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Three classes of irrotational-dust-collapse models with high symmetries are studied. The
interior collapsing solution is joined smoothly onto an exterior static vacuum. The spherical
model is just a generalization of the Oppenheimer-Snyder model. A black hole is formed in
this case. The plane-symmetric model turns out to either have negative gravitating mass and
bounce, never reaching the singularity, or have no static exterior. In the latter case all we
get for the exterior is a Kasner universe. In the cylindrical case, however, we succeed in
constructing a model that, starting with initially regular conditions, collapses into the naked

singularity of an external static field.

I. INTRODUCTION

It is the common opinion today that gravitational
collapse of massive astronomical objects is a like-
ly phenomenon. However, the exact nature of the
collapse process is generally not yet understood.
In particular, the ultimate fate of the collapsed
object (black hole or naked singularity') in generic
situations remains unknown. Hopefully, the re-
cent intensive studies of linear perturbations of
the vacuum stationary Kerr-Newman? metrics
may shed some light on this question. Yet the non-
linearity of the full Einstein equations may betray
any conclusions from perturbation calculations
near the strong-field region.

We tend to approach the problem from the op-
posite direction. In the hope that careful analyses
of simple exact models may show the clue to some
of the answers, we here study in detail three
classes of highly symmetric, but inhomogeneous
exact collapse models: spherical, plane, and cy-
lindrical symmetric. We choose irrotational dust
as the interior source because (a) it is the sim-
plest, (b) it guarantees collapse to a physical sin-
gularity (Raychaudhuri’s theorem?®), and (c) ex-
perience indicates that many important features
of the dust models may persist in general models.*

The spherical case is well known. It is included
here for comparison. The plane and cylindrical
cases are, of course, unrealistic, But we hope
to see some important aspects of nonlinear col-
lapse even in such models, especially the relation
of the singularity structure to other properties of
space-time. The choice of inhomogeneous interior
metrics also has some merits: (a) We expect our
models to be stable against metric perturbations
to a certain extent, due to the larger degrees of
freedom; (b) the singularity will in general appear
to be nonsimultaneous to collapsing comoving ob-
servers; (c) as the matter density p can be made
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to vanish arbitrarily smoothly (say, C*) across the
boundary surface, the interior and exterior met-
rics form a single, smooth solution. This might
be helpful in future works on perturbations.

In the vacuum region (p=0), the spherical-and
plane-symmetric models automatically admit an
additional Killing vector (Birkhoff-type theorems?®).
When this Killing vector is timelike, the metrics
are static (Schwarzschild and Taub®). The cylin-
drical solutions, however, are in general radia-
tive (Einstein-Rosen®). To make the mathematics
manageable, however, we choose to assume a
static exterior in this case too. This might appear
unphysical, as it eliminates the possibility of ra-
diation. However, as it turns out, even in this
case we obtain a physical model collapsing to a
naked singularity, and there seems to be no ob-
vious reason why a similar model could not exist
with radiation.

Section II is a brief review of spherical collapse.
Section III is devoted to plane collapse. It turns
out that the only plane static vacuum solution cor-
responds to repulsive gravity (negative gravitation-
al mass). No collapse to the singularity of the
static metric is possible. The cylindrical models
are discussed in Sec. IV. In addition, a special
class of exactly soluble Einstein-Rosen waves with
high-frequency incoming radiation as source is
exhibited to clarify some points. Some of the ted-
ious computations are separately recorded in the
Appendixes.

II. SPHERICAL COLLAPSE

A space-time is said to be spherical symmetric
if it admits a three-parameter group of motion iso-
morphic to the symmetrics of the Euclidean 2-
sphere and transitive on families of spacelike 2-
surfaces. If dust is the matter source, the flow
lines must be radial, irrotational geodesics. These
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are known as the Tolman-Bondi’ models. Using
comoving normal coordinates the metric can be
written as®

ds?= —dt?+ 27 Dy L R¥(y, t)dQ?, "
1

u" =084 (dust flow velocity).
47R%(v, t) is the area of a 2-sphere at (r, ). The
coordinate 7 is just a label for the mass shells. It
is arbitrary to the extent that » -»’(») leaves met-
ric (1) form-invariant, With metric (1) the Ein-
stein field equations (EFE) G,,= —uu,u, reduce to
two essential equations for ¥ and R:

(r, )__Rl(ra t)
e¥lrt e (2)

where the prime denotes 3 /a7,

m(r) _
R(r,t)~

where the dot denotes 38/6¢ and
E(y)E%(kz_l)B_% )

%éz(ry t)"

