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%e discuss the completeness and "linearization stability" of the initia1-value constraints.
%e show that a11 closed solutions for which the intrinsic geometry possesses a conformal
sy~~etry are incomplete, but stable. All closed, vacuum, moment-of-time symmetry
solutions are incomplete, but only the flat case is unstable. This particular incompleteness
vanishes on the addition of any source Geld. A11 other closed solutions to the initial-value
constraints for which the trace of the momentum is a covariant constant are complete and
stable except those solutions where the metric and the momentum have the same exact sym-
metry. All such closed, vacuum solutions are unstable. All asymptotically Qat maximal
solutions are complete and stable. In this paper we treat only the linearization stability of
the initial-value constraints and make no statements about the dynamica1 stability of the solu-
tions.

I. INTRODUCf ION

In the preceding paper' (hereafter referred to as
I) we identified the independent initial data as the
conformal metric g', ~, the transverse, trace-free
part of the momentum o''~, and the contraction sca-
lar 7. The dependent data, determined by the ini-
tial-value equations, are the conformal factor Q
and the vector W', which generates the longitudinal
part of the momentum p, '~. Combining the indepen-
dent and dependent quantities gives the complete
initial data g, ~ and m'~ on the initial spacelike
manifold. These complete initial data then satisfy
the initial-value constraints. We shall refer to
g,&'s and m'~'s satisfying the constraints as "solu-
tions. " The evolution equations for g,&

=S,g,&
and

8'~ = @w'~ then determine the continuation of the
data off the initial surface. This continuation of

g&, and m" depends on the choice of a timelike
vector E; however, the resulting coordinate-free
spacetime structure does not depend on this
choice. '

As we saw in I, with this definition of the inde-
pendent data, the initial-value equations form a
coupled elliptic system in the case of a general
choice of r(x). However, the coupling is broken
by the special choice 7 = constant, where we find
that (LW)'~ -=0. The equations reduce to a single
quasilinear elliptic equation for the conformal
factor p. We have shown elsewhere' that in this
case a solution Q almost always exists, and that
whenever it exists it is unique, except vacuum mo-
ment-of-time symmetry solutions (see I).

In view of the complexity of the constraints we

expect that most solutions will be obtained by per-
turbing an exact solution. However, since the con-

straints are nonlinear we have no c priori guaran-
tee that solutions to the first-order perturbation
equations do in fact approximate solutions to the
exact equations. It is important to identify those
cases in which this guarantee can and cannot be
given.

Technically, the property we are investigating
is known as "stability" or "linearization stability'"
of the initial data. Stability is defined by the prop-
erty that all solutions to the first-order perturba-
tion equations are tangent to the space of exact
nearby solutions. The tangent to any continuous
curve of exact solutions obeys the first-order per-
turbation equations. A solution is stable if we can
invert this statement. In other words, a solution
is said to be stable if for every solution of the
first-order perturbation equations there exists
some curve of exact solutions to which it is tan-
gent.

Any curve of exact solutions generates solutions,
not only to the first-order perturbation equations,
but to the perturbation equations of all orders.
Therefore, unstable points are places where a
solution to the first-order perturbation equations
exists but this first-order solution does not lead to
any solution of the higher-order perturbation equa-
tions. This effect can only arise when the exact
equations are nonlinear. It is frequently caused
by the existence of some constraint w'hich must be
satisfied to permit an exact solution. An unstable
point mould be one where the first-order constraint
can be satisfied, quite frequently trivially satis-
fied, but one or more of the higher-order con-
straints leads to a contradiction.

The solutions to the initial-value constraints
form a subset C of the space of all metrics g&&
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and all symmetric tensor densities w'~(f g, &) x/v'~}).
The requirement that a particular solution p~C be
stable is entirely equivalent to the requirement
that C be a smooth submanifold of ((g,&) &&(v' )) in
the neighborhood of P.' If C is a smooth submani-
fold at p, then the tangent space to C at p (T~ C)
"models" the space of exact nearby solutions, and
every vector in T~ C is tangent to a curve in C.
Therefore, finding the unstable points of C is the
same as finding those points where it ceases to be
a smooth submanifold. Hence, the investigation of
completeness and stability helps determine the
structure of the gravitational phase space.

