceeding to discuss the applications

of Eq. (33), we make the following remarks:
First, M„, is gauge-invarimt, since

in v. (Note that

k(1 —2d)k= — vk'+ . —v k '
sin~ (3"I)

d5
k&M„,(k}~ —e'k(1 —2d)kk, =0,

-j,
(36)

by the requirement that the integrand be symmetric

is odd under v- -v. ) Second, Eq. (33) is valid
for arbitrary values of 4'; this is a useful starting
point for discussing processes mediated by virtual
photons. In the absence of the external field, i.e.,
H=O, we have

"d
M (k) =(g k' —k k )— — dv(1 —v')e '* (e "I' " '~~' —1}~'2m s0 0

a ' v'(1 ——,'v')
(grill /J I/ } 4 2 (1 R)k2/4 I (33)

which is the familiar result obtained in Ref. 5.
Finally, we note that Eq. (33) is valid for general
values of ~. The change of contour, s--is, is
not permissible unless the range of photon fre-
quencies is restricted to lie below the pair crea-
tion threshold, (d &2m. " The results of Minguzzi"
and Adler' were obtained by making this change of
contour and therefore are valid only in the region
0 &e &2m, as they have cautioned. " Even though
our result, Eq. (33), differs from theirs by a
simple change of contour s --is, the range of
physical situations encompassed is quite different
and requires careful treatment.

k =to(sin& i+cos8k),

F,2
—-F2, —H,

M tt
=—e ~tIM„c't}, M~ —= e,"M„e~ .

The eigenvalue equation is

(k[} g) +M~~ g =(k )

(41)

(42}

which for a given frequency of the (real) photon,
k'= ~, gives

where i, j, and 0 are unit vectors in the x, y,
and & directions. It can be easily shown that the
matrix elements of M„, between the &

~}
and Z,

states are zero; therefore, we may consider only

III. PHOTON PAIR CREATION 1
1kn, il = ~ ——Mo, i (43)

e = a~.;+be, a'+b' =1 (39)

corresponding to the directions parallel and per-
pendicular to the plane containing k and H. If
we denote by 0 the angle between k and H, then
we have

7 },
= —cos6} z+ sin8 &,

We now proceed to show that the photon absorp-
tion coefficient corresponding to pair creation can
easily be extracted from the imaginary part of
Eq. (33).

Without loss of generality, we choose the co-
ordinate system such that H coincides with the
+ s direction and k lies in the x-~ plane. The
polarization vector of the photon, Z, can be re-
solved into

The index of refraction is defined by

P2 }f g 1 2M/}
(d 24)

(44)

The real part of Eq. (44) corresponds to the usual
interpretation of the index of refraction,

1
Pl

~} g((d) = 1 —
2 ReM p (45)

The evaluation of M}, and M~ can be carried out
by using the explicit representations of Eq. (40);
this leads to the parametric integrals

while the imaginary part is related to the absorp-
tion coefficient by

1
K p g((0) = — 1111Mt~

t g~2/eg G~v . (d sin 6} coszg —cos8 1 —0

2m &, 2 eH 2~ sinsM}},= —~'sin'e —e " '~ —exp —gz (47)
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where

v sjnzv coszv
N

ll
=-zcotz 1 —v'+ . +z . , 48)

Sin z slnz

This is purely real as expected, since below the
threshold, ur & 2m, no (single photon) attenuation
due to pair creation can occur and Mll ~ must be
real. The corresponding result for the index of
refraction is

z coszv zv cotz sinzv 2z(coszv —cosz)
+ +

S1nz sinz sin'z

(49)

These expressions for +
ll and N, coincide with

the results obtained by Adler, "' corresponding
to his J, and Jll, respectively. As noted previous-
ly, the shift of integration contour, s --is, re-
stricts the application of Adler's results to the
region of photon frequency below the pair creation
threshold. Our equations are valid for all values
of &u, and Eqs. (46)-(49) constitute the general
expression for the photon absorption coefficient
due to pair creation.

