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Finite conformal transformations for quantized fields are obtained. The apparent conflict with
Einstein’s causality principle is resolved. It is shown that in quantum field theory one is in general
dealing with representations of the universal covering group of the conformal group.

1. INTRODUCTION

Considerable interest has been devoted lately to
conformal invariance in quantum field theory and
its possible relevance for the description of high-
energy phenomena.'™* For a comprehensive re-
view with extensive references to relevant litera-
ture see Todorov.®

The peculiar feature of conformal transforma-
tions being able to change spacelike into timelike
separations has led to an ill feeling concerning its
compatibility with local commutativity (Einstein’s
causality principle).®*~® The causality problem has
been avoided traditionally either by working only
with the infinitesimal elements of the group or by
discussing the conformal invariance of Green’s
functions in the Euclidean region. Nevertheless,
the problem of obtaining the transformation law of
the fields under the conformal group remained in
general unsolved. For free fields those transfor-
mations were obtained in Ref. 7 and they turned
out to be nonlocal, in this way resolving the ap-
parent conflict with local commutativity. A simi-
lar picture emerges in the case of generalized
free fields.®'!° For an interacting field, however,
the transformation law was not known.

In this note we show first that for (generalized)
free fields the nonlocality of the transformation
law is related to the fact that, as conjectured in
Ref. 7, we are in general dealing with represen-
tations of the universal covering group of the con-
formal group.

We investigate next a simple two-dimensional
model whose structure underlies all the soluble
two-dimensional models.'*** The conformal
transformations of the fields in this model are
sufficiently nontrivial to allow one to conjecture
a general transformation law for interacting fields.
The detailed form of this law depends on the di-
mensions of both the fundamental and composite
fields, being in this way inexorably linked to the
precise nature of the dynamics of the theory.

II. FREE FIELDS

According to Ref. 7, the action of a special con-
formal transformation on a scalar zero-mass
field in D > 2 space-time dimensions is given by

1
U®)$* (U™ 0) = (== 3Tas ¢ () 2.1
with
dd) =%(D - 2)7

0,(,x)=1=2bx+b%x?,

where the substitution x,—- x,+i€, b,~ b, t i€ is
made. ¢~ and ¢* are the annihilation and creation
parts, respectively, of the field, and
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From (2.1) we immediately see that for odd D (re-
verberating case) the transformation is nonlocal
because of different phase factors picked up by the
creation and annihilation parts of the field. Fur-
thermore, a true representation of the whole con-
formal group O(D, 2) would imply’

8= Ty Oe)s (2.2)
which is only compatible with (2.1) in the case that
D =41+2, with [ an integer. In all other cases we
are dealing with a representation of the universal
covering group of the conformal group. To see
that, consider a general conformal transformation
U(C) canonically decomposed into a product of a
dilation, a Lorentz transformation, a special con-
formal transformation, and a translation acting on
the annihilation (creation) part of the field. Since
the only difference between (2.1) and (2.2) is a
phase factor we have

U™H(C,C,)U(C,)U(C,)o* (x)U(C,)U(C,)U(C,C,)
=exp| +ids0(x,C,, C )] p* (x). (2.3)
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By applying the D’ Alembertian on both sides of
(2.3) we obtain

[0 exp(xidye)] ¢* +2V exp(xidyp)Vo* =0.
(2.4)

Taking the matrix element of (2.4) between the
vacuum and a one-particle state with momentum p,

O exp(Fidy@) FipV exp(Fidyp) =0,
and using the arbitrariness of p,
Vexp(¥idyp)=0,

so that ¢ is independent of x.
We can therefore compute ¢(C,, C,) by consider-
ing (2.3) with x=0, obtaining

d@(Cy, C,) =arg (o, (by, Lye™%2a,))'s, (2.5)

which can assume values +(D - 2)7/2 or 0, the lat-
ter possibility being always the case for C, and C,
sufficiently close to the identity.