I et us define the space E as the space of all con-
forrnal metrics g'„, the space of all symmetric,
transverse, trace-free tensors g'~ on these met-
rics and all scalar functions v on the manifold,
i.e. ,

Following our identification of the independent ini-
tial data as being points in E, there exists a well-
defined, continuous map

as described in I. Then independent-data space
D is defined as being the range of 8, and is a sub-
set of E.

In our previous papers, and in the present one,
we are concerned with the mapping X= g '. D- C.
A point in E is a point in D if and only if the four
elliptic equations have a solution (g, W'). 3C is a
mapping if and only if this solution is unique. We
have already identified a subset of points in D,
i.e. , almost all points with ~= constant. For this
subset X is a mapping and generates all the solu-
tions to the initial-value constraints where the
trace of the momentum is a covariant constant.
In this paper we will investigate the completeness
and stability of these special points of C.

The existence of the mapping X simplifies the
analysis considerably. We will show that in the
neighborhood of these special points X is a dif-
feomorphisrn. Also, @X=X is an injection and
so locally C may be regarded as an embedding of
D in ((g&&)& {v'~)). Hence it is locally a smooth
submanifold. Therefore, the only solutions with
v = constant which may not be stable are those
which correspond to a "boundary point" of D.

Equivalently, we will show that, in general, each
of these ~ = constant points of D belongs to a com-
plete neighborhood of E over which X is well. de-
fined. In turn, each of the 7 = constant solutions
in C have a neighborhood which is the smooth im-
age of the neighborhood in D (also E) and so they
are stable. Each tangent vector to C is equivalent
to a perturbation in E, but each perturbation in E

generates a curve of exact solutions in C, because
X is well defined in a complete neighborhood. We
will show that the original tangent vector is tangent
to the curve of exact solutions we generate. This
analysis is carried out in Sec. IV. Thus, com-
pleteness of neighborhoods implies stability. How-
ever, incompleteness does not necessarily lead to
instability, as will be demonstrated below.

This analysis breaks down at the ~= constant
points which do not have a complete neighborhood
over which X is well defined. This happens when-
ever the 7 = constant points are boundary points of
D. In this case there exists some perturbation in
E for which the elliptic equations cannot be solved.
In effect, in examining completeness we are looking
for "forbidden directions" in the space E, Moreover,
if we think of a Hamiltonian formalism based on
the choice of g;& and o''~ as dynamical variables,
i.e. , as "coordinates" and "rnomenta" and v as
determining the "time, " then the present work
may be viewed as an attempt to map out the "ex-
tended" phase space of the gravitational field
(coordinates) x (momenta) x ( time }.

The form of stability that is being investigated
here concerns only the question of constructing
initial data. This is not the same as the question
whether the dynamical equations are stable, for
example, whether a singularity-free initial ge-
ometry will remain singularity-free at later times.
The latter problem is outside the scope of the
present paper.

The ellipticity of the equations does not guaran--
tee either completeness or stability on closed man-
ifolds (compact, without boundary). For closed
manifolds w'e will show that there are solutions
with incomplete neighborhoods and that these fall
into two classes: (1) cases in which the intrinsic
geometry admits a conformal Killing vector and
(2) uacuum solutions corresponding to a "moment-
of-time symmetry" (o"=0, 7=0). All these spe-
cial solutions are incomplete, all other v = constant
solutions are complete and hence stable. These
results are demonstrated in Sec. II. The solutions
with conformal IQlling vectors give rise to incom-
pleteness because in this case there is an extra
global integrability condition that must be satis-
fied, as pointed out in I.

Since X is well defined on the 7 = constant sub-
spaces of E, the ~ = constant subspaces of C are
smooth submanifolds of ({g,&)& (v'~)). Any first-
order perturbation w'hich stays on this submanifold
(v =constant) obviously is well behaved. This lim-
ited form of completeness breaks down only at the
moment-of -time symmetry solutions. The existence
of conformal Killing vectors has no effect in this
case. This particular result follows from the pres-
ent analysis and also from a previous paper, '
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where we considered the exact equations for arbi-
trary g,&, 8'~, 7 = constant. In this paper, how-
ever, we do not limit ourselves to 5m= constant
but consider all perturbations around a 7 = constant
solution. In this case the existence of a conformal
Killing vector does affect the completeness.

