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The initial-value equations of Einstein’s theory of general relativity are formulated as a
system of four coupled quasilinear elliptic equations. These equations result from a covari-
ant orthogonal decomposition of symmetric tensors and a generalized technique of conformal
deformation of initial data. Mathematical properties and global integrability conditions of the
equations are discussed. Physical interpretation of the independent and dependent data is
given for both spatially closed and asymptotically flat initial-data sets. In the latter case,
the four dependent functions constitute long-range scalar and vector potentials which deter-
mine the total mass and total linear and angular momenta of an isolated system. The defini-
tions of linear and angular momenta suggest a unique extension to asymptotically flat three-
spaces of the group of translations and rotations of flat three-space. In turn, the “almost
symmetries” thus defined lead to Gaussian theorems expressing the equality of certain sur-
face and volume integrals for total linear and angular momenta. An interpretation of the
scalar and vector potentials for closed three-spaces is also given. In the Appendix we treat
the special case of conformally flat initial data.

I. INTRODUCTION

The initial-value problem of general relativity
is the problem of constructing a complete set of
Cauchy data on a spacelike hypersurface for
Einstein’s equations.! These data are subject to
constraints or initial conditions. One must sep-
arate the freely specifiable or independent quan-
tities from the dependent ones, which are deter-
mined in terms of the independent data as solu-
tions of the initial-value equations. In this paper
we present the initial-value problem as a system
of four coupled quasilinear elliptic equations.?
The independent data describe the “wave” degrees
of freedom of the gravitational field and the freely
specifiable parts of any matter or other field
sources that may be present. The dependent data
are generalized potentials. The long-range be-
havior in an asymptotically flat space of these po-
tentials determines the mass and linear and angu-
lar momenta of the gravitational field.

There are four key ideas which underlie the

present approach: (1) The Cauchy data refer only
to the instantaneous physical state of a gravita-
tional field, not to quantities which describe the
velocities and accelerations of observers relative
to a given spacelike slice, which are irrelevant

to the initial-value problem.® Therefore, we shall
use as initial data the spatial metric g,, and the
“momentum” 7** =g'/2(Kg® - K **), K,, = extrinsic
curvature, which do not depend on how the space-
time coordinate system is to be continued away
from the initial surface. These quantities form
Cauchy data for the gravitational field. However,
the initial-value constraints can be written com-
pletely in terms of g,, and 7°°, and show that these
objects are not freely specifiable. (2) For a given
three-geometry, represented by g,,, the “momen-
tum” 7%® can be orthogonally and covariantly de-
composed into a transverse-traceless part, a
traceless part determined by a three-vector, and
a trace part proportional to the metric. This de-
composition plays a key role in identifying the in-
dependent and dependent variables. (3) The sca-
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lar determining the trace part above may be re-
garded as a freely specifiable function that serves
to label or identify spacelike surfaces. This is a
useful realization of the idea of employing extrinsic
or momentumlike functions as “time” variables.*
The particular scalar we have used is denoted by
T= %g'l/zn. This measures the rate of contraction
of local three-volume elements with respect to
local proper time and may therefore be called the
“Hubble function” of the slice. It has proven con-
venient to stipulate 7=constant (spatially constant)
in previous work, but, as was pointed out,® this

is not at all necessary. (4) The independent data
are invariant with respect to conformal trans-
formations g, = s = $%gap, ¢(x)>0. The decom-
position of 7% maintains all of its important fea-
tures under such a deformation of structure.
Moreover, ¢(x) and the vector part of 7°° are the
dependent data which act as generalized long-range
potentials for the gravitational field.

In Sec. II the momentum constraints are ana-
lyzed. In Sec. III the behavior of initial data under
conformal transformations is presented, including
transformation of the stress-energy tensor T*".
Section IV assembles the previous results and
presents the general initial-value equations as a
coupled, quasilinear elliptic system. Boundary
conditions for isolated systems and physical in-
terpretation of the initial data for asymptotically
flat spacetimes is given in Sec. V. The definition
of linear and angular momentum in terms of the
dependent variables leads naturally to a unique ex-
tension of the standard flat-space symmetries
(i.e., translations and rotations) to asymptotically
flat spaces. This is discussed in Sec. VI. The
final section, Sec. VII, describes the interpreta-
tion of initial data for spatially closed universes.