By restricting oneself to sectors with a given
number of particles one sees clearly from (2.3)
and (2.5) that in general we are dealing with a ray
representation of the conformal group and there-
fore!'® with a representation of the universal cover-
ing group of the conformal group.™*

It is readily seen that Z(C,, C,)=U"'(C,C,)

X U(C,)U(C,) commutes with all U(C) and is there-
fore a central element of the covering group of the
conformal group. We can rewrite (2.3) as

Zp(x)Z™* = exp(—id @ N)p(x) exp(+idg@N) (2.6)
s0
Z(C,, C,) =exp| —id 40(C,, C,)N], 2.7

where N is the number operator.

If D+ 4l +2 there is a nontrivial Z (together with
its inverse), and if D is odd (reverberating case)
the transformation (2.6) is obviously nonlocal.
From the above considerations we learn that the
reason that (2.1) does not lead to a true represen-
tation of the conformal group has a much simpler
origin than the one conjectured in Ref. 8. We have
instead a representation of the universal covering
group of the conformal group.

The above discussion can be extended to gener-
alized free fields. The crucial point is the validity
of the analog of (2.1), i.e.,

1
Up)pg (x)U™(b) = m¢i (x7), (2.8)

where d is the dimension of the generalized free
field. Ford=3(D-2+1)(1=0,1,2,...), Eq. (2.8)
follows immediately from (2.1) by regarding the
generalized free field as a zero-mass free field
in D +! dimensions. More precisely,

DalXoy Xq5 ooy Xp_y) =P(Xgy Xyy oo o, Xp_y, 0,...,0),
with
D+1-1
82 82
<6x02 - ‘Z:; 8x,~2>¢(x°’ XiyeoeyXpe1-1)=0.

For arbitrary values of d, (2.8) has to be estab-
lished independently.'® The main step, as in Ref.
7, consists in proving the self-adjointness of the
generators of special conformal transformations.

From (2.8) and using the conformal group com-
position law we infer, as in (2.3),

Z(Cz’ Cx)¢: (x)Z"‘(Cz, cl)
=expl #idp(C,, C,)] 05 (x), (2.9)

with ¢ given by (2.5). Again we see that we are
dealing with a representation of the universal cov-
ering group of the conformal group with

Z(C,, C,) =expl -idp(C,, C,)N] (2.10)

and the particle number defining the sectors trans-
forming under different ray representations of the
conformal group.

Despite its triviality, the case of (generalized)
free fields already illustrates the point that con-
formal invariance in quantum field theory is linked
to the details of the dynamics: In the free case we
see its unexpected connection with particle number
conservation, (2.10). Such a connection is not vis-
ible in purely group-theoretical approaches as in
Ref. 9, where the separate consideration of irre-
ducible (ray) representation of the conformal group
makes the distinction between generalized free
fields and interacting fields impossible. It is
through the fact that in quantum-field theory we
have (infinitely) many irreducible representations
in the Hilbert space that the conformal transfor-
mation of a quantized field acquires a dynamical
content.

III. A SIMPLE MODEL

We shall investigate in this section the confor-
mal transformations in a simple two-dimensional
model whose structure is sufficiently rich to allow
a conjecture on the general transformation law for
interacting fields. The model is formulated in
terms of exponentials of free two-dimensional
fields, which are the main building blocks of all
two-dimensional soluble models.!''? Being inter-
ested in conformal invariance, we shall be con-
cerned with exponentials of zero-mass free fields.
As is well known, zero-mass free fields in two
space-time dimensions require, because of infra-
red singularities, either an indefinite metric in
the “Hilbert space” or a restricted class of test
functions. In Ref. 7 the latter possibility was con-
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sidered in order to study conformal transforma-
tions. Here we will adopt the indefinite-metric
formulation, which allows us in a straightforward
manner to compute the transformation law of the
exponentials from the transformation properties
of the field.

We shall not justify a number of formal manipu-
lations at the level of the indefinite-metric theory,
since our final results referring to the transfor-
mation law of the exponentials in a positive-metric
Hilbert space can be directly checked by inspecting
the Wightman functions of the theory, and we
therefore regard the first part of this section as
an economical way of deriving this transformation
law.

A conveniently normalized zero-mass two-di-
mensional field has a two-point function given by

(0]¢(x)0(»)[0) = =In[(x - y).%], (3.1)
with
2=(z,-1€)*-22,
all higher truncated n-point functions vanishing.