Not all points on the 7= 0 subspace of E belong to
D. Therefore, there may be some boundary points
and hence incomplete initial-data sets on the sub-
space. Vfe get this nonexistence result because a
globally uniform sign of the scalar curvature is a
conformal invariant on closed manifolds. Almost
all closed Riemannian manifolds can be conformal-
ly mapped into a manifold with constant scalar
curvature (Yamabe's "theorem"). ' Since the sign
of this scalar curvature is a conformal invariant,
it is not unreasonable to expect that the incomplete
solutions are those for which the global sign of the
scalar curvature vanishes, i.e. , vacuum moment-
of-time symmetry solutions.

As we described above, poipts corresponding
either to a vacuum moment-of -time symmetry so-
lution or to solutions possessing an exact confor-
mal Killing vector have the incompleteness-of-
neighborhoods property. This means that these
neighborhoods have "fewer dimensions" than the
generic ones, but not that there are necessarily
instabilities associated with these points. At these
points, the tangent directions (first-order pertur-
bations) are restricted (incompleteness}, but in
almost every instance one can show that there do
exist curves of exact solutions to the constraints
having the given first-order perturbation as tan-
gent. The unstable cases we find here are (1) the
closed flat vacuum moment-of-time symmetry
solutions, an instability found by Brill and Deser, '
and (2) all vacuum solutions which have both an
exact Killing vector and for which the momentum
has the same symmetry as the metric. Fischer
and Marsden' have proved previously, using dif-
ferent techniques, that one obtains stability upon
excluding (1) and (2}. They also stated' that cases
(1) and (2) may be unstable.

On open manifolds, the problem is quite differ-
ent. In this case, for convenience and for the sake
of physical interpretation, we use the physically
natural boundary condition that the data set is
asymptotically flat. We do this so that the space-
time is asymptotically flat and then we can use
Lorentzian observers at infinity. This automati-
cally excludes the incompleteness associated with

conformal Killing vectors because they do not van-
ish at infinity. As distinct from the closed mani-
fold case, we have no restriction on the global sign
of the scalar curvature and all points on the 7 =0
subspace generate solutions. Therefore we have
no difficulty with the moment-of-time symmetry

solutions either and can show that all v = constant
solutions on open manifolds are complete and hence
stable. Of course, we need only consider maximal
solutions, i.e. , 7=0, because we wish 7 to vanish
at infinity.

Finally, in Sec. V we discuss completeness and
incompleteness of nonvacuum and nonmaximal so-
lutions. The only major change that occurs is that
the addition of any source field transforms the
closed, moment-of-time symmetry solutions from
being incomplete to being complete. However, the
addition of sources has no effect on the incomplete-
ness due to the conformal symmetries of the mani-
fold.

This paper, in proving the existence of complete
neighborhoods, uses the implicit function theorem
on Banach spaces, fo1lowing Choquet-Bruhat and
Deser, who proved the completeness and stability
of open flat initial data. ' The "smooth submani-
fold" description of such results is due to Fischer
and Marsden. ' However, we apply it to the exact
formulation of the initial-value equations given in
I. By this means we are able to give a unified
treatment of the completeness and stability prob-
lem on open and closed manifolds, with no re-
strictions on the strength of the unperturbed grav-
itational field.

II. EXISTENCE OF SOLUTIONS
ON CLOSED MANIFOLDS

v' =(p 'o' +y'Wg [(I,W)" + —'g" 7'],

where (P, W') form a solution to

1BV'g+ o'~o;, P '+—2 o "(LW)„y '-Ay

(»)
(Sb)

-[gv' -(LW)" (LW},q]P'=0, (4a)

We also require p&0.
We define independent-data space D as being the

subset of {g„)&& (o'~] x (7) for which Eqs. (4}pos-
sess a solution. ln seeking solutions to Eqs. (4) on
a closed manifold we have to place suitable conti-

The conformal Killing form of a vector 8" is de-
fined as

(LW)" = V' W'+ V' W' - -', g" V W' .

A conformal Killing vector T' is one for which the
conformal Killing form vanishes identically, i.e. ,

(LT)" =0.

Given a point in independent-data space (g,&,o', r) we construct a solution (g,&, w ) to the ini-
tial-value constraints as
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nuity conditions on the initial data. Reasonable
ones are

where C' stands for HMder continuity. ' This will
guarantee

(LW)rr + g2, 44

and hence

(6)

fr(&4 &. 'yi y ) =o (8)

where l runs from 1 to m. The implicit function
theorem says that these functions can be solved for
y in terms of x in a neighborhood of x,

y, =ur(x„. . . , x,) (1 «l «rrr),

so long as the Jacobian determinant of f with re-
spect to y does not vanish. Now

g]), % ~C '

To show that a given point in independent-data
space is an interior point w'e wil, l have to prove
that Eqs. (4) have a solution in a neighborhood of a
given solution. To do this we will make use of the
implicit function theorem on Banach spaces.