Certain simplifications occur in the special case
of conformally flat metrics on the initial space-
like hypersurface. In this case, the method of
producing part of the independent data by global
decomposition of arbitrary symmetric tensors
(Secs. II and III) may be replaced by a simpler,
partially local, technique that is discussed in the
Appendix.

In the present paper, we have emphasized the
general formulation and physical interpretation
of the initial-value problem. In subsequent works®
we shall treat important technical aspects of the
initial-value equations (“linearization stability”’)
and formulate and interpret the initial-value prob-
lem when the sources of the gravitational field
are specific massless fields (spins 0, 3, and 1).7

II. MOMENTUM CONSTRAINTS

In terms of g,, and p® =g~/ 1%, the initial-
value equations have the form

¥, 0" =81T§=-87S" | (2.1)
bapp® =5p*-R=-167T % . (2.2)

The external sources are described by the local
three-vector current S®=-T&=- T «u"Bj and the
local energy density T %= ThHu"u, where T} is
the stress-energy tensor, u* is the timelike unit
normal of the initial surface, and B; is an inte-
grable projection operator (Bju"=0).

For any g,,, the momentum tensor p®® can be
orthogonally and covariantly decomposed into the
form®

P =S (LW 43 Tg™ (2.3)

where T=%p, p=g,p°°. Here, S® is the trans-
verse-traceless part of p* (S®=p3%), and the
longitudinal or vector part of p? is given by

(LW =VeW +VoWe-2g% v, We . (2.4)
Thus,

b
’

79 =% 4 uab +%g1/2,rga
where 0% =g'/28% and u®=g'/2(LW)*. The mo-
mentum constraint (2.1) may now be written as
three equations determining W°, regarding 7 and
S® as given:

Vo (LW =(A, W) ==3V*®T-81S" . (2.5)
The vector “Laplacian” A; is given by®
(A W) =AW +5VH(V,WP) +REW?® | (2.6)

where A=g% v, V, is the standard Laplacian.

From Eq. (2.5) we see that the transverse-trace-
less part of p® (i.e., S®) is not constrained by Eq.
(2.1). The trace-free part of p? is essentially the
shear of the field «*(x) generating the initial sur-
face. Since p® - 5pg® =S +(LW)* we see from
(2.5) that the constrained part of the shear, (LW)%,
has as its local sources both currents S* and non-
uniform contraction V®7+#0. Given 7 and S¢, (2.5)
is solved for W°. Then p* is constructed by
adding any transverse-traceless tensor S to
[(LW)* +3 7g].

Transverse-traceless tensors may be con-
structed by a straightforward procedure.® Given
any symmetric tensor 7%, define its trace-free
part ¥**=T% - 1 Tg®. Then one can put S®=¥%%,
where

Y =g — (LV)® (2.7
and
Vo (LV® =(A, V) =V,¥% . (2.8)

Notice that the operator A, is used twice: once to
construct the longitudinal part of the solution of
(2.1), and again to construct S®. These two pro-
cedures may be regarded as being independent
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because S is not constrained by (2.1).

Although (2.5) and (2.8) both employ 4,, there
is an important difference between them on closed
manifolds. A global integrability condition can
arise for (2.5) that does not affect (2.8). Before
deducing this condition, let us note a few prop-
erties of A,. It is a linear, second-order vector
operator that has been shown to be both strongly
elliptic and self-adjoint.® In closed manifolds,
the only nonvanishing vectors it can map to zero
are conformal Killing vectors, i.e., special sym-
metry vectors C° satisfying £; g, = %8, V,C° or
(LC)*® =0. This means that for an equation of the form
(A.2)*=)% we can solve for Z* if and only if \°
is globally orthogonal to C°. Applying this to (2.5)
gives

%fg‘“c" v, Td3x+81rfg‘/2C“S¢d3x=0 . (2.9)
The same fact applied to (2.8) gives
fgl/an Vb\I’“dsx=—%fg‘/z(LC)‘,,‘I’"dsx

=0. (2.10)

However, (2.10) is identically satisfied for all
trace-free ¥*’s since (LC),, =0. Thus the exis-
tence of a conformal Killing vector leads to no
restrictions in the construction of ¥{#; a unique
(LV)® always exists.