E(7), (3)

where k(7), m(r) are arbitrary integration func-
tions. Equation (2) is still defined when both &(7)
and R'(7, t) vanish, provided the ratio exists.
When k(7)=R'(7, t)=0 for all », the solution re-
duces to the homogeneous closed Friedmann so-
lution, However, in principle k(r) and R'(r, t)
can vanish just locally, say, at r=r,, but 2'(»,)
#0. Then we have in one single solution regions
with 2(»)>0 and k(7)<0. In each region non-neg-
ativity of e’ requires R’(v, t) to be of the same
sign as k(7). Equation (3) is identical to the equa-
tion of motion of a particle with radial coordinate
R in a central Newtonian gravitational potential,
provided we identify m(r) as the total gravitational
mass inside R(r) and E(r) as its total energy.
From the source equation GJ= . we obtain

pw=m'(r)/4nR2" " k(7)
=m'(v)/47R?R " ,

which gives

m(r)= f w4nR?R'dr
0

=j wkdr, (4)
0

where d?v=4n1R%e’dr is proper 3-volume. We now
make the (physically reasonable) requirement that
a non-negative u gives a non-negative contribution
to the “mass” m(r). Thence we need k>0 and R’
20 for all ». So from now on we concentrate on
the branch of solutions with £>0 and for definite-
ness write k(r)=+[1+ 2E(7)]/2. The condition
R'(7, t)>0 means that larger values of » denote

“outer” shells. To make =0 the topological ori-
gin we also need the boundary condition R(0, ¢)=0
for all {. Furthermore, for u to be finite at »=0,
we need®

m'(r)
41R’R’ , _,00(1) :

Any solution of R(7, t) in Eq. (3) with given m(7),
E(r) subject to the above boundary conditions de-
fines a physical solution. Suppose n=0 outside
some exterior world tube of flow lines defined by
¥=7¢. In the vacuum exterior we have from Eq.
(4) m=M, a constant. We can then define new co-
ordinates

R=R(r,t), T=T(r,t)

such that
. (1+R2-2M/R)'/?
e o
1-2M /R
(5)
!
- RR

T (1-2M/R)(1+R*-2M/R)'"? °

T is integrable since (T)’=(T’)" via the field equa-
tions. In (R, T) coordinates metric (1) is reduced
to the Schwarzschild metric with mass M,

dR?

ds*=~(1-2M /R)dt* =5 s

+ R%dQ? (6)

in agreement with the Birkhoff theorem.® We could
could also make a spherical shell of dust by letting
(7 <7;)=0 for some inner radius »,. In this re-
gion we have m(» <7,)=0 and space-time is Min-
kowski. We can make the u-0 transitions across
(rs,7,) arbitrarily smooth so that the exterior and
interior metrics form a single C” solution,

From Eq. (3) we see that for m(r)>0, and with
appropriate initial conditions [e.g., R(r, 0)<0],
R(r, t)-~0 for each r at some ¢ in the future, say
t=,t(r), and space-time is singular at ¢=,t(r)
(curvature invariants and matter density blow up).
In the exterior there is the well-known Schwarz-
schild singularity. We now see that it joins smooth-
ly onto the interior singularity, The whole singu-
larity is spacelike’ and is, in fact, velocity-dom-
inated.!* It is in general nonsimultaneous with
respect to the proper time of the dust particles.
Now it is true that even for initial conditions such
that R’(r, 0)>0, in general R’(r, t)-0 at some later
t say ,Z(r). Since k(r)#0, this implies e~ 0 and
i - « and space-time is also singular at . (7).
This other type of singularity is usually known as
‘“shell crossing.” However, detailed study shows
that in the collapsing solutions we can always
choose initial conditions such that ,Z()>,t (), so
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that “shell crossing” occurs only in the future of
the “Schwarzschild-type” singularity. Hence they
lie outside of the physically reachable region of
space-time. For our discussions we can therefore
assume R (7, t)>0 always.

The norm of the normals to R=const hypersur-
faces are given by

Ry R¥=1- 2m(r) =R R*=0emR=2m(r). (7)
Consider an R=const hypersurface with R<2M (M
is now the external total mass). For »>7, (in vac-
uum region) it is spacelike. However, since m(7)
decreases in the interior with », R=const ultimate-
ly becomes null and then timelike. The boundary
where R=const becomes null precisely coincides
with the boundary of trapped surfaces.! R=2M is
null and coincides with the event horizon' in the ex-
terior region, but becomes timelike for » <7,. In
the interior, the event horizon extrapolates into
smaller and smaller values of R until it reaches
the central (regular) » =0 world line. These and
other features are illustrated in Fig. 1.