The physical significance of these results can
be displayed in terms of some particular cases.
In the low-frequency [(~/m) sins «1] and weak-
field (eH/m' «1) limit, the main contributions
arise from the region where z «1. Therefore,
we may expand the integrand of Eq. (47) in power
series in z,

n „,((u) —1 = —sin'6 —, [(—,",), , (—,"„),],

which agrees with previous work. """
The propagation of a high-frequency photon in a

weak field is characterized by the conditions
(ro/m) sin8» 1 and eH/m' «1. The relevant pa-
rameter in this case is

3eHu
Sin6,2m2 pn

which can become large for sufficiently high fre-
quencies or in intense magnetic fields (although
eH/m' «1), and therefore we will treat it without
approximation. Under these conditions, the prin-
cipal contributions in Eq. (47) still come from
the regions of the z integration where z «1, and
the approximations (50} and (51) are pertinent.
However, the exponential factor has to be treated
carefully, viz. ,

, APE" . (d . 2 coszv —cosz 1 —v
exp —i—z —iz—sin'0

eH eH 2z sinz 4
N

tt
= —,'(1 —v'-)(1 —gv') z',

N, = —,'(1 —v')(-,' +-,
' v') z'.

This leads to the evaluation

= —~-sin e Zzze-'- "2
ll, i

0

(50)

(51) where

m' (o'- . , (1 —v'}'
6 = —z+ —,sin'6

eH rn' 48

= -'t(y+ 3y'},

&R-

(56)
1

dv(1 —v')(1 —3v', —,'+ —,
' v')

(52)

with

1 —V (d 4 1
y = —sin&z,

4 m '
A 1 —i''

The final result for ~ll, is

(57)

1

z ~~, (~) = —
2

&vein HIm — dvz N„,Q -i6

2 I
d v(1 —v') ' [(1 ——,'v')

,
.
~, (z +-', v'), ]

0
dy y sine

= zot sin8 &u„dv(I —v') '[(1 —-v')
~~, ( +-, v'), ]K„,

mA.
6 j- 2/3 y 1 2 (58)

where we have used the Airy integral

dy y»n[z &( y+-'y') ]= —&.i..(&)
W3

Comparing this result with those obtained pre-
viously" ", we see that our expression is more
compact and much simpler. Further comparisons
can be made by considering the various limits.
In the limit X»1„we obtain
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2 1/33 1/2 1

/l (( 3 ((d} = 2 Q sin8 (4///X
"' I (3') dv(1 —v') [(1 —3v ) (( (2 + 3 v ) ]

0

21/331/2 [Zt(2)]2= —2'a sin8 (d//X
"' „, (',

)
[(3)(„(2),]

=-2'(3.'sin8 (d//& "'[(1.04) „, (0.69),].
The other limiting case, X «1, leads to

1/2 1

//((, ((d) = n sin8 (d// dv(1 - v'} "'e ' " " '[(1 - 3v') „, (-,
' +—,

' v'},]2rA

(59a)

1/2
=-'2/r sin8 &v// du(u —1) "'

2m A.

=-2'(r sin8 (d//e
' (-,'}"'[(-,') ((, (-,'), ].

-(@// X)u2 1 2 1
3Q 3Q

tt
3Q 6Q

(59b)

These are precisely the same results obtained in
Hefs. 11-17. This strongly indicates that our re-
sult might be a simplified version of theirs. In-
deed, in the Appendix, we are able to show that
this is true.

For practical applications it is convenient to re-
store all the dimensional factors and to average
over the photon polarization. The attenuation
coefficient, per unit distance, for pair production
by unpolarized photons with energy ~ propagating
across a magnetic field H in a direction perpen-
dicular to the lines of flux then is

ried out in terms of generalized hypergenmetric
functions, but the exact analytical forms are too
cumbersome to provide any useful insight. As
noted previously" the empirical approximation

S(X) = 0.24xff „,'(X)

is adequate for numerical orientation; particularly
in connection with megagauss-accelerator experi-
ments. However, astrophysical situations, such
as those considered by Sturrock, ' require evalua-
tion of the exact expressions (46)-(49).

1a IIo(~) =- — &(X),
2 W, H„

where

v3 ' 9-v' 2y3(x}=
2r X dv

1 vz+2/3 1 v2 (

and

4mc' H,
3 A(d H

™4.41 x 1013 G
p?t c

CI

1
137 y

(60a.)

(60b)
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APPENDIX

In this appendix, me will show that our result,
Eq. (58) or Eq. (60), is a simplified version of
those obtained in the previous calculations. " "
The result of Toll was quoted by Adler in Ref. 2,
Eqs. (30)-(33), as

K „,= 2 a sin 8 /vt/T ((,(X),

All the other symbols have their conventional
meanings.