Equation (2.9) constitutes, however, a global
integrability condition on the permissible choices
of 7 and S on closed manifolds with conformal
Killing vectors. Let us look a little more closely
at the vacuum case, where we have v,p**=0. It is
not difficult to see that there must arise, in the
case that C* exists, such a restriction on the trace
of p®. Multiplying V,p® by an arbitrary £ and
integrating gives

0= [8'/2,v,p" d%

=% [ 2" (ke dx (2.11)

since there is no boundary term in a closed mani-
fold. We have put

(KE)ap=Va ks +Vp &a -

For an arbitrary £°, (2.11) simply expresses the
orthogonality of divergence-free tensors and arbi-
trary “Killing forms” (K¢),,. However, if we have
a conformal Killing vector C° [i.e., (LC)® =0], since

(LO)* =(KC)* - §8* v,C*=0,
the orthogonality condition says that

(2.12)

fg‘/’pV..C"d‘xh fg“zc“ Vepdix=0. (2.13)

Thus, on a closed manifold with conformal sym-
metries, the trace of a transverse tensor is not an
arbitrary scalar function. A similar result holds
when S®#0. This shows why there can be global
integrability conditions on the functions on the
right-hand side of (2.5) but not in (2.8). It is sim-
ply a consequence of Einstein’s equations.

For asymptotically flat spaces, the above argu-
ment does not lead to global integrability condi-
tions. This is because the neglected boundary
term in (2.11) is nonvanishing even when we have
an exact conformal symmetry C° because C®#0
at spacelike infinity. We shall point out in Sec. V
that it is this very surface integral which defines
the total linear and angular momenta of a gravita-
tional field.® Therefore, global integrability con-
ditions may be said to arise in closed worlds with
exact conformal symmetries because the total
momentum of a closed world must vanish. This is
analogous to the fact that the total mass and elec-
tric charge of a closed world must also vanish.
We shall see in Sec. III that equivalent global inte-
grability conditions arise when the “Hamiltonian
constraint” (2.2) is taken into account.

III. CONFORMAL TRANSFORMATIONS

In order to incorporate the Hamiltonian con-
straint (2.2), we introduce a strictly positive
scalar function ¢(x), which will be determined by
(2.2) as we shall see in Sec. IV. This function will
be treated as a “conformal factor.” We subject
the metric to a conformal transformation g,,

- ¢*g,, which leaves the “conformal metric” 3,

=g v/ 8g,, invariant. We wish to see how ¢(x) may
be taken into account in the analysis of the mo-
mentum constraints. In order to do this, we as-
sume that

pab=§ab+(zw ab+% Tg_-ab (3'1)

satisfies (2.1) for a metric g,, = ¢*gq, Where we
regard g,, as given and ¢(x) is arbitrary (so far).
The longitudinal part of % is

IM® =T W+ W =352V, W . (3.2)

The transverse-traceless part of p% is $*. We
construct S® independently of the other parts of
P ® according to the following prescription: For
& given, construct S as described in Sec. II.
Note that if we define

§ab§¢—1osab , (3.3)

then S* is transverse-traceless with respect to
2. Since S is transverse-traceless with respect
to g,,- That is,

v, 5% =¢"1%v,5%=0 , (3.4)
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5=2,5%=¢75=0. (3.5)

Just as a conformal metric g,, is defined by 3,,
=g™/3g,. so we may likewise define an explicitly
conformally invariant form of S by G® =g'/35 %
=g%/88%_ Then (3.4) and (3.5) can be written in a
form totally independent of ¢, i.e., V,6%=0 and
8,3 =0. Here V, refers to covariant differentia-
tion with respect to the “conformal connection”
I'%,, defined in terms of ,, and Z°(g,, 2% = &)
just as I'j, is defined in terms of g,,. These results
hold for any ¢(x)>0 and follow from the definition
of covariant differentiation, with g,, = ¢*g,, and

T3=T3.+207 (0, V. p+ 0, V, ¢ — £, V' ) .