The above spherical model is the inhomogeneous
generalization of the Oppenheimer-Snyder'? model,
who use the closed Friedmann solution as the in-
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terior solution, a specialization of the Tolman-
Bondi solution. The important point to note here
is that the existence of trapped surfaces near the
singularity is associated with the spacelike nature
of the singularity.

III. PLANE COLLAPSE

A space-time is called plane-symmetric if it
admits a three-parameter group of motion iso-
morphic to the symmetries of the Euclidean
2-plane® and transitive on families of spacelike
2-surfaces. The dust flow lines are again con-
trained to be irrotational geodesics. In comoving
normal coordinates the metric is

ds?= —dt?+ e2* *tdz2 + A2 (2, t) (dx? + dy?),

u¥ =05 (dust flow velocity ). ®
For easy visualization it is more convenient to
compactify the 2-planes'into unit area flat tori by
identifying x=0 with x=1 and y=0 with y=1.
A%(z,t) is then the area of the torus at (z,t). Such
an assumption does not affect any of the local pro-
perties we are studying. Again, z is just a label
for the mass shells. Metric (8) is form invariant
under z-2z’ (2z). The EFE’s reduce to

R=const. surfaces

dust flow lines (r=const.)

MVVVVVAA

event horizon

0)

r=0 (R

(a)

singularity

0)

r=0(R

region where R=const. becomes null

(b)

FIG. 1. (a) Space-time diagram for inhomogeneous dust collapse. (D) is the dust-filled interior region. (S) is ex-
terior Schwarzschild metric. R= 0 is the central particle world line. The triangular region bounded by the dotted lines
and R =0 singularity is the region of trapped surfaces. Note that the event horizon coincides with R= 2M in the exterior

but extrapolates to smaller and smaller values of R in the interior.

(b) A similar diagram for a dust shell. Space-time

is Minkowski (M) inside »= 7;. The double solid line R= 0 is the regular ‘“center’” of the Minkowski region. (R is the

Schwarzschild coordinate.)
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ew(z,t)=A,(Zat),

where the prime indicates /02,
142 m(z) -
2A (Z;t)“A(z’t) E(Z), (10)

where the dot indicates 3/4¢ and
E(z)=3k%(2)>0,

where k(z),m(z) are arbitrary integration functions.
The situation is similar to the spherical case.
Equation (9) is still defined if k(z) and A’ (2, ¢) both
vanish, provided the ratio exists. The flat Fried-
mann model results if k(z)=A’(z,!)=0 for all z.
But locally, k(z) can vanish at, say, z=2,, with

k' (z,)#+0. A’(z,t) must have the same sign as k
everywhere. From the source equation we simi-
larly obtain

m'(2)

U-=7"'(Z)/Aze‘k(z) “AZAT

which gives
z
m(z)=f WA2A’ dz+ miz, )
%

=f uk @ + miz,), (1

0

where d =dxdydz e’ A? is proper 3-volume. Un-
like the spherical case, however, there is no com-
pelling physical reason for the existence of an
“origin”, such that A(0,¢) =0. So the lower limit
in integral (11) can be taken as the first z value
where u starts to become nonzero. Note, however,
that even in this case m(z,) need not vanish, as
illustrated by the following case. Although Eq.(10)
again suggests interpretation of m(z) as some
“mass” function, we need not impose k =0 and
A’20 because there is no “origin.” In fact, itis
possible to have solutions with, say, k(0)=0,
k(2)<0 for z<0 and k(z)>0 for z >0 such that m
varies from m(z,) >0 at 2,<0 to m=0 at z= 0 and
m(z) >0 for z>0, assuming ;>0 always. These
correspond in some sense to models with a plane
of symmetry at z =0, and have local Newtonian
analogs. In the following, however, to simplify
matters we concentrate on local solutions with
k(z)>0 and A’(z,t) =0. Solutions for k(z) <0 are
similar as long as m(z) =0.

From Eq. (10) we again see that form(z)>0 and
appropriate initial conditions [e.g.,A(z, 0) <0 etc.]
A(z,t) -0 for each z at some time in the future,
say, t=,{(z) and space-time is singular there. This
singularity is also spacelike and velocity-domi-
nated. Just as in the spherical case, we can ignore
the singularities of ‘“shell-crossing” A'(z,t)
~0(=e - 0, u -~ =) by choosing initial conditions

such that they occur only in the future of t=.(z),
and are physically unreachable.

If we let u= 0 for, say, z=2,,m(z)=M, const.
Then in the vacuum region we can again define new
coordinates

A= A, ),
T=1T(z,1t)
such that
A . 2M>1/2
_ 2 _ 47
T= 2M<A i)

T is integrable since (T)" = (T’)' via the field equa-
tions. In (T, A) coordinates the metric becomes

2 A
ds?= EAK dT? - = dAP+ AR (dx*+dy?).  (13)

Contrary to our expectation, this metric is time-
dependent (A is timelike) for M>0 and is, in fact,
a special case of the Kasner metric.!* To get back
the static metric of Taub® we have to assume M <0.
But from the above derivation such a metric can
only represent the external field of a plane-sym-
metric distribution of negative total gravitational
“mass”. In this case ku must be negative for some
range of z in the interior. Moreover, from Eq. (10)
we see that if for a particular z, m(z)<0, then

A (z,t) cannot reach zero, but has a minimum at

Ami.n (Z ’ t): -—m(z)/E(z) .

For the total space-time picture we thus have three
possibilities. (a) If we insist that the model have
m(z) >0 everywhere, the only allowed vacuum solu-
tion outside the dust is a Kasner cosmological
model [with p=(3, %, -3)]. Space-time has a
global spacelike singularity in both the interior
and exterior. (b) If we let m(z)<0 everywhere,
then we have a plane-symmetric dust distribution
with negative gravitating mass bouncing off a min-
imum (of the plane area) while leaving a repulsive
static metric outside all the time. There is no
singularity in this space-time. (c) If we allow
m(z)>0, say, for z<z, m(2)=0 at z=z,, and m(z)
<0 for z >z,, space-time then consists of two
universes, one with positive mass and collapsing
to a physical singularity, the other with negative
mass and bouncing, separated by a thin layer of

m = 0 space-time at z = z, [ metric (8) is still sin-
gular where m = 0 but m’< #0]. The above pos-
sibilities are illustrated in Fig. 2.
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FIG. 2. (a) Space-time diagram for a plane-symmetric model with m(z) =0 everywhere. Both exterior and interior

collapse to a spacelike singularity (A =0). (D,) is the dust-filled interior and (K) is the Kasner universe outside.
(b) A similar diagram for the case m(z)=0. Here the interior world lines never hit a singularity, but bounce off a

minimum (in A) and then reexpand. In this case one could have a static exterior (the Taub solution) (7).

(c) Another

plane-symmetric space-time where we allow m be both >0 and <0. In the regions where m(z) >0 (D,), space-time
collapses to a physical singularity (A = 0). But for the regions where m(z) <0, no singularity is reached and the flow
lines are complete (D.). Between the two we must have a region where m(z) = 0 which we denote by (M;). One can of
course assume K(z >2;) = 0 and we have a Taub static solution. The intriguing thing, however, is that completeness of
space-time in the future requires us to have another (D,) space-time to be ‘“born” after the older universe had collapsed.

All these are in fact visible to observers inz =z.

To summarize, we cannot construct a physical
model of collapsing dust with plane symmetry
which has a static exterior. The important point
to note here is that the singularity of the Taub
static metric, which is timelike, is repulsive and
therefore unreachable by timelike geodesics. A case
similar to this is that of charged dust spherical
collapse, which has been studied in detail by vari-
ous authors.'* The external field, which is just the
Reissner-Nordstrém'® solution, has a timelike
singularity at R=0. But the charged dust distribu-
tion cannot collapse into this singularity because
the repulsive electrostatic force ultimately over-
comes the attractive gravitational force as R de-
creases. Rather, the shells of matter reach a
minimum inside the inner horizon R_ and reexpand
into another asymptotically flat universe. Here,
again, the timelike structure is associated with
repulsive gravity and there is no trapped surface
in the immediate vicinity of the singularity.

IV. CYLINDRICAL COLLAPSE

Let us now look at models with cylindrical sym-
metry. For the exterior metric of the model we
choose the static Einstein-Rosen solution® (or,
equivalently, the cylindrical Weyl—-Levi-Civita'®)
which is believed to represent the external field of
a mass cylinder. For the interior solution we
choose, again, irrotational dust. Aside from cy-
lindrical symmetry, the model is not quite real-
istic, because we eliminate the possibility of radi-
ation. In principle, some kind of outgoing wave
solution should be added on to the static one in the
exterior vacuum. But then the mathematics be-
come unmanageable. The hope is that our model
may be a good approximation to a radiative one so
that the essential features are unchanged in the
radiative case.