The implicit function theorem on Banach spaces
is exactty analogous to the standard implicit func-
tion theorem of elementary analysis. In the stan-
dard theorem let us have n independent variables
(x„.. . , x„), rrr dependent variables (y„.. . , y ),
and m implicit functions relating them:

The nonvanishing of the Jacobian implies that the
matrix (sf,/sy, ) can be inverted, and so (sf/sy) dy
is an isomorphiam from the set of m variables dy
to itself.

The implicit function theorem on Banach spaces
is as follows. Let us have three Banach spaces
E, I", G and a continuous mapping O': E xI"- G.
Given u, ~E, v, ~ I" such that P(m„v, ) =0, and if
also 5„'dv at (u„v, ) is an isomorphism from I" to
G, then there exist neighborhoods 6u of u, and 5v
of v„such that for every u ~ 5u there exists
v e 5v such that P(u, v) = 0.

To use this theorem on the stability problem we
define the Banach space E to be the triplet ({g„.),
{o'rj, v) and the Banach space F to be ({p f, {W'j).
They will have to obey the continuity requirements
of Eqs. (5) and (6}and the norms are the natural
Ones, l.e. ,

II lie= liar lie. + II@"ll. , + II ~II,

The Banach space G will contain scalars and vec-
tors which belong to C' . The mapping 5 will be
the one defined by Eqs. (4). One can see by in-
spection that it is a continuous mapping from
Exp to G.

Now 5„'dv is of the form

8'V54-1)7o"tr, rrlr
—'5rt) -2 ~ (Lw)r, p '5 p+~)o'M(L5W)„Q '-&5&

—5[4) v~ - (LW)'r(LW), r]p'5/+2(p'(Lw)'r(L5W), r, (12a)

6V,(I 5W)' +6 V (L, W)' + —(I,W)' V 5/+30, (LW)' V,P+3g" ~V, r . (12b)

(LW}r,r =00 0 y g $g 8

then 5„'dv becomes

(8V 5Q —7 —o'r)rrr5$+ ~ (I 5W)(r It5$-
~S

(13)

This can be rewritten as

'44, v, (44)4'r'). ))4)

{8V'5p —(8g "&r'r&r&r+~w'}5p

+2g ''*rr" (L5W) . V-,(L5W)") . (15)

%e wish to consider 6„'dv, when evaluated at some
solution (u„v, ) with a=constant, i.e. ,

8V'5Q —(8g ')r"o&, +&q')5/= S (16)

can always be solved for a unique 5p so long as
(1/g)o' )r, r +-,r' does not identically vanish. This
is equivalent to demanding that the original solu-

Obviously Sg '0 "cr;, +-', 7' ~ 0.
So long as the manifold does not possess a con-

formal Killing vector P, i.e. , (L T)' = 0, V,(I 5W)'
is an isornorphism from vectors to vectors. " This
is because V ~ L, is a Hermitian operator, whose
only harmonic functions are conformal Killing vec-
tors. ' Therefore, so long as the source is orthog-
onal to its harmonic functions it can be inverted.
Hence it is an isomorphism except when the ma, ni-
fold possesses a conformal symmetry. Similarly,
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tion not have vanishing momentum m''~, i.e. , not be
a moment-of-time symmetry solution. 5„'dv is an

isomorphism from F to G except (1) at a moment-
of-time symmetry or (2) when the intrinsic geom-
etry has a conformal Killing vector. Excluding
those two cases, the implicit function theorem
shows that every solution with 7 = constant has a
complete neighborhood of nearby solutions.