We can have a pseudounitary realization of the
dilations by

U(B)p(x)U"1(6) = p(e~®x) +(a +a")5, (3.2)

with @ and @' auxiliary annihilation and creation
operators, respectively, satisfying

[a,a%]=0,

la, 0" (x)]=[¢~(x),a’]=-1.
For special conformal transformations we have,
analogously to (2.8),

U®d)o* (x)UY(b) = ¢* (x5) +a* Ino, (b, x), (3.4)

and for the Poincaré group ¢ transforms conven-
tionally,

U(P)p(x)U™(P) = ¢(Px). (3.5)

It is readily seen that (3.2), (3.4), and (3.5) leave
the two-point function (3.1) invariant, which shows
the pseudounitarity of our U operators with U|0)
=|0).

The properly defined exponentials of the free
field are given by

ex(x) =exp[ixg* (x)] exp irp~(x)]. (3.6)

The general n-point function of the e¢,’s is easily
obtained:

<0‘ I;Ie)\i(x,-)

(3.3)

0 > =exp {Z 3 Ay Inl =(x; - x,) %] }

S S

-1 11

i oj>i

(xl - xf )\‘

(3.7)

From (3.4), (3.5) we get the transformation law of
the e,’s under the special conformal group

Ub)ex(x)U™(b) =explira™ Ino, (b, x)] ex(x1)
xexpl iralno_(b, x)]. (3.8)

From (3.8) we get, by reordering all the a’s to the
right and the a'’s to the left,

<01Hexi(x,~) 0> exp[Z)\ Ino, (b x();)\,}
«(o] IT et

°)

Xexp[z X Ino (b, x; EA,].

ji>i

(3.9)

Up to now we have been working in the indefinite-
metric space. We now go over to a positive-defi~
nite theory by introducing new Wightman functions,

W (X3, Ay Xy Mgy v vy Xiny Ay)

=0zx;,0 <0‘ Hex‘(xi)

One can convince oneself that those Wightman
functions satisfy the positivity requirement [all
other linear properties' are obvious from (3.10)]
by regarding the massless theory as' a limit of a
massive one as in Ref. 11. In the known soluble
models!!'*? a property like (3.10) is automatically
fulfilled by fermion conservation. We can now re-
gard the new Wightman functions (3.10) as vacuum
expectation values of new operators é,(x) acting in
a positive-definite Hilbert space,®

(de->q(x1) et e-)\"(xn)ﬂ)
=05y, 0(0]ex, (%) cex, (x,)[0). (3.11)

The A plays now the role of a charge. If we con-
sider arbitrary real \’s, we are led to a nonsepa-
rable Hilbert space with a nondenumerable number
of charge sectors. We can also restrict ourselves
to separable subspaces by considering for instance
only A’s which are integral multiples of a given one.

By comparing (3.9) with (3.11) we get

(2 ITer )

0>. (3.10)

U (b x)] )\1(2")‘ XJ)

<Q H{ 0 (b x) x‘z*)‘n(zp; \)} €, (xlr)Q>

(3.12)

From (3.12) we read off the transformation law of
&, when applied to a state of charge g=2\;. Writ-
ing
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&(x)= Y &(x),

e (x)=e\(x)P(q),

with P(q) the projector on the charge g sector we
have

(3.13)

06)4()0-(b) = exp] -[(?\2+2)\q)1n 0,6, %) L(

| lo(d, x)|
1 -
X We"x(xr), (3.14)

with I now a truly unitary operator. Expression
(3.14) is the analog of (2.1) and (2.8) for this mod-
el. Notice that A? is the dimension of &,(x) in the
sense that

T(8)e(x)T1(8) = e~ %5, (xe™?), (3.15)

and, just as in the free and generalized free case,
(3.14) differs from the true conformal transfor-
mation law (2.2) by a phase factor.