The static Einstein-Rosen solution has the metric
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ds?= —e®~2¥(dT?- dR?)+ R% 2" dp?+ e?¥ dz?,

(14)
with
$=Cln R+InD,

x=C?%In R +InE, C, D, E consts.

Without loss of generality we can set D=1. This
metric has a timelike singularity at R =0 which is
naked'. For future discussions we shall assume
C<0 so that the metric is nonflat (C=0, 1 « flat
space), andthe singularity at R=0is attractive (i.e.,
timelike geodesics can reach it). If we define

the “axis” as where the norm of the Killing vector
8/8¢vanishes, then C <0 will also guarantee that
R = 0 is the axis, and space-time is inextendable
beyond R = 0. Suppose we now cut away the region
of space-time bounded by a timelike geodesic
world tube, say, R=R,(T), which strikes the axial
singularity at some finite T (Fig. 3). We like to
know if we can smoothly join onto the exterior
static space-time across R=R,(T)a collapsing dust
solution. First, we know from the form of metric
(14) that the dust generating the interior solution
must be irrotational. Second, since the interior
solution must be singular somewhere (Raychaud -
huri’s theorem?®), we expect the interior singularity
to match onto our exterior singularity.

1
T

I

| T

| singularity

: + dust flow lines

(p=const)
(ER) | °°

C"> | 1 R=const o
@ : : surfaces &

|

|

|

|

|

|
— l —
(o] ! (o]
[] | "
@ | E
o \ o
" | "
Q ) Q

(a)

The most general cylindrical metric in comoving
irrotational geodesic normal coordinates has the
form:

ds?=—dt?+ e*°dp®+ €28 dz? +e?7d y?, (15)

U*=6}, a,8,y are functions of p, f alone,
allowed coordinate freedom: p—p’(p).

The field equations for metric (15) are worked out
in the Appendix B [ Eqs. (B2)]. The coupled non-
linear equations are not soluble in general. So one
has to appeal to approximation techniques. Noting
that all the field equations (B2), with the exception
of the source equation (G°, = y), should also hold in
the vacuum region, we expect than an interior so-
lution that goes over to metric (14) when u-0
would be very similar to metric (14) expressed in
radial geodesic coordinates.

The radial geodesics for metric (14) are explic-
itly integrated in a power series form in Appendix
A, away from the singularity R=0. Expressing
everything in terms of the proper time ¢/ and an-
other label p for the geodesics, we can put metric
(14) into the form (15), with the metric coefficents
expanded as power series in ,#(p)-¢, where ¢=,#p)
is the singularity R=0. Assuming a similar power
series expansion for the interior dust solution, but
now with undetermined coefficients, we put them

1

R—

(b)

FIG. 3. (a) Space-time diagram of a dust cylinder collapsing into a naked singularity (R = 0) from regular initial con-
ditions. (D) is the interior dust region. (ER) is the static exterior field (static Einstein-Rosen solution). R is the
Einstein-Rosen coordinate. (b) A similar diagram for a shell of cylindrical dust. Space-time, however, is not flat in
the vacuum region inside (I), but is dynamical [metric (19)] and even singular. The double solid line R= 0 is the

regular world line of the “axis” in the vacuum region.
8.
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back into Eq. (B2), and find the following solution near the singularity:

€= (ot N 1=(P+Q)mR P~} ot =1)%/ P+ 3(P+Q)2m?R , 2P~ (ot =t)¥/ P4 -]

+P(InR )" (ot =t)+ P(mRy™Y) Ry~ F( ot =£)1* 9/ Pt (16a)
e®=R C(t 1)/ P[1-CmR," P~ Y ot =1)%/ P+ O((ot =)/ Pyt + -], (16b)
eY=R (1Ot =) 1OV P[1-(1=C)mR =P~ ot =t)%/ P+ O((ot =t)R/ P)+ -+ ], (16¢)

where R(p), m(p), ot (p) are arbitrary integration
functions of p, and C is the same const as in met-
ric (14). The prime indicates 3/6p and P=1-2C
+2C%1,Q=P-1>0, and all higher-order terms de-
pend on m. From the Bianchi identity we also
have:

p=polp)e 87 (16d)
where ., is arbitrary integration function. After
a dreary calculation for G° up to O((,t -¢)~*/ %),
we find

olp)= DB p -2 ). (1m)

Thus p=0¢= p,=0e«>m=const, say, M, and solu-
tions (16) automatically reduce to metric (14).
(See Appendix A.) The situation is therefore com-
pletely analogous to the spherical case and we
know we are on the right track. m is our cylindri-
cal analog of the effective gravitational mass (per
unit length):

P (4
m(o)=s5prg) J. R Pualpldp. (18)

The intriguing thing, however, is that when we go
to the external field the total mass M is propor-
tional to E~%, and, contrary to expectations along
Newtonian lines, is not determined by the constant
C. This will be discussed again later.