The reason for the incompleteness of the neigh-
borhood of time-symmetric solutions arises from
the fact that E(I. (4a) has an integrability condition
on closed manifolds due to the fact that

Therefore

—[8&'-(L&)"(L(ti)U]4)'} d'x=0. (18)

This shows that the choice of independent data can-
not be made completely arbitrarily in this case.
The fact that the general solution with 7 =constant
has a complete neighborhood of nearby solutions
means that at a 7 = constant solution this constraint
can be satisfied to all orders in perturbation theo-
ry. However, at a moment-of-time symmetry so-
lution this constraint places a restriction on per-
turbations of the independent data. Consider the
following perturbation:

(5(1)gT7 5(2)gTY (l . 5(l)co g 0 5(2)o if 0 . 5(s) & 5(2) & 0)+YT ~ +TT (19)

The first-order perturbation equations have as
solution

(5()) 4, (l 5(z) ~ () ) (20)

Z~g ~=0, Z~m' =0. (22)

Nontrivial conformal Killing vectors (V, T' 0 0) do

and condition (18) has no first-order part. This
condition does have a second-order part however.
Because of (19) and (20), this condition is

J ~g g-'~"~" ~"'~"d'x = 0 (21)

which cannot hold for 5~"o~~~e0. Therefore, all
closed, vacuum moment-of -time symmetry solu-
tions are incomplete.

On the other hand, in analyzing the stability of
this system, one does not specify the second-order
perturbations in advance as we did in (19). Instead
one tries to pick them so as to satisfy the second-
order equation. In the case when 5~~g~&~e0, the
second-order equation has an additional. term
5~'g;& 8". So long as 8' 40, we can pick 6'g, ~

so as to satisfy the second-order constraint.
Therefore, e&cePt fox flat space, this incomplete-
ness does not lead to instability. "Because 8'~=0
for flat space, the term 6 'g„A" cannot contri-
bute and hence flat space is unstable.

The reason for the incompleteness of solutions
possessing a conformal Killing vector is that the
momentum constraint has a global integrability
condition. This result is shown in paper I. How-

ever, this incompleteness implies instability only
in a certain special case in which there is a
"double" symmetry defined by a &Q)&pg vector
7.' such that"

not cause instability problems. These results may
be seen in a straightforward manner by exam-
ining the integrability conditions of the perturbed
momentum constraints. In first order, one finds
that

0= Wg 257'+875/ V';T'+RQ7. .&T'

+ ~5g;, ZrP "]d'x,

where

0 = —,
' g eg'„'Z,,P"d'x. (24)

If +P"t 0, (24) implies a restriction on 5g,~,
i.e. , incompleteness. However, Z~P' = 0, as in

(22), implies that there is no first-order inte-
grability condition. In general, the second-order
integrability condition has the form

0= g —,& 7+876 p v, T'+35 ~y&. , T'

where

+ —5 g 2 P' +f'T ]dsx (25)

f' =f'[second-order products of first-order
variations] .

Again the terms similar to those in (23) vanish
if T' satisfies (22). In this case (25) reduces to

7]"= v gP".
If V, T'+ 0, this condition may be readily satisfied
by choice of the variations 57 and 5g,&, and simi-
larly in higher orders. %'hen 7 = constant, V; T'=0
(Killing vector), (23) becomes
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(27)
III. EXISTENCE OF SOLUTIONS ON OPEN MANIFOLDS

NEAR MAXIMAL SOLUTIONS

which mill not be satisfied in general. Note that
we make no use of the condition ~=constant in
demonstrating this instability.

It is interesting that the incompleteness of the
neighborhood of solutions with conformal Killing
vectors can be removed by reducing the size of the
manifold E. %e do this by restricting our choice
of 6v by demanding that in the presence of a con-
formal Killing vector the gradient of v be locally
orthogonal to the symmetry vector, i.e. ,

(28)

In the absence of symmetry me have no restric-
tion on 7, but in the highly symmetric case where
me have three linearly independent conformal
Killing vectors, for example, in a homogeneous
cosmological space, Eq. (28) limits us to r= con-
stant.

%e can prove that any solution with constant 7 to
Eqs. (4) has a complete neighborhood of nearby
solutions in the Banach space E, which is the same
as the original E, but with the extra requirement
that v must obey Eq. (28). To show this we set up
our Banach spaces as before, but mith the follom-
ing changes: E is defined as above; I' is the same
as I', but instead of vectors 8" me have equiva-
lence classes of vectors W' = W'/Ker(f), i.e. , iden-
tify vectors that differ by constant multiples of
T'. 8:: E xF- G is again defined by Eq. (4), but
the range of F, i.e. , G, is slightly different from
G. The vector part of G is defined by

(29)