As in the previous section, we are dealing with
a representation of the universal covering group
of the conformal group. To see this, consider as
in (2.3) the action of

U-Y(C,C,)U(C,)U(C,) = Z(C,, C,)
on the e%:
Z(Cy, Cl)é")\(x)Z‘l(Cz’ C))

=expl —i(A? +21q)@(C,, C,)] &% (x). (3.16)

To convince oneself that ¢(C,, C,) is x-independent
here also, it suffices to notice that from (3.14) the
phase is a multiple of the one occurring in a gen-
eralized free field of dimension 3 and therefore ¢
is the same in both cases. On the other hand, a
generalized free field in two space-time dimen-
sions with d =% can be viewed as in Sec. II as the
appropriate restriction of a free zero-mass field
in three space-time dimensions,

B 172X X1) = P, x,, 0) .

Since the two-dimensional conformal group is a
subgroup of the three-dimensional one that leaves
X, unchanged, and since we know that for a free
field the phase factor in (2.3) is x-independent, we
conclude that also in (3.16) ¢ is x-independent and

@(C,, C,) =arg(o, (b, Lye *2a))) (2.5")
assuming values 0 or +7. We can rewrite (3.16) as
Z(C,, C)e\(x)Z71(C,, C,)

=expl -iQ2¢(C,, C,)] &\ (x) expl iQ2¢(C,, ()],
(3.17)

SO

Z(C,, C,)=U"YC,C ) U(C,)T(C,)
=exp| -iQ¢(C,, C,)], (3.18)

with @ the “charge” operator. In what follows we
shall abbreviate Z= Z(¢ =7).

In each charge sector we have a ray representa-
tion of the conformal group. That is, (3.18) re-
stricted to a definite charge reads

U(C,)U(C,) =expl —ig%p(C,, C,)] T(C,C,) (3.19)

with a nontrivial phase for suitably large C,, C,,

as seen from (2.5’). It now follows from Barg-
mann’s analysis'3 that any such representation can
be viewed as a true representation of the universal
covering group of the conformal group. The infi-
nitely sheeted nature of this covering group re-
flects itself in that for nonrational g2

(e**3"Y 41, n=0,1,... .

With respect to the representation problem the
situation here is quite analogous to the one found
in Sec. II for (generalized) free fields. However,
in the nature of the (nontrivial) Z, for instance
exp(—idmN) in the (generalized) free field and
exp(—imQ?) in our model, relevant dynamical in-
formation is contained. In particular, as will be-
come clearer in the following section, the addi-
tivity of dimensions for composite fields in the
(generalized) free case, namely

Dim: [ ¢4(x)]¥: = N Dimg,(x),

and its nonadditivity in our model where
L)) Yi=ey(x),
Dim: [ &,(x)]¥: = N2)3%% N Dimé&, (x) = NA2

(which shows its nontrivial dynamical nature), are
closely related to the different structure of the
corresponding Z operators.

As a typical case which illustrates the connection
of the phases in (3.14) and (3.16) with the dimen-
sions of (composite) fields consider the special
model generated by a complex field &,(x). The
composite fields

tep"(x):i=e,, (2=0,41,...),

which may be obtained by a short-distance limit-
ing procedure, form, together with their deriva-
tives (inside and outside the Wick product), a ba-
sis of local fields in the sense that any product of
two elements has an operator expansion in terms
of this basis. The “charge” in this model can only
assume values which are multiples of p.

It is clear that the Z phase in (3.16) for the ¢
component of any field A(x) in this basis carrying
charge A is the difference between the dimension
of the composite field B(x)=eé,,,(x) and the dimen-
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sion of the composite field C(x) =¢,(x), so that

@ =N +2Ng=d,-d,.

1V. THE GENERAL CASE

In the previous sections we obtained in a number
of examples the proper interpretation of what is
meant by a Minkowski conformally invariant quan-
tum field theory. The main lessons we can extract
are the following:

(a) The apparent conflict with local commutativ-
ity is removed by the fact that fields transform
nonlocally under the special conformal group.

(b) This nonlocality reflects itself in that instead
of having a true representation of the whole con-
formal group O(D, 2) we have in general a repre-
sentation of its infinitely sheeted universal cover-
ing group. The relevant representation is speci-
fied by means of a unitary Z operator on whose
eigenspaces we have ray representations of the
conformal group. The precise form of the Z oper-
ator depends on the theory considered and cannot
be obtained from purely group-theoretical argu-
ments. It does contain truly dynamical informa-
tion.

(c) Corresponding to the decomposition of the
Hilbert space into sectors (eigenspaces of Z) we
can decompose the field operators into a number
of pieces each one of which has a simple transfor-
mation law under the special conformal group.

We take (a), (b), and (c) as being characteristic
of any conformally invariant quantum field theory.
We should have in general a nontrivial Z, the free
and generalized fields with even scale dimension
being obvious and typical exceptions.

Given a local field A 4(x) of scale dimension d we
decompose it as

1
Adn)= [ dsaf), (4.1)
0
with A (x) formally given by

Al(x)= i Z"Ax)Z" expl inm(d - 28)].

n==-o

(4.2)
From (4.2) we get
ZAE(x)Z ' =exp| —in(d - 2£)] A x). (4.3)

In agreement with (4.3) a scalar (and type I in the
notation of Ref. 16) field behaves under special
conformal transformations as

1
0,0, )] o_(b, )]

XAf(xp). (4.4)

Although we concentrate on scalar fields, our re-

Ub)AF (x)U™(b) = [

sults are generalizable to higher tensor fields.
From (4.4) we immediately get, applying the
spectrum condition,

Ayx)[0)=A3(x)[0)= Ag(x)#0, (4.5)
AXx)|0) = AZmAD ()]*[0) = AI™ID(x)20.  (4.6)

For free and generalized free fields those two are
the only components in the decomposition (4.1).
Already the Wick product of (generalized) free
fields contains a discrete sum involving a finite
number of terms in (4.1), equal in general to the
power in the Wick product plus 1. In the model
studied in Sec. III we had infinitely many terms.
One expects the latter to be a typical situation of
an interacting theory.

One can obtain information on the allowed ¢’s
by considering the three-point function of the field
A with two arbitrary local fields and its transfor-
mation under Z. Since

<Olcdc(x)Au¢(y)Ba,,(z)'0>
= [ a8¢01C, (0A50)B @10,

we get with (4.3), (4.5), and (4.6) in the scalar
case

(0]Cq,(x)Ag,(y)Bg,(2)0)
= exp| —in(d, +d, - d. - 2¢)]
X (0]Cqy(x)A,(y) Bgy(2)]0) .

So we conclude that the nonvanishing of the three-
point function implies

¢=%(d, +d, —-d.) mod(1). (4.7)

In the more general case of nonscalar fields one
should substitute the dimensions in (4.7) by the
twist (¢t =d - s), making the same replacement in
(4.2) and (4.3). Operator-product expansions®* 1718
do suggest that all £’s can be obtained from three-
point functions, so the generic form of the £ of an
operator A should be

£q=3(ty+tp - t;) mod(1). (4.8)

Through (4.8), (4.1), and (4.4) the transformation
law of a given field under the special conformal
group depends on the dimensions of all other fields
in the theory to which the original one couples. It
is readily seen that (4.8) is equivalent to the state-
ment that the eigenvalues of Z are of the form
exp(-int,), with ¢, being the twist of a generic lo-
cal field in the theory.

The A} enjoy a number of properties which make
them suitable objects for investigating conformal
invariance directly in the Minkowski region. We
first note that in an interacting field theory it is
not to be expected that composite fields exist
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whose dimension is the sum of the dimensions of
its constituents. This will lead to identities such
as

AG(x) B, () =0. (4.9)

Furthermore, the A, although nonlocal, have a
well-defined scale dimension and transform simply
under the conformal group. It is very natural
therefore to investigate operator-product expan-
sions in terms of them. In particular, the Min-
kowski analog of Mack’s'® global Euclidean confor-
mal expansion which is not consistent when written
in terms of the fields themselves can be meaning-
ful in terms of the Aj. Those points will be de-
veloped in a forthcoming paper.

We conclude by remarking that since conformal

invariance is not a physical symmetry (in the
same sense that Poincaré invariance is) the sec-
tors corresponding to different eigenvalues of Z
are not associated with a superselection rule.®
This is quite clear since even physical operators
such as the energy-momentum tensor are not in
general invariant under Z.
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