Let us look at the boundary conditions at the axis
a little more carefully. Suppose we have just a
shell of dust, so that in Eq. (18) m(p<p,)=0 for
some inner coordinate radius p;. In this region
we obtain an exact solution to the EFE’s by setting
m=0 in Egs. (16):

e®=P(InR,) (,t =t)+,t’,
eB=RCS(,t-t)°/", (19)
eV =Ryt =)=/ P

If we now choose initial conditions R (0)=0, then
we are guaranteed that p=0 is the axis (e?=0).
Moreover, computing the curvature tensor com-
ponents (Appendix C), we see that p=0 is in fact
regular (curvature tensor does not depend on R,
at all). So we have perfectly regular initial con-
ditions on the axis in this case. Metric (19), how-
ever, is not flat, and is in fact dynamical and sin-

.
gular at ¢=,t(p) (Appendix C), unlike the spherical
case.

In the more general case in which yu remains
nonzero all the way up to p=0, if we again assume
R,(0)=0 then in order to make metric (16) and the
density p finite at R,=0 we need to impose regular-
ity conditions on m, e.g.,’

m,(p)Ro-P_l ~ O(l)

p—0

and

m(p)R,"F 2R, ~ O(1).

p—0

Such conditions will automatically make p=0 the
axis (e?=0). The space-time pictures of both pos-
sibilities are sketched in Fig. 3.

If one traces the reason why space-time cannot
be made flat (or, at least, regular) in the interior
vacuum m =0, one finds that the crucial reason is
that the constant C, which determines whether
space-time is flat or not [ Appendix C shows that
metric (19) is flat if and only if C=0, 1, or 3],
cannot vary. Could this particular phenomenon be
due to our restriction that the external field be
static? Let us look at some other example with
radiation.

Rao'” has discovered that if we choose an energy-
momentum tensor of the form

T=0kk,,
k kE=0 (20)
k., k=0,

then we can obtain explicitly a class of Einstein-

Rosen solutions if &, is chosen to lie in the radial
direction. T, represents high-frequency outgoing
(incoming) radiation (photons, neutrinos, or grav-
itons) depending on whether k, is outgoing (incom-

ing). The general solution is:
¢ any solution to

1 9 3 az]
2. = = = — ) — =3
Je w_[R 8R (R 8R> o2 ) ¥70s

and (i) if we choose k°=k® (outgoing), this implies
ko=—k p=k(U),
o=f(U)/R,
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where &, f are arbitrary functions of the retarded
coordinate U=T-R, and

X,R=R(w,nz+¢,rz+fk2/R) ,
X.T:2R(kaw,T°fk2/R)a

and (ii) if we choose k°= —k® (incoming), this im-
plies

o=k z=k(V),
o=f(V)/R,

where &, f are arbitrary function of the advanced
coordinate V=T+R.

x,RzR(w.R2+w.T2+fk2/R) )
Xr=2R(¥ gV r+fR*/R).

(21)

(22)

Take, for example, the incoming case, with f non-
zero only for a finite range of V. This would re-
present a “shell” of incoming high frequency pho-
tons converging onto the axis (¢ -« at R=0). From
Egs. (22) we see that the o term contributes noth-
ing to ¥, and only contributes a constant to y if
we integrate from inside the shell to the exterior
of the shell. So if we have for ¥ a static solution
¥=C InR plus other wave solutions, then we also
have for x a static solution x=C?InR+ [, 2dvf k?
+1InE plus other wave solutions in the vacuum re-
gion outside of the shell. We are therefore con-
vinced that the constant FE in y is related to mass
since it is affected by matter or radiation whereas
C remains unchanged. This phenomenon is inde-
pendent of whether we have gravitational waves or
not. This peculiarity of the constant C has been
discussed by various authors!® before, with simi-
lar conclusions. In fact, Stachel'® has proposed
that it might be the cylindrical analog of the New-
man-Penrose constants.'® (Compare, however,
the C energy of Thorne.?)