The problem that is posed in this section and
its resolution are almost identical to that of Sec.
II. Again we seek solutions to Eq. (4) but now we
wish to consider the problem when posed on an
open topologically Euclidean manifold. In this
case we mill have to introduce boundary conditions
at infinity. For convenience and so that we can dis-
cuss the gravitational field in terms of Lorentzian
observers at infinity we will only consider those
gravitational fields which are asymptotically flat.
%e will a.iso limit ourselves to considering only
those spaces which have a well-defined, finite
mass at infinity. This requirement and its conse-
quences are discussed at length elsewhere. " Here
we will satisfy ourselves with writing down a suit-
able set of asymptotic conditions on the initial
data. We seek solutions to Eq. (4) that satisfy

Q- 1, 8'-0 (31)

at infinity. The finiteness of energy also requires

Q-1-0 —,vp 0 —g, v Q 0

(82)

h, ~
= hP( + (L V)„+ghf, ~ .

Then we require

(83)

at infinity. We require g„f„at-infinity, where

f„ is a flat metric. It has been shown elsewhere"'
that any symmetric tensor may be decomposed into
a transverse, trace-free part, a longitudinal part
of the form (I V)", and a trace We p.erform this
decomposition on h&, = g„-f,~, using f„as a base
metric:

Then

+~ g Q'7, T dx.

The first term on the right-hand side can be shown

to be zero by partial integration; the second term
vanishes since 7 belongs to E. Therefore, the
vector part of G is globally orthogonal to the con-
formal Killing vector. Now S„'dv is just as in
Eq. (15), but now V~(1.5W)' zs an isomorphism
between W' C I" and the vector part of G. Hence
8:„'du is an isomorphism (except at a moment-of-
time symmetry, of course) between the new domain
and range. Therefore me can use the implicit func-
tion theorem to shorn that a complete neighborhood
of solutions exists (in Z) to any r = constant solu-
tion.

cr 0 31~„, 7' 0 (85)

at infinity. Asymptotic requirements (34) and (35)
are sufficient to guarantee (81) and (32), and if
Eq. (4) has a solution, (g,&, s'~) is asymptotically
flat, with finite energy and momentum.

To show the existence of a complete neighbor-

at infinity. Note that we need not require any par-
ticular asymptotic behavior on the part of h, &

given
by v, V&+V, V, . This, of course, is purely a co-
ordinate transformation and cannot have any effect
on the physics of the situation. Finally we require
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hood of solutions we will again use the implicit
function theorem on the same three Banach spaces
E, E, G. The functions that belong to E and E
must now satisfy the asymptotic requirements
listed above, and we alter the norm to reflect this.
For example

First of all, decompose 6m" with respect to
g(o) .

5w" = 5w" + (L5 w}"+ -'5wg'"

Consider the following curve in the space of in-
dependent variables:

lie= llg(, II.. +max Iv, t(p, »'"
I

+max It(vr I+ ~ ~ ~ .

Again the mapping F: E &F-G will be defined

by Eq. (4) and 8",d(» as in E(I. (15). In this case,
however, 0„'dv will always be an isomorphism
E- G, because (1) W'-0 at infinity excludes all
conformal Killing vectors, and (2) V'5Q (5Q = 0 at
infinity) can always be inverted. Therefore every
maximal solution on an open manifold has a com-
plete neighborhood of nearby solutions in indepen-
dent-data space.

g»((t) =g» j + 5g j(t

v(t ) = v, + (6w +&v" 6g, ——,
'

Wg v 5g) t .
g

To define»v" (t), first solve

V,(I.6W)" + ,' g"V—,5v = 0

for 5W, where

av(t)57=
Bt

2 1
(5(» +»v 5g»» g Wg v5g) ~

3 v'g

(41)

(42)

(43)

IV. STABILITY OF SOLUTIONS KITH a =CONSTANT

The tangent to every continuous curve of solu-
tions to the initial-value constraints obeys the
varied initial-value equations. The inverse ques-
tion is whether for every solution to the varied
initial-value equations there exists a curve of real
solutions to which it is tangent. This is the cri-
terion for stability. %e have shown in the previous
sections that almost all the solutions we have con-
sidered, i.e. , those without a, eonformal Killing
vector, have a complete neighborhood of nearby
solutions. In these cases one would find it difficult
to imagine that these points are not stable. This
section will contain a constructive proof of their
stability.