The remaining quadrature in (60b) may be car- where

eHfor —sin8» 1
m '%2 (A1)

9 (1 —33}((,j2Xv"') [-SA(v}jsvj (v"' —6jX)"'
T(( l (&) = dv 3/4I 3/2 / 'il/2

( /~)/ 3/4 ( ) 7v

nt) =1 ni =3
~+4 5

A(v) = — dt e""'"".
27T 4((3+&4

(A3)
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The results of Refs. 12-15 have the same form. For the unpolarized case, the attenuation coefficient
a((d) was given by"

1a H
u(~) = -— — T(x),2A, H„

(A4)

X(X) =3 X] f *j S.ao ((2cosh cos'h ~ i'oh— cos'h )K„'(2co,s'h ocos'h' )
0 0

+ (2 cosh'a) —1)cosh'u &„,'(X cosh'I) cosh3u) ]. (A5)

The equivalence between Toll's result and that of
Refs. 12-15 was shown by Rassbach" on page 35
of his thesis. Therefore, all we have to prove
here is the equivalence between Eq. (60a) and
Eq. (A4), i.e.,

s(x) = T(x) . (A6)

One method of procedure is to use Carleman's
theorem~'": Suppose that S(X) and T(x) are non-

negative for X &0, and that an infinite sequence of
moments

or

(,),( „, Qn +22 1 {,'n+--,"}Z'(-,'s+,'-)1'(n+2)
2s + 5 Z'(s + 2 + —,

'
)

( = X cosh'so cosh'u. (A10)

(AQb)

The computation of C„') is slightly more tedious.
We now combine (A5) and (A7b), and split the
integrations by introducing the new variable

are equal:

dx x"s(x),

dxx"T(x}

(A78)

(A7b)

One can easily check the absolute convergence of
the triple integrals. %e then find

C!')= —,tf, (n)+f, (n)],

C„' =C„, n=0, 1, 2, . . . (A7c)
where

If these moments satisfy the divergence criterion (2 c ho'sa)1)cosh's + coshhu
I) 8 = dB dZV cosh'" se cosh'"' u

-1/gn
n (A"Id) xg)(n), (A11b)

then S(X) = T(x).
The application of this theorem to (A6} is

straightforward; the non-negative character of
the functions is easily checked. The moments
C('i can be determined by combining (60b) with

(A7a) and introducing the auxiliary variable

and

~,(n) = dt 8"A„;(k);

furthermore,

(Al 1c)

2X
X=

1
(A8)

I,(n) = du
(2 cosh'u) —1)coshhu
cosh'" w cosh'" u

Absolute convergence then permits the reduction
of the repeated integrals to a simple product,
Viz. ,

-1 9 ~2C(') =( 32""n') ' du (1 —u')"+'
8 1 —U0

with

co

3.( )= J 332.*~...*(2).

(Alld}

(Alle)

dXX +2/3(x) 2 (AQa)
These integrals can easily be carried out. %'e

find

, ,„„r(s+ 2) Il (-,'n + 2) r(-', (n + 3}}]'
(n + 2) (2n + 5) I'(2s + 4) I'(3n +4)

x p(2(n+3)+ 3}1(~(sy3) —3}+(s+3)1(~(s+3)+3)Q~(n+3) —3}
Sn+5

(A11f)
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Elementary computations lead to the special values and this implies

C &1) C(2)
0 0 33x5

(A12)
P n-u2 (A14b)

C(&) C(2)C — 31
1 1 37/2xq '

The identity for arbitrary n (A'fc) follows easily
by induction. This is facilitated by the reduction"

3j+5 r(-,'(/+3)+-', }r(-.'(j+3) —-', )
3j+ 7 r(-,'( j+3) +-,')r (-,"(j+3) ——,')'

j=0, 1, . . . . (A13)

+5~

~(x) =
2ri AC„'"X ". (A15)

in consonance with (A7d}.
The moment representations, (Agb) and (A11f),

can be continued to complex values of &. In fact
one can easily show that the inverse Mellin trans-
form corresponding to (A7a) exists, i.e. ,

Finally, me note that

9 + 1/2 +n+1/2

C„8 3 2 1 for+»1, (A14a)

This leads to an explicit albeit lengthy representa-
tion of S(y) in terms of generalized hypergeometric
functions.
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