(3.6)

From (3.2) and (3.6) we find for any ¢(x)
(W) =™ LW)® , (3.7
3TE%=30"17g% . (3.8)

Notice that we have not transformed 7 and W*®. The
stress-energy current is chosen to transform ac-
cording to

§?~5e= ¢ 105 (3.9)

The reasoning behind the transformation (3.9) is
explained in Sec. V.
Since p* satisfies by assumption

V,p*=-815"° (3.10)

and because §® is not constrained by (3.10), we
may write the momentum constraint (2.1) in terms
of unbarred variables. First we write
VPP =V,(IW)*+5V°T
=T, (LW +52 0, 7
=-87r5%=-87p19S5° . (3.11)

Multiplying through by ¢'° and using (3.7), we
obtain

%[V, (LW)® +6(LW)* v, Ingp]|= -3 ¢°¢** 8, T— 87 S°
(3.12)

or

Vo [¢(LW)*]= =3 ¢°V  T-87S° . (3.13)
We may denote the operator on the left-hand side
of (3.13) by (A,W)®. For any ¢(x)>0, A is strong-
ly elliptic and self-adjoint, as can be readily
verified. Its only “harmonic” functions on closed
manifolds are, again, conformal Killing vectors

of the given g,,. This leads in vacuum to a global
integrability condition on 7:

fgl/2¢6C°VaTd3x=0, (3.14)

if C* is a conformal Killing vector. Moreover,
for any ¢(x), (3.14) is precisely equivalent to the
global integrability condition found in Sec. II. This
follows from the fact that if g,, = ¢*g,,, then g'/2
=¢%g'/2, V,7=V,7=9,7, and the (contravariant)
conformal Killing vectors C® of g,, and g,, are
identical [cf. (3.7)]. Similar conclusions follow
when S?#0. In the case of asymptotically flat
initial data, no such global integrability condition
arises.

In summary, suppose we are given g,,, 7, and
S°. We construct S as described in Sec. II. For
any ¢(x) >0, we solve

(A W)==4%¢®VeT-87S? (3.15)
or, equivalently,
(ALW)* +6(LW)*® V,Ingp=—3 V* 7 - 8185
(3.16)
for W°. Then

5ab = ¢-10§db + ¢‘4 [(L[,V)“b +%g“b T] (3.17)

satisfies the momentum constraint and $% = ¢ 19§ ®,
(ZW)* = ¢ (LW)®, and 3§ 7=% ¢ g™ 1 are, for
any ¢(x)>0, mutually orthogonal in the global inner
product formed with respect to the g,, metric.

1V. INITIAL - VALUE EQUATIONS

The conformal factor ¢ is determined in the
following manner. In terms of the barred variables
defined above, which are assumed to satisfy the
constraints, (2.2) becomes

(gacg:bd-%Eabgcd)ﬁabﬁlm—ﬁ=—16ﬂ T: B (4.1)
The scalar curvatures of g,, and g,, are related by
R=R¢p™-8¢7°a¢, (4.2)

where Ap =V2¢=g% Vv, V, ¢ is the ordinary scalar
Laplacian. The local proper energy density Tx
is transformed according to

Ti=¢"°T%, (4.3)

as will be discussed in Sec. V. Substituting (4.2),
(4.3), and (3.17) into (4.1) gives the Hamiltonian
constraint as a quasilinear elliptic equation de-
termining ¢:

-8A¢p==Rp+Mrr ™" +2Mr ¢
+(My -572) ¢ +167TE0™3, (4.4)
where
Mrr =81: 8455,
ML =8ac8aS“ (LW)* (4.5)
My = 8ac 8oa (LW)™ (LW)*! .
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The combined operations of decomