
PHYSICAL REVIEW D VOLUME 10, NUMBER 2 15 JULY 1974
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The establishment of spectral forms in source theory has been systematically studied, with
it being a natural consequence of the causal methods employed therein that these results apply
only for limited ranges of the particle masses. Here the three-point-function single-spectral
form, considered in lowest nontrivial order and for scalar particles, is extrapolated to
completely general values of the masses. The arguments employed continue in the physically
oriented vein of source theory, not being founded on analyticity, and some consistency checks
on these methods are included. In the case of stable particles the common spectral form
with anomalous threshold is obtained, while for unstable particles the spectral mass squared
can assume negative or complex values and the spectral weight function can take on an imagin-
ary part. All the results are summarized in tabular form.

I. INTRODUCTION

The establishment of spectral forms in source
theory has recently been studied in detail, with
both three-' and four-point functions' being treat-
ed. Central to these developments was the con-
sideration of a causal realization of the relevant
amplitude, the so-called causal process. Figure
1 illustrates the process associated with the three-
point-function single-spectral form. In order to
guarantee the existence of the causal process, i.e. ,
guarantee that certain internal particles be real
(a and h in Fig. 1), it was necessary to impose
certain mass restrictions. So, as directly ob-
tained, the spectral forms are subject to such
mass restrictions. It is the purpose of this pre-
sent work to extend the three-point-function single-
spectral form, considered in lowest nontrivial
order and for scalar particles, to completely
general values of all the masses involved —in fact,
to arbitrary spacelike or timelike values of the
external momenta not in spectral form. ' The pro-
cedure so employed is referred to as mass extra-
polation.

Some consideration of mass extrapolation has
appeared in our two previous works. A general
discussion of it was given in Ref. 1, but none was
explicitly carried out. ' In Ref. 2, though, some
extrapolation was necessary just to obtain the
four-point-function single- and double-spectral
forms for a limited mass range. What is required
in the present instance is somewhat more involved,
but in the spirit of those previous works we are
able to employ physically oriented arguments. The
causal process is no longer as central, but it still
figures importantly. First, the kinematics of the
original causal process (Fig. 1) enter frequently
in the extrapolation, while second„ there now

occurs a contribution to the spectral form with

spectral-mass values below those originally spec-
ified by the causal process —the so-called anom-
alous-threshold contribution —and this is calcu-
lated from another causal process. So, unlike the
conventional approaches, ours is not one founded
on a,nalyticity, although some consideration of the
singularities of the spectral-weight function must
enter because they can occur in the spectral-mass
range upon extrapolation.

One specific example involving an anomalous
threshold has already been studied in source the-
ory by Schwinger, namely, the deuteron electro-
magnetic form factor."A main aspect of that
work which occurs in the present one is the man-
ner of interpreting when there is an additional
contribution below the normal threshold (although
we go further here and relate that contribution to
a causal process). For the general-mass situation
within the realm of stable particles, we find that
the main features of the spectral form are basi-
calIy the same as in the deuteron case. But, for
the situation with unstable particles, there are
significant changes. In particular, the spectral
mass squared can take on negative or complex
values, singularities of the weight function occur
within the spectral-mass range, and the weight
function can assume an imaginary part (including
when the spectral mass is positive).

In the situation of stable particles, anomalous
thresholds have been considered in many places'
by conventional means, and our spectral form is
identical to what is obtained there. But, for the
general-mass situation with unstable particles,
we are aware of only one work, by Fronsdal
and Norton. ' We have not studied their work
in detail, but it appears that our results are math-
ematically equivalent to theirs. (They perform a
contour rotation in order to avoid complex values
of the spectral mass squared. )

10



SINGLE-SPECTRAL FORMS FQR THREE-PQINT FUNCTIQNS:. . .

Ky

FIG. 1. Causal process leading to the spectral form
with the initial mass restrictions. The long, thin lines
refer to real particles and the short, heavy ones to
virtual particles.

Quite apart, though, from any comparison with
the results of analyticity studies, we should like
some checks on our results that are phrased solely
within the framework of source theory. For the
case of stable particles a check is presented in
Schwinger's work. "What he shows, working
in a certain approximation, is that the single-
spectral form with anomalous threshold can also
be obtained by the reworking of a double-spectral
form (with normal threshold). For the case where
the external particles may be unstable, but the
internal particles are stable, explicit consistency
checks are presented below. This much consis-
tency having been exhibited, we then turn things
around when internal instability is also admitted,
and employ the demand of consistency as an active
part of the extrapolation procedure.

There are several further applications along the
lines of this present work that should also be con-
sidered within the framework of source theory.
First, there is the matter of extrapolation for
three-point-function single-spectral forms when
the particles are not scalar. " In particular, there
is the source-theoretic work of Tsai, DeRaad, and
Milton" which treats weak-boson electromagnetic
form factors in a unified gauge theory of weak and
electromagnetic interactions. They consider the
bosons to be stable particles, and so an extra-
polation is necessary to give these particles their
physical masses. What must then be studied is
the behavior of the new factors, related to the
presence of charge and spin, that now occur in the
spectral-weight function, because these factors
can also be singular upon extrapolation. It would
seem that the methods laid down here should be
applicable to such work. On another example, the
three -point-function double -spectral form was
derived' only when the external momentum not in

spectral form is spacelike. So perhaps the re-
sults and methods developed here would aid in
extrapolating to a wider range of that variable.
Eventually, also, the techniques developed here
should be applied to four-point functions. "

In the ensuing work, in order to cover all pos-
sible values of the masses, it is necessary to
consider separately several different mass re-
gions. The sectioning of this paper is broken down
according to these cases, with the single-spectral
form of Ref. j. being briefly reviewed at. the be-
ginning of Sec. II. In going through these sections
the reader may often find it useful to refer to Fig.
2, which graphically depicts the various mass
regions. Also, in Table I there is presented a
summary of all the results.

II. STABLE EXTERNAL PARTICLES

A. Regions', A', and A"

The vacuum-amplitude term referring to three
external particles may generally be written as

~', y) p, 2n '6 p +p8+p~ I',
rr J-asy 1r

where the p~ and P, are the fields and momenta
of the particles. For the unextrapolated situation,
I' is expressible as the single-spectral form'

F=,dM', , q(M'). (

And, as directly obtained from the lowest-order
causal process (Fig. l), the weight function is
given by'

(d p. ) l (d ps)
X 2p2+m21/2 2r 3 2p2+m21/2 2g3

x (2s}'g(p„p, p, ) I (p, ~ ps)'+ W'] ', (2)

in which it is understood that -P~ =M'. In the 0.
center-of-mass (c.m. ) frame this expression re-
duces to an integral over the cosine of the angle
between particles b and P:

dz(m, '- m, —ms

2pl ps+2 I p~l Ipsl-z) ',

and the kinematic factors here may be expressed
in terms of Lorentz invariants according to

2M'(m, ' —mr,
' —ms' —2p,'ps) =f~M (M'- m,

' —ms'+2m, ') —ms'(M'+ m, —mr, ') —m '(M' —m, '+ mr, '), (5)



470 RIC HARD J. IVANE TIC H 10

4M'p, '=g'=- [M'-(m. + m, }'][M'-(m. —m, )'],

4M'ps'=n, =—[M' —(ms+ m )'] [M'- (ms -my)'].

The explicit expression of the weight function is
thus

1 1 f+gd. '~'
X gs gUa f

The mass restrictions to which this unextra-
polated vacuum amplitude is subject are'

and

ms&pply+ t8c )

my& m, +m, ,

m8+ my&m, + m»

(9a)

(Qb)

(10)

the domain admitted by these restrictions is de-
picted by region A in Fig. 2. Extrapolation of the
vacuum amplitude out of this mass domain is
meaningful only if the vacuum amplitude remains
well defined in doing such. Thus, we must study
whether f' = g'n, or 6 = 0 can be realized for M
~m, + m~ as the restrictions (9) and (10) are re-
moved, and, if so, how the vacuum amplitude is
to be interpreted at such points.

The determination of the M' roots of f' =g'n is

simplified by some physical considerations. The
reworking of the denominator in Eq. (3) simply
amounted to writing p, '+ m, ' =f+ gn'~'z. Thus,
since particles a and b are already on shell, f'
=g'6 corresponds to all three internal particles
being on shell, subject to z =+1. In Ref. 1 we saw
that a simple and convenient way to describe the
reality" of the three internal particles was by a
Gram-deter minant statement:

n.(u. , f „p.) - o. (11)
As also noted in that reference, a natural set of
variables for evaluating the determinant is

y = (M' —m, ' —m, ')/2m, m, , (12a)

(12b}ys = (ms' —m, ' —m, ')/2m, m, ,

y„=(m„'—m, ' —m, '}/2m, m, , (12c)

with the result being

~&=(m.mam. )'(y'+ye'+y~'+2yysy~ —1) (1 )

Alternately, from b,, = —(e»„p,"ptp, )', there is in

the a c.m. frame the evaluation

6, = -M' p~' ps'(1 —s') . (14)
2
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FIG. 2. Diagram illustrating the m 8 pQy regions
into which the extrapolation study is divided. The area
between the dashed curve and the two axes and satis-
fying ~8 y&t8z +5%y ls wher'e ~a + mb ~~8+~ye
remaining two areas between this curve and the axes
are where )ms-m& ) &m, + m~. In this diagram the
ordering ~~ &m, &m, is assumed; for other possible
orderings the only difference is the absence of region
A or the occurrence of two such regions.

Thus, f'=g'd, is equivalent to 6, =0,"'"and from
Eqs. (12a) and (13) it follows that f' =g'6 occurs
at

M'=M, '=—2m, m, [ ysy~+-(1 —ys')"'(I —y~'}"']

+ mg + tplp (15)

In the extrapolation consider first only the re-
moval of the restriction (10), maintaining for now

the stability conditions (9} (which ilnply ys&& 1).
Then we have that M &M, & (m, I m, )', with the

latter equality being reached only for y8= —yy,
or that M, are complex. So, as we start extra-
polating from region A, f' =g'd, does not occur in

the weight function as long as ye+ yy&0 is main-
tained, which corresponds to the addition of re-
gions A' and A" in Fig. 2 (note the remarks in the

caption of that figure concerning the existence of
region A"). But before claiming the validity of
the vacuum amplitude in these regions we must
examine the behavior of the weight function at
6 = 0, which can now occur for M ~ m, + m&. In
region A', 6 =0 is realized in the spectral-mass
domain only at M= m~+my, while in region A',
it is also realized at M= ~ms —m„~. An expansion
of the logarithm in Eq. (8} shows that the weight

function is well defined at M= m~+ m» it only be-
ing necessary to rewrite it as"



SINGLE -SPECTRAL FORMS FOR THREE -POINT F UNCTIONS

me+ m&&M~ m, + m~, region &'

region A"

in order to have a manifestly real expression.
Likewise, for region A" this expression simply
reverts to the logarithmic form (8}for )mq —m„l
&M~m+ m, . The tan ' expansions employed at
M= Imp —m„l and M= ms+ mz depended on the fact,
easily shown [see Eqs. (50) and (52)], that for the
masses presently under consideration, f is a
positive function at those points.

B. Region 8

olation is carried out with the weight function still
in the original (unintegrated) form provided by the
causal process. Loosely speaking, this technique
can be said to employ causal processes with un-
physical momenta.

For the causal process of Fig. 3, the usual
method for the calculation of single-spectral forms
leads to an expression of the form (2) (apart from
the spectral-mass range}, with the weight func-
tion y replaced by

Extrapolating from region A', we now consider
the situation with ye+ y ~ 0, region B. In such,8
the weight function, given by Eqs. (8) and (16),
remains everywhere well defined, except for
M = m, + m~ at y s + y „=0; there f' = g'g is realized.
And this in turn implies that f vanishes at
M = m, + m, since g does, so f (M =m, +m, )
changes sign as ys+ y„goes through zero. In fact,
one easily finds

f (M=m, + m, ) = -4m, m~m, (m, + m, )(y s+ y„).

The effect of the realization of f' = g'd, is thus that
the weight function no longer vanishes at
M = m, +m, for ys+y„&0;explicitly, since
tan '(~~) =+-,'w,

){(M = m, + m, ) = 0, y 8+ y „&0

X(M=m. +m~}=-'(-&} '"»8+y (18)

This nonvanishing at the usual threshold is taken
to imply that the spectral-mass range now extends
below that point. So, to obtain the complete vacu-
um amplitude we must find and add on the contri-
bution associated with this additional range.

The complete vacuum amplitude refers to one
basic coupling (think, for example, in terms of
the noncausal representation of the vacuum am-
plitude"). The causal process of Fig. 1 provided
a causal realization of this coupling that allowed
its contribution for M & m, + m~ to be calculated.
Now we need another causal realization of the cou-
pling that will provide the contribution for
M &m, + m, ." To this end we consider the causal
process iQustrated in Fig. 3." The mass restric-
tions necessary for the existence of this process
are m & m, + m, and ps spacelike. The latter, of
course, must be removed in order to have a re-
sult applicable to region B. And that we shall ac-
complish by use of a technique, developed in the
work on four-point functions, ' in which the extrap-

ip= — dp 5 p-p '+m, 'j5 p'+m, '

x 5((p + p 8)' + m, '),

in which it is understood that -po'=M'. In the e
c.m. frame with the x direction chosen along pe,
this expression becomes

ip= — (dp)5(-m, '+2p'p' + p '+ m, ')

x 5 (m&' 2p p08 +2p ps +ps'+ m 2)

x 5(-p" + p,'+p„'+m, ') .

%hen ps and p are brought on shell to values as-
sociated with region J3, the external momenta ap-
pearing in p refer to an unphysical situation since
M &m, + m» with m8 + m m, + m» nor can M re-
fer to a physical scattering, since, as will be seen,
M & ~ms -m ~.

" The occurrence of the unphysical
. y.

situation is signaled, in the a c.m. frame, by p8
becoming imaginary. So, bringing pe and p on
shell, we have

p s„cp8, p s„real, (21)

FIG. 3. Causal process leading to the spectral-form
contribution @6th iM & m, + n«~.

and to keep the second 5 function in Eq. (20) mean-
ingful, we match this with"

p, - -ip„, p, real. (22)

The integral (20) then involves only real quantities,
and is evaluated to give
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Note the continuity of this result at M =m, +m,
with the weight function lt [Eq. (18)].

Concerning the spectral-mass domain associated
with p, consider first the range of M for which the
weight-function expression (20), with the substitu-
tions (21) and (22), is nonvanishing. This range is
determined by the conditions that the 5-function
arguments in Eq. (20) can vanish. The only argu-
ment for which this is not always possible is the
last one, thereby providing the condition p~'~ 0.
In the a c.m. frame there is the evaluation [see
Eq. (14)]

+3 (Pat Pb 7 PCi Pst PJ. (25}

and for ~m8-m
~

& M&ms+m„, p8, ' is negative.8 y
So, recalling the roots of n„=0[Eq. (15}], we have
that the weight function is nonvanishing for
M, —= M, «M «m8+m„and for M «M « ~ms —m )

or ~ms -m
~

-M «M, depending on whether
~ms-m

~

or M is larger. Since we are looking
for the additional vacuum-amplitude contribution
below M = m, + m~, and since we take it that the en-
tire additional piece is connected to the original
one, "the p contribution to the vacuum amplitude
thus has the spectral-mass domain Mo ~M & m,
+ m„where

M, '=2m, m, [-y8y +(1-ys')"'(I -y„')'"]
+ m, '+ m„' (region B) (26}

Also, it is not difficult to show that M, & ~ma -mz~,
so that p is well defined in this domain.

In summary, then, for y&+y &0 with particlesy.
P and y stable, the vacuum amplitude is of the
form (1}and (2) with the weight function being
given by Eqs. (8), (16), and (24), these expressions

~7(-P8, ,'=my, „')= (8P'ps. )
' (23)

By use of {p~08,)' =-M'ps' and Eq. (7), the weight
function is finally presented as

1
( g)-1/2

applying, respectively, for M ~ mz + m, ms + m
&M&m, +m„andm, +m, » +M, .

III. UNSTABLE EXTERNAL PARTICLES,
STABLE INTERNAL PARTICLES

A. Regions Cand D

Consider next the cases where one or both of
particles P and y are unstable. When only one of
the two is unstable, we presently restrict our-
selves to situations of internal stability, e.g., if

y is the stable particle, then m, &m&+no, and m,
& m +m, (which means y„&-1). The regions being
considered in Fig. 2 are then regions t." and D. The
approach here is simply as follows: Take the re-
sult for region B and directly extrapolate it into
these new mass regions. What must be investiga-
ted to carry out this extrapolation is whether the
weight function remains well defined, and this
divides into two tasks: examination of the weight
function for M'& (m, +m~)' and for (m, +m~)'
&M' ~ M,', g and p, respectively.

As earlier noted, thestudy for X requires in-
vestigation of this weight function at those points
M& m, +m~ for which f2=g'6 or d, =0. From Eq.
(15}it follows for the masses of regions C and D
that M, ' «(m, —m, )' or that M, ' are complex, so
f' =g'6 cannot occur for the relevant spectral-
mass range. The realization of 6=0 at M=m&
+mz is already taken into account by the transi-
tion of X from the expression (8) to (16). How-
ever, inparts of regions C and D (ms-mz~ ex-
ceeds m, + m~ (see Fig. 2), so there we must also
consider the realization of 6=0 at M= ~m ~

—mz~,
as was not the case in region B. It is easily seen
that, in these parts of regions C and D, f is nega-
tive at M = ~ms - mr (. Thus, considering g in its
power-series form as M approaches (ms —m~ ~

from above, extending this result through M
= [mz —m ~, and then resuming, we get

1 f+gA'~'
2 I regions C and D, )m8 —mz(&m, +m, ;

}{ 8 dil2 y All2
I)m, m„)&M- m. +m, .

(27)

In obtaining this result it was necessary to choose
between (-6)'~'=+in'~' for ~ms —m„~&M& m, +m~.
Extending through M = )m s —mz ( by means of M'

—ie, as suggested by the spectral denominator, "
we got the -id ' result. For the situation under
consideration, then, the weight. function y be-
comes singular at M = (ms —mz ~, although inte-
grably so, as c-0. Below, there is a consistency
check involving a similar singularity.

Turning to the weight function p, we consider

first just region t.". It is not difficult to show that
M, '&(ms —mz)', where, from Eq. (26),

M,'=2m, m, [-ysyq —(y8' —1)' '{yy' —1)' ']
+ m, '+ m, ' (region Q) (28)

(which can be negative). So, in at least part of its
domain, p has become imaginary, and the sign of
the square root is determined as in the previous
paragraph. The weight function p for region C is
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thus given as

m, ' &m'&(m, -m, }'

—,(-a), (m~ —mq) ~M ((m, +m, )
(29)

when ]ma —mz ~

& m, +m„ the latter of these con-
tributions is absent and the former terminates at
(m, +m, )'. It is the singularity of this weight
function at M = ]m 8

—m
& ), when ]m z

—mz )
~ m,

+ m„ that mill enter in the consistency check be-
low.

Now consider region D. Here M0' has become
complex, and the sign of the square root referring
to the unstable particle, say, p, is determined by
use of ys'+is [i.e., p8' —ie (Ref. 24}]; thus

M,'=2
m, mg-y ys,

—i()y~' —1])' '(]y„'—I()' ']
+m, '+m~' (region D} . (30)

For the spectral-mass domain associated with p,
one may take, for example, the straight line from
M,' to (m, + m, }', or any other contour with the
same endpoints obtained by deformation from this
one without going through the points giving rise to
~ =0. If the contour is taken to have a portion
along the real axis, one should distinguish be-
tween the two possible expressions for p as done
in Eq. (29). For the portion of the contour in the
complex M' plane, the square-root branch used
in p is that defined by extension from either of
these real expressions.

This completes the establishment of the single-
spectral forms appropriate to regions C and D;
the results are summarized in Table I. Note in
these regions, for any ~m8 —m ], that p is con-
tinuous at M = m, + m~ with g.

B. Consistency checks

In this section we present some consistency
checks on our results. These checks are com-
parisons of these results against others (obtained
in terms of different spectral variables) that re-
quired little or no mass extrapolation in their
establishment. That is, we choose the spectral
variable -p ' as some particular m ', making
also some simplifying choices for the other
masses, and investigate whether this result is
equal to the other evaluated for the same set of
masses. Also, as they are the easiest to explicit-
ly evaluate, our efforts will be confined to com-
paring the imaginary parts of the spectral forms.
These checks may be viewed, primarily, as tests
on the correctness of our methods, particularly
the extrapolation procedures. But, alternatively,
as discussed in Refs. 23 and 24, they may be
viewed as means to avoid the necessity of using
ie prescriptions to determine the signs of the

square roots in Eqs. (2"I), (29), and (30).
First, we will compare the single-spectral form

of region C, for p '=0 and ma=mz, m, =m, =m„
with the result from a douhle-spectral form. For
this choice of masses and -p '&4m, 2, the imagin-
ary part of the single-spectral form comes solely
from its p contribution:

"&0

here, from Eqs. (28) and (29),

Mo' = -4ms'(m8'/4m, ' —1} (32}

p=f —'[-M (4m8 -M)] ~ =p, M M (0

,'[M(4m—,'-M)]-"'=- p, , 0

(33)

Because of the behavior of p at A/=0, we cannot
just set p ' =0 in p ~ for that portion around M'
=0; rather, we take p

' small and positive, per-
form the evaluation, and then let p ' be zero (the
same result ensues if p ' is taken as small and
negative). So, with p '-+0 understood, we have

z', to)= f ~y' f.
I) t2

0 Pcx + (34)

where g and g' are arbitrarily small, except g'
~p ', and g0 refers to the contribution from g"
to 4m, ', which is real and insensitive to the p '
limit. One then calculates

2

l ~ p„.1 (1-M, '/4m, ')"'
„2 hP 8m 8' (-M,'/4m ~')~'

1 1
i ——+ O(q),

4mB g
(35)

and

f p '+M'- ~ f8m~ (p ')"' 4ms n

+ o((p.')~')+ o(q), {38)

P1 F
p„'+M' 8m, (p„')"'

+O((p„') ')+ O(g'}. (3'I)

Thus, the imaginary part of the single-spectral
form at p '=0 is

Imp (0) = (16m. m 8) '(m ~'/4m, ' —1) '~' (38)

where use was made of Eq. (32).
Now consider the double-spectra, l representation

of the vacuum amplitude. ' This vacuum amplitude
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(derived for p
' spacelike) has the structure (1},

but the single-spectral form F is replaced by

1

x o(M', M"),

&r =(82) '(M'+M" +p, '-2M'M" +2M'p '

+ 2M12p 2) 1/2 (40)

and, upon specialization to the choice of internal
masses made above, the spectral-mass domain
is specified by

p.'[(M —2m. ')(M ~ —2m. ') -m. '(p.'+ 4m. ')]

m. '(M' —M")',
(41)

M M 4m,

The check is thus to see if

IrnF(0} =lmG(-po =-py =mo, p„=0)

consideration then of an unstable P particle is re-
flected in the use of m 2- m8' +i~ [i.e., again,
ps'-te (Ref. 26)]. From this expression imme-
diately follows

imG(0) =(16m, m8) '(m, /4m, —1) ~ (45)

thus exhibiting the consistency check.
Next we compare the single-spectral form of

region D for -p '=(m8-mz}2 with the result from
another single -spectral form. For definiteness,
let P be the unstable particle and y the stable one.
Then, for the latter spectral form we use one with
-p6' as the spectral variable; that is, we proceed
from a "rotated" version of Fig. 1. In this result
-pa' is set equal to ma' and the masses of the two
outgoing external particles are m = m 8 —mz and

m&. In order that a be a stable particle, we im-
pose ms-m& &m, +m„the latter spectral form is
then one associated with regions A' or B.

The imaginary part of the spectral form of re-
gion D, with -p =(mo zm}

—&2( ,m+m) o2comes
entirely from its p contribution, which ranges
over complex values of M2:

=- ImG(0) (42)

is true.
The calculation of 1mG(0) is made quite simple

by use of the x, v variables introduced by Bchwinger
in his deuteron work~25 and employed for purposes
somewhat similar to our present ones:

w( If'
y D

p 4 M —(m, —m, )'

x{-[M'- (m, +m, )']

X[M' —(m8-m, )']) '",
(46)

M' —2m. '=m. (p '+4m. ')~2»

+ m.(p.')~'(x' —1}'t",
M -2m. '=m. (p, '+4m. ')"'»

—m (p 2)+2(»2 —1)~2v .

(43)

1 (m 2+m„) —Mo
8m,m„M,' —(m, —m„)' (4t)

where M,' is given by Eq. (30). This integration
is simply performed, and omitting the contribution
from the upper limit because it is real, we have

The first of the restrictions (41) then reduces to
an expression in terms of v only, so x and v range
independently, their domains being, respectively,
1 to ~ and -1 to 1. So, G(-p22 = -p„'= m 22, p '}is
expressed in terms of these new variables, the
specialization to p ' = 0 is then made, and the v

integration is performed. Upon the change of
variables t' = —,'(x —1) and an integration by parts,
we obtain

The other single-spectral form is given by the
results of Sec. II with the interchanges appropriate
to the "rotated" causal process and with m =m z
-mz, for this spectral form we use the notations
of that section with primes affixed. Concerning
its imaginary part, when -ps'=ms' that comes
solely from the contributioa associated with the
vanishing of the spectral denominator:

G(0) = (47r) dt(t'+ 1) '
ItnF (-p8 -m, ) =xgo, (48)

x (4m, 't'+4m, ' -mo') '; (44}

~here 0 designates evaluation at M'= m 8. For this
particular value of the spectral mass we have 4'
= 0, and so the weight function reduces to

XXo= 2t"'o~f o

1 {[m 22 —(m, + m, }'][m22 —(mo —m, }']]1t2

8 mo'(m, '-m, —m„)-mom„(m, -m, -m8 )2 2 2E
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The check is thus to see if the imaginary part of
Eq. (47}equals Eq. (49). There is little to be
gained by carrying this out in algebraic generality,
and it suffices just to treat a specific case within
the range of masses being considered. A choice
that leads to especially simple evaluations is m,
= m, = m, = m, —,

' m 8
= mz = ~m. Then it is easily

shown that the check is met, with the common
value of the imaginary parts being (16&m') '.

IV. UNSTABLE EXTERNAL AND INTERNAL
PARTICLES

A. Regions

Region E corresponds to one stable external
particle and one unstable one, with the former
being coupled to an unstable internal particle. To
carry out the work for this region, it is necessary
to distinguish which of the external particles is
unstable, and then which of the possible two in-
ternal particles is unstable. %e shall explicitly
treat the case where particles P and a are the un-
stable ones. The case where c is instead the un-
stable internal particle is treated quite similarly,
while the results for the situations with y unstable
are simply obtained by interchange from those
with P unstable. Table I contains the results for
all possible cases.

As above, the M points at which we must be con-
cerned with the definition of the weight function
are M, and ms+ m&. The former two now are
real and lie above m, +m„asis easily seen from
Eq. (15). Physically, this is because for the
masses of region E and M ~ m, +m, it is possible
that all three internal particles may be real. That
is, when P and a are the unstable particles, there
may exist the physical process of Fig. 4(a),"and
the condition for the existence of such is 6,
o: (M-M, )(M-M ) «0, as discussed in Sec. IIA.
Furthermore, since the existence of this process
of course requires M& m6+m~, we have the or-
dering m2-m~ &m2+m„&M, &M . (In the in-
stance where c is the unstable internal particle,
the physical process with the three real internal
particles is that of Fig. 4(b), and one has the or-
dering M, &M & m2 —m~ &m2+mz. ]

It will be necessary to know when the equality
M, =m8+m~ occurs. Since M=M, corresponds
to f' =g2n, and M =m 2+m„to k =0, such occurs
when f= 0 at M = m &+m ~, which is expressed in
terms of the simple evaluation

y, =(m, 2 —m 2 —my2)/2m my,

yb
—(m2 —mc —m 2 )/2m~m 2

(51)

4v ( g)1/2 2 ( ~)l/2

ms —m~ ~ ms +m~

(53}
I I f +gal/2

ln ~I2 +2mi, ms+m~-Mo
8m J -8'~

1 1 f +grI i/2

n 1/2 f n 1/2 I 0 t

when mz —mz ~m, +m, , the first contribution here
is deleted and the second is started at m, + m, .
These expressions we extrapolate into region E.
But, since M =M+ —= M, at m& =m, —m„with M,
then separating as one moves into region E, the
weight function on the interval between these points
must be determined. Also, as discussed in the

Ky

It is easily seen that for region E, at any fixed
but arbitrary m 2, f ' passes through zero once as
mz varies across the region. More specifically,
f ' decreases as mz decreases at fixed m @ and
the line f ' =0 occurs for intermediate values of
m z except at m 8

= m, + m„where it occurs for
mz = m, —m, . [When c is the unstable internal
particle, M =m8 —m& occurs when

f(M=m, —m, ) =-4m, m, m„(m,—m, )(y. —y, )

(52)
vanishes. Note the similarity of Eqs. (50) and
(52) to Eq. (17).]

Now we turn explicitly to the extrapolation into
region E (with P and a as the unstable particles),
and for the moment consider ms+m&~m, +m, .
At mz =m, —m„the boundary of region E, the D
results give for the weight function of the spectral
form the expressions

f +gn, &/2

~l/2 f nl/2 1 M' ma™ bm8 my

f(M=m2+m~)= f'=-4m2m, m~(m2—+my)

where

x (y, +y,),
FIG. 4. Physical processes that can occur when par-

ticle P and (a) particle a or (b) particle c are unstable.
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previous paragraph, M, and m~+mz can coalesce
and then separate again as one extrapolates to
smaller values of m&. And after this coalescence
we cannot claim the weight function on the interval
between these two points to be the same as before,
so this weight-function expression must also be
determined. One way for us to make these deter-
minations is to take the weight-function expres-
sions for M~M and M-m~+m&, which remain
unchanged throughout region E, and extrapolate
them in M through M and ms+m&, respectively,
using ie prescriptions and knowing the sign of
f at M and ma +mz [cf. the derivation of Eq.
(27}]. In this way we immediately see that it is
the imaginary part of the weight function on the
stated intervals that needs to be determined, the
real part always being

(6an' '}-'In~(f +gn. ' ')(f gn'/')--'~.

The explicit execution of this is, however, more
involved than the simple procedures entailing ie
prescriptions employed earlier. There is, though,
a simpler approach, more in the spirit of source
theory, which promotes self-consistency to an
active role. ~' Namely, the two undetermined
imaginary parts continue to occur in the single-
spectral form at m

&
=0, and at that point there is

available the double-spectral representation of the
vacuum amplitude, from which it is simple to
extract imaginary parts. So, by demanding the
consistency of the two spectral representations,
we easily obtain the undetermined imaginary parts.

To be specific, the double-spectral representa-
tion' has the structure (1) with E replaced by

such being given as

ao'(M', m, ') = (sa)-'n-'».
%'e conclude, then, that the single-spectral weight-
function expressions for region E not determined
by the direct extrapolation of Eq. (52}are given by

1 1 f +gn'/'
lIl gg2 m8 +m), M J + Yj) 0

Bg b f -s&

ln ~gf2 +7/, M -M .
Bm f-8&

The full result thus obtained is summarized in
Table I.

Now we consider the situation with ms+mz
&m, +m, . Here the coalescence of M, and ms+m&
of course cannot occur, but our concern with that
must now be transferred to the coalescence of M,
and m, +m, , which can now occur. At ms+m&
= m, + m, , Y, + y~ is easily seen to be positive in
region E. Thus, as we extrapolate into the domain
m 8 + m z

& m, + m, , the weight-function expression
on the interval" m, +m, -M+ is given by the first
term in Eq. (56). Upon further extrapolation the
coalescence occurs; to be specific, it follows from
Eq. (17) [or Eq. (15)] that such occurs when y8+ yz
=0. After the coalescence it is the imaginary part
of the weight function that must be determined,
and comparison with the above double-spectral
form immediately shows that such is zero. Thus,
the weight-function expression in question remains
unchanged upon the coalescence.

8, One of p&,p spacelike

00 1G' = dM'
( + )2 Pa+M -&~

N'(g)

~t (g) P8 +

(54)

The M, M' integration domain is the region where
evan. uated ln terms of M M Rnd p), ls

non-negative (subject to M~ m, +m, ), M', (M) thus
being the M' roots of 6, =0. And 0' is given by
Eq. (40), with p '- p&2. When evaluated at p &2 =0
(which is the lower limit of the p&2 values for which
the double-spectral form was derived) and -P22
=ms', G' must be equal to the single-spectral form
with mz =0, because both give representations of
the vacuum amplitude referring to the same speci-
fication of sources. In G' so evaluated, the coef-
ficient of (p '+M' —ic) ' is then identified as the
single-spectral weight function. And it is imme-
diRte thRt such R quantity has R nonvRQ18hing Mlag-
inary part only on the M interval M, -M, with

I f +F1�/2
ln ~f~ +n'i ) M+ M

Bm

f + gal
/2

nl /2 f nl /2

(57)

These we directly extrapolate into the new
region. The only question that arises concerns
the coalescence of M, and m, +m, , which occurs

To complete the establishment of the single-
spectral form for all possible values of pz' and

p„'not treated in Ref. 1, we must consider the
region in which one of pe„pz is spacelike, while
the other refers to an unstable particle. To be
specific, we consider p& spacelike; the results
for ps spacelike follow by simple interchange.

At m& =0, the boundary of the region under con-
sideration, the results for region E give for the
weight function of the single-spectral form the
expressions

1 1 f +gn'/2„,ln. „,, M: m. +m, -M+
Bm
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TABLE I. Summary of results.

Define

1 1 f+g di/2
XI g~ ~i/2 n f g ~i/2

1 1 r i f
XII 4~ ( g)i/2 2

~™
g ( g)i/2 ~

1 1 . 1 1
( g)i/2 & PII ~

4 gi/2 &

-1 1 x i f
II 4 ( ~)i/2 2 ( ~)f/2

+ I g(y~ —yq ), particie P unstable

I
q(y~-y, ), particie y unstable

g being the unit step function of positive argument. Also define

Mo ——2mmm&[ —ysy +z((ys —1() ()y& —1[) ]I+m, +m&

and

M 2 2m mI, [ y~ ~ (y82 1) 2(y 2 1)i/2j +m 2+mb 2'

for regions B, C, and D, K is respectively+1, -1, and -i. Heref, g, and 6 are given by Eqs.
(5) (7) with m 82 (m„2) replaced by -p 8 (-p ) when p 8 (p y) is spacelike; also y& y

and

are given by Eqs. (12) and (51). Lastly, the m& -my regions are defined in Fjg. 2. The
vacuum amplitude is then of the form of Eqs. (1) and (2) with the following weight functions.

Region

A"

B

e, Ims —my~ m, +m,

(ms-m„()m, +m,

a, ~ms —m„~ m, +mb

(ms —m„))m, +m,

E, P,a or y, b unstable
m~+m ~m +m

~ms —m 1~m +mq&m8+m„

%'eight function

XI

XI

XI

XI

PI
XII

x,

Pn

XII

XI

Xi+ P„
Xii

XI

PI
XII

XI

P
8

Xi+Pii
XII

XI

XI

x
XI

Xn'

x, + n'p„
+ 1

XI + 2PII

XI

Spectral- mass range

(ma +mI, )2

(m + mp) 2 ~ {m8 + m )

{mg+m )2
y

(m +my)2 (me-m )2

(m g
—ng ) 2 (m 8 +m )2

y2 y
(mg+m )2

y

Mo (ma +mI)
(ma + mg) 2 (m 8 + my )2

(ms+m )2
y

MO2 (m 8 —m

(ms —my)2 (ma +my )2

(ma ~ mp ) 2 (m g +my ) 2

(m8 m )2-
y

M 2 {m +mb)2
(m +mI, )2 (me —m )2

(m8 —m ) ~{ms+m )
(m~+m )2

y

MO2 (ma +m~)2 a

(ma +mg )2 ~ (m 8 +m

(ms+m )2
y

M 2~ {m +m )2~

(m +m&)2 —(ms-m )2

(ms —m )2~ {ms+m )2
y

2
y

(ms+m )2
y

(ma +mg)2~M 2

M2 —M2
M 2

(m +m&)2 (f8+m )2

(m &+ m. )2 M 2
/ +

M, 2 M2
M 2
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Region

~m8 —m ~&m'+my

P, c or y, c unstable

ps, P& spacelike

one of p 8, P& spacelike,
the other stable

one of p8, p& spacelike,
the other unstable

'See text below Eq. (30).

Table I (Continued)

Weight function

X(

XII'

X, + n'Pu
1

Xg aug
X)

X)
X)+ zPg
X( "t P)I

XII

XI

X,

Xp

X)+3 g
Xt

Spectral- mass range

{m + m~}" {ms —m }"
{ms —na )2 (my+ n )

V 7
(ms+m~)2 i'

)v1 M

{m +~n&)2 !VI

svI ~M
3f ~ (ma-my)~
{m8 —m ) ~ (ma+m }

y2 'y

{ms+m )2

(m +mg)

{ma +mg)

(m + mr, }2 'Vl

3f~ M
2~ oo

at y& + y& =0 as noted above. But since both signs
of y8+ y& occur at mz =0 in region E, no indeter-
minacy arises upon extrapolation in the present
situation, as compared to that in region E (nor
is there any change in the weight function upon
coalescence). The weight function for the new

region is thus completely given by the expres-
sions (5'7).
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Although f = g2A corresponds to all three particles
being on shell, it does not necessarily correspond to
their being real, i.e., the on-shell conditions can be
realized with unphysical momenta. Thus, to apply
Eq. (11) and the steps following it, we really should
first consider a kinematic situation which indeed
corresponds to xeal particles (region E below). Then,
having arrived at the result, Eq. (15), we may extend
it to all kinematic situations because it is just a simple
algebraic expression.

«4Guided by this conclusion, one can do some algebra
to find

f2-g2E= 16(mam&me }2~2

z(y2+y 2+y 2+ 2yy@ 1)

which otherwise might have been a little difficult to
come upon.

"Observe then, as might well have been expected, that
the spectral-mass points at which we must be concerned
with the definition of g are those at which the causal
process of Fig. 1 ceases to exist. That is, f'=g 4
corresponds to the onset of particle c also being
allowed to be real, while 6= 0 corresponds to the
onset of particle P no longer having a physical momen-
tum. Now, in Ref. 1 we presented some considerations
about the structure of general-order causal processes;
in fact, we were able to employ such to argue the ex-
istence of three-point-function single-spectral forms
in arbitrary order, subject to the generalizations of
the mass restrictions (9) and (10) ~ Based on those
considerations, it shouM be possible to specify the
conditions of nonexistence for general-order causal
processes. Then, turning around the implication of the
above observation„we might be able to argue some
about the structure of three-point-function single-
spectral forms in arbitrary order for any mass values.

6The term in square brackets is of course equivalent to
tan «Q(-+«r2/f], but the expression used in the text
is more convenient in that one does not have to change
the branch on which tan is defined in order to main-
tain a continuous weight function as f goes through the
value zero, as it will in the studies below. (Tacit, then,
in that later work is this weak assumption of continuity. )

«BrieQy stated, a noncausal representation of the
vacuum amplitude is one in which each internal particle
is associated with a propagation function; see Ref. 5
and also Vol. 3 of that wogk (in preparation).
There has been one other example in source theory,
although somewhat different from the present, in
which it was necessary to consider two causal reali-
zations of one basic coupling in order to obtain the
complete spectral form; see Ref. 2.
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from those in p remain physical since they are not
associated with hX, but rather with the generalized
-P 2

«The choice+ iP, is of course also possible, but de-
manding that the weight function be continuous at
M = m, + m~, we rule in favor of the given choice.
Alternately, one may use the consistency check in
Schwinger's deuteron work, discussed in Sec. I, to
decide the sign.
Another reason for excluding the contribution associated
with M is that it does not vanish for y8+y&= 0, as
would be necessary for consistency between the results
of regions A' and B. (Also, when M &( ~n&-m I, PB„
imaginary, the input to the whole scheme, is not true
for the M contribution. )

23If one wishes to avoid the use of an i~ prescription, it
is not difficult to do so. First, the region-C consis-
tency check given in Sec. III 8 can be used to fix the un-
determined sign that enters in the establishment of
Eq. (29). And then, with continuity of the weight function
at M = m, + m required, Eq. {29) serves to immediately
fix the undetermined sign that would appear in Eq.
(27) .

24This is just the -ie that is associated with momenta by
virtue of the Euclidean hypothesis; see J. Schwinger,
Pa&ieles, Sources, and Fields, Vol. 1 (Addison-
Wesley, Reading, Mass. , 1970). Alternately, as in
Ref. 23, the sign can be determined without invoking
an i~ prescription by use of the second consistency
check in Sec. III B.

2~One might inquire if x and v have any simple physical
interpretation. We have found that, in the frame
where p~ = -p, (the so-called brick-wall or Breit
frame), they are, respectively, the energy of particle
a divided by m, , and the cosine of the angle between
particles a and c.
More correctly, one should admit instability at the
beginning of the calculation and obtain the i e in Eq. (44)
from those in the propagators in the original double-
spectral form. That requires not setting m 8

——m&
immediately since the product of spectral denominators
is then not well defined. This eomplicatea somewhat
the simple steps leading to Eq. (44), but the details are
not worth recording here.

27Such a process differs from a causal process in that the
causal stipulations depicted in the figure —in particular,
those associated with the yac vertex —are not guaranteed
to exist.

2 Self-consistency has played an important part in the
previous developments of source theory by serving to
determine certain unresolved elements there. Moat
notably, there is the matter of determining contact
terms, as is illustrated, e.g. , in Ref. 5 and by R. J.
Ivanetich [Phys. Rev. 0 8, 4564 (1973)]. In addition,
it has figured in more than one way in the extrapolation
work carried out in Ref. 2.

2~Since m 8
—m& provides the lower limit for one of the

weight-function expressions, it might be suggested
that as m8-m& decreases in va1ue below m, + m~ that
it should perhaps become the lower limit of the
spectral-mass domain. However, comparison with the
double-spectral form immediately reinstates m, + m ~

in that role.