The varied constraints take the form

——(w 'w(, ——,w )+—w 'w, 5g„+—w" 5w„2 2 i'f k

Now define (v"(t ) = TT part (with respect to g;, (t)j
of

o,"+ [ —
w g '»»v' 5g„+ v g L (5 w - 5W)" + 6w~»

+i~i v6g" ~ ~i g "v5g]t (44)

g», (t) = 0'(t ) g(((t) (45)

w" (I) = 4( '(I)(("(t)
+ P'[ g(t )]"'[(LW)"+-,'g" (t)v(t)], (48)

where t»»t»(t), W'(t)) are solutions to

The existence theorems we have proven in Secs.
II and III show that there exists some t, &0 such
that for all t (0 ~ t& t,) fg(»(t), cr" (t},v(t)) gener-
ates a solution (»t((t), W'(t)) to E(ls. (4) and hence
generates a curve of solutions (g(&(t), w'((t)) to
the initial-value constraints. Now

if-- w(» 5g(( ——5w —5~R = 0, (37)

V, 5w" + 5,(r'.,)w" = 0. (38)

When v =constant, i.e. , w" =»v(»+ 2&gg "v, where
o" is TT, E(I. (37) simplifies to

-[-.'v'-(LW)" (LW).,]4'=0, (47a)

V[/»(LW)' ]+ Qg' (t)V(v(t-) =0. (47b)

At (g~»", , oo», v, ), i.e. , (@= 1,W'=0) we get

--o o 6g+ —6g+-o o hagi + 7o hagi&
g if 8 g f k2g

+ —(v 6w(& — 5w —6~R = 0. (39)
2 if 7

g 2 g

Given any solution (5g((, 6w'() to E(ls. (38), (39),
the technique is to write down a curve in indepen-
dent-data space, use the existence of solutions to
show that this curve generates a curve in solution
space, and show that the tangent to this curve is
the original (5g„, 5w'() we started from

dgif 4 (o) ~4 ~ gi
dt Bt Bt

d 71 if 8$ — if 8$ 9g'~

dt 8t Bt Bt4oo +~& g f7o +

+ (tJg L +2g

+-. ~gg" ~ ——z~g 7if ~g 1 ~g
8t Bt

where (s»t(/5 t, s W'/8 t) are solutions to

(48a.)

(48b)
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8V — 0' 0'ij -8 —
s i — g gij — 0' cTj

eQ ee, , a 1 „ag 2,, „Bg, 2 ijag, , 2, eR'
+ —o + g I -5A

Bt g "Bt Bt ' Bt g "Bt g ' Bt g Bt Vg Bt

3 9T
(49a)Bt

I + g'7 —=0.BW

Bt Bt

Equation (43) and Eq. (49b) are identical. There-
fore

are well behaved except in the presence of con-
formal Killing vectors.

(5o)

Next we will show that

+Bwr'r+-,'vg 75g" —~~Wg g"r6g]. (51)

This is the same as showing that Eq. (44) is al-
ready TT to first order in t. The trace condition
is obviously satisfied:

V. STABILITY OF NONUACUUM
AND NONMAXIMAL SOLUTIONS

%hen we consider solutions with sources we have
to add (T~„S') to our set of independent data, where
T* ~ 0 is the energy density of the sources and S'
is the current density. Under conformal transfor-
mations they scale as

(58a)

(58b)

ij gij+ 0
"e ea"

at " et

The transversality condition requires

(52)

(53)

The way in which these quantities transform under
a conformal transformation can be strongly justi-
fied by physical as well as mathematical argu-
ments. This question will be discussed in detail
in a future paper. " In this case the equations for
(Q, W'} take on the following form:

Substitution from Eqs. (38) and (43) is sufficient to
demonstrate this. Substitution of Bo"/B t and
B7/B t into Eq. (49a) and use of Eq. (39) reduces it
to v, [{B'(I,W)" ] + —,'4 'v'r+ Bw S' = 0. (59b)

Bv'p+g 'oUa, &p '+16wT~Q '+2g "'a"(f W)„P

-Ry —[-', v' —(I.W)"(I,W)„]P' =0, (59a)

BV Bp/B t —(7g 'a' a';& +tf++ v )—=0,

~Bv ——(Bg o '&r + —,r ) —=0.
et 'j at

(54)
If we limit ourselves to the case where T = con-
stant, S' =0, we have already shown that a solution
almost always exists to these equations. These
solutions to the initial-value equations have simple
completeness properties also. In this case we get

This has the unique solution

9$—=0
et (56)

8:„'dv=( Bv'(}p —(Bg 'g"g„.+64T*+ 87 )6$

+2~ (f,BW);, ; v~(f. BW}' j .
Wg

(60)

Now we can immediately evaluate Eq. (49) to give

(57a)

dt
g ij (57b}

exactly as wanted.
The stability analysis works for both open and

closed manifolds. Of course (Bg,&, 5w") must obey
the same continuity and asymptotic requirements
that we need for (g;, , w''}. All the operators used

The only situations where this is not an isomor-
phism a,re the situations we have already investi-
gated, i.e. , closed mass free moment--of-time
symmetry solutions and closed solutions possess-
ing a conformal Killing vector. The only important
new feature is that all closed nonvacuum moment-
of-time symmetry solutions are complete and

hence stable. All open solutions are stable. Of
course, these solutions are stable under all per-
turbations, including the addition of infinitesimal
mass distributions and currents.

So far in this paper we have only discussed spe-
cial solutions, i.e. , those with 7=constant. These
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+4(LW)' (I W);)]6/,

V,(LSW)" + 6(LW)"V,6y.

(Sl)

This set forms a system of strongly elliptic, sec-
ond-order, linear differential operators. Happily,
the standard theorems for a single elliptic oper-
ator carry over to the case of an elliptic system of
operators. In particular, the standard theorem,
that if the homogeneous equations have only t:he
trivial solution, then the system of operators de-
fines an isomorphism, holds, i.e. , "uniqueness
implies existence. ""

Just from inspection it is obvious that if the
manifold has a conformal Killing vector T', then
the homogeneous equations do have a nontrivial
solution (6$, 6W'}=(0, T'). Therefore all closed
solutions to the initial-value constraints with a
conformal symmetry are incomplete.

From an extension of the well-known maximum
principle, we have that a sufficient condition for
the existence of no other harmonic functions to
the system of operators is that

Sg 'g'~a(;+4g "'o"(I,W);, +4(LW)'~(LW);,

--', T''~ 0, (62)

or

are especially interesting because we have demon-
strated that these solutions do exist. If we relax
the condition that v = constant (or equivalently con-
sider 8'40), the problem becomes more compli-
cated because we have to solve four rather than
one quasilinear equation. However, we expect
that the existence and uniqueness results of the
simpler problem will almost completely carry
over to the more complicated problem and permit
us to construct a large number of nonmaximal so-
lutions to the initial-value constraints.

For these solutions, as in the earlier cases, the
question of completeness reduces to whether or not
F„'dv is an isomorphism. In this case F„'dv be-
comes

SV'64 +2[g '~'o-" i (LW}'~ j (LSW)„

[Sg -'o' &ro+4g "'o (LW), &
——,7'

can be much weakened, and that we really need
this expression to be positive only "on the aver-
age, " i.e. ,

Wg 'A+ —o' g, j -g '"O' I.@',j d'x&0.1

Since

o'~(LW)„d'x =0,j 3 ~»
r

V

we then have

ug (l"8+ —o"o„)d'x &0.j

Unfortunately, it is possible to construct coun-
terexamples to the result (66), and therefore it
may only be treated as a guide to completeness.
However, it is interesting in that it relates the
average sign of the scalar curvature to the ques-
tion of completeness. On open manifolds the sign
of the scalar curvature is closely related to the
sign of the total energy, and this condition lends
credence to the conjecture that even if negative
energy solutions exist, they may be incomplete as
solutions of the initial-value equations.

Since the addition of any source field, no matter
how small, completes a closed solution at a mo-
ment-of-time symmetry, it is possible to argue
that this incompleteness is in some sense unim-
portant, and does not place any real restrictions
on investigations of realistic solutions to the ini-
tial-value constraints. On the other hand, the in-
completeness associated with closed solutions
which possess a conformal Killing vector appears
to be much more important because it is not a
property confined to a small number of "artificial"
solutions, but is common to all closed solutions,
be they vacuum or nonvacuum, maximal or non-
maximal, which possess a conformal symmetry.
This fact could have important implications for a
number of topics in general relativity, inasmuch
as all closed solutions with symmetries corre-
spond to atypical points of gravitational phase
space.

(3)ft+ &iJ& g
—sl2&o(LW) ~ 0

1
ij fj (63)
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