How well does the collapse picture of our special
model with dust represent more general cylindri-
cal situations (e.g., with pressure and gravitation-
al radiation)? At present we can only say a couple
of speculative remarks. Since the form of the sin-
gularity in the interior solution (16) is not of the
“caustic” type,?! we have high hopes that it will be
stable against pressure perturbations.? Thorne?®
has shown that a general vacuum cylindrical met-
ric, with waves or not, does not possess event
horizons. So the question concerning models with
gravitational radiation is whether naked singular-
ities can again arise from collapse with regular
initial conditions. Preliminary studies of dust
models seem to indicate that this is indeed possi-
ble, and the situation is similar to our solution.
Models with both pressure and gravitational radia-
tion remain to be investigated.

V. CONCLUSIONS

We have compared and contrasted three collaps-
ing-dust models with high symmetry. We see that
in the spherical case, the existence of trapped sur-
faces in the immediate vicinity of the singularity
is associated with the space-like nature of the sin-
gularity. We fail to construct a plane-symmetric
model that collapses into the naked singularity of
the external static field because the singularity is
repulsive. This together with the charged spheri-
cal dust model demonstrate that in many situations
repulsive gravity (or negative gravitational mass)
is associated with timelike singularity. On the
other hand, we succeed in explicitly constructing
a cylindrical dust model, which, starting with re-
gular initial conditions, collapses into the naked
singularity of an external static field. Although
the assumptions of cylindrical symmetry and no
radiation make this model a little too artificial,
its existence casts doubts, to a certain extent, on
the hypothesis of “cosmic censorship”.’
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APPENDIX A: RADIAL TIMELIKE GEODESICS OF THE
STATIC EINSTEIN-ROSEN METRIC

ds?= —e™X~¥ (dT?-dR?) + e® dz®+R%e~% dy?,
(A1)
y=CInR, x=C%lnR+InE, C<O0.

The radial geodesic equations are (¢=const, 2
= const):

(T2-R?)e™ %=1, (A2)

where the dot indicates 8/3¢ with ¢ the proper
time, and

(TR*°*-26)" =0, (A3)
The solution is (for incoming geodesics)

. - 2 _-

T=kyR*°™*"= kyR™?,

Q=2C2%-2C>0,

R=R(ot —t)"/P+R (st 1)

(A4)

+R2(0t _t)l+Q/P+O((Ot_t)l+20/P) ,
P=Q+1>1,
where

R,P=k P,



P? -p
2P o
R __R? (3P*-5PQ+Q?
=R, (P+2Q)

R,=

ds?= —dt >+ e2%dp®+ e?Pedz?+ e2red? |

(R

R R R}
e%e= g r=lot) [“k’i (P+Q)(ot-t)°“’+< R 9 R—(}) (P+2Q)(ot =12/ F40(ot 1)/ P 4+
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etc. and t= te=sR=0, the axial singularity. If we
now let R, (i.e., k,) and ,¢ depend on a certain la-
bel p, we can express metric (Al) in (¢, p, 2, ¢) co-
ordinates in the form

-

+P(InR,)’ (ot =t)+PQR R /Ry (ot =)' * 0/ P+ O((ot =)'+ 20/ PYs e v | (A5a)
1_ 2
ePe=RC=R °(,t -t)°/* [1+c &(ot -)9/PsC (’iﬂ _(__c_)g) (ot =)0/ Py } , (A5D)
R, R, R,
2
eyezR(l—C)___Ro(l—C)(ot_t)(l-C)/P{i1+(1_c)5_1 (Ot_t)Q/P+(1_C)<l_2_a_g E“E)W-”m/ﬂ“'] , (A5c)
R, R, 2R,
where the prime indicates 8/ap.
APPENDIX B: EFE’S FOR METRIC (15) AND THE SOLUTION p=p(p)e”*B-r (B4)

NEAR THE SINGULARITY

ds®= —dt®+e2%dp® + e** dz?+ eV dy?
(B1)
ut=084,

where a, 3,y are functions of p, ¢ and the allowed
coordinate freedom is p—~p’(p). The EFE’s with
dust source G, = —uu , %, reduce to the following
essential equations [where the dot indicates 3 /3¢
and the prime indicates 8/3p]:

Glo= e [Br+B B+ +3y' ~&(B'+y")]

=0, (B2a)
G'=(F+V+B*+y*+fy)—e "y’

=0, (B2b)
G22= (&+ d2+-;;+’;,2+&)',) —e_m(y”+y’2—a"y')

=0, (B2c)
Gsa=(&+d2+é2+ﬁ+dﬁ.) —e_za(ﬁ"+ﬁ'2—ﬁ'a’)

=0, (B2d)
G°)=(aB+av+B%)

_e-2a(ﬁ"+ﬁlz+yn+.y12+B/,yl_ﬁ/a/_,yfa/):# .

(B2e)

A more useful combination of G',, G?%,, G*,, and
G°, is given by

%(G22+ 633_600_611)__, &+&2_B'.;/+e-2aﬁly;
=—3. (B3)

Also from the Bianchi identity we have

where ,(p) is an integration function. Let us now
try a power-series solution near the singularity
of the form

e®=e%o[1+a (ot =)/ Pray(pt =£)22/ Ps. et
+0((ot =t)"9/ Pyt v o ]+ (ot —t)
(ot =) e O((ot =1)1* "/ Py,
n integers
(B5)

B=Bot 5 Inlot =1)+ Bylaf=1)/ P4 Byl gt =)/ P+

1-C
Y=Yt In(ot =2)+v,(ot =)/ P
+Yz(ot‘t)2°/P +o

where t, a,, 0, 0y oo oy, Bos By e -3 Y0y Y1y -+ -5 C
are undetermined arbitrary functions of p. Plug-
ging these into Egs. (B2) we find that the equations
are identically satisfied provided the coefficients
satisfy the constraints:

(i) C=const;

. C
(ll) B"/'y"= 1——C =360=C11’IR0;

¥o=(1-C)InR,,

(B6)
B,=CR,R,™';
y,=(1=C)R,R,™";

Rlz "m(p)Ro-P;
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where R (p), m(p) can be arbitrary functions of p;
higher-order coefficients are determined in terms
of R, R, in exactly the same way as Eq. (A5);

(iii) e%=t";
a,==-(P+Q)mR,~ P,
a,=P(InRy)’;
0,= HP+Q)>m?R,2P2,
a,=P(mR,")'R,"F, etc.

Thus the interior is identical to the exterior solu-
tion (A5) except for the fact that R, R,® is no more
a constant, but is proportional to m(p), an arbi-
trary function. Using (B3) we find that the noncon-
stancy of m precisely leads to nonzero mass den-
sity

iolp) = 21‘?9-’ m'(p)R,™F (B7)
and m(p) is the cylindrical analog of total gravitat-
ing mass (per unit length) inside the pth shell.

In general the series (B5) with coefficients (B6)
should converge in the same way as the vacuum
metric (A5). We expect the solution to be unique
(as determined by the external static field) because
it contains correctly the two arbitrary degrees of
freedom [m(p), the initial mass distribution, and
[R,(p)F, the initial “kinetic energy” distribution]
expected for a general irrotational nonradiative cy-
lindrical dust solution. (,t is of course nonessent-
ial because it can be changed by rescaling p). A
specification of the functions m and R, on an initial
partial Cauchy surface uniquely determines the
future (or past) development of the solution.

APPENDIX C: CURVATURE TENSOR

FOR THE METRIC (19)
We have
e”=P(InR,) (ot =t)+,t ",
ef=R S(,t-1)°/", (c1)

67=R(()1'C)(0t—t)(l'c)/P_

It is convenient to introduce orthonormal frames
and use the Cartan formalism to compute the cur-
vature tensor in this case. Let w' (Greek indices;
i,j,k=0,...,3) be the tetrad

w'=e%dp, w?=ebdz, wi=eldo,

dsz=Znu‘*"8’wj , my=diag(-1,1,1,1).  (C2)
7

Using the structure equations®

dw'= —Z wi AWt (C3)
3
and
é;R‘,k,w"Aw'=dwij+Zw‘k/\w"j , (C4)
» )
we find

wi=w’ =aw,
W= w°,= fw?,
w? = —wh=pe"%w?, (C5)
W= W= hw?;

o, 3

3 _ 1 _ -
W= -—wi,=y'e” W,

others zero, which implies

5D Ry A wt=0,
ik

1
3 E R2,,,w A wf=3% E R2 0! A w?
7% 7%

c/C -
=?(ﬁ'l> (ot =1) "X (WA W+ W' A w?),

éZRSO,,,w’A W
T*
= %ZRamwj’\ Wk
Tk

= c______(l—%)z(l—ZC) (ot =) X’ A Wi+ w' AWY),

so that the nonvanishing components of R',,, are

c/C _
R =R R = (5 1) Gt =072,
()

C(1-C)(1-2C)
R3003:R3013:R3113 =T —pz

(ot "t)_z 3
and those obtained by permutation of the indices.
Thus the curvature tensor is:

(a) independent of R,;

(b) singular at t=,t(p) except when C=0, 1, or 3,
in which case space-time is flat. C=0,1 corre-
sponds to Minkowski space in metric (14), whereas

=3 reduces metric (14) to the plane-symmetric
Taub® solution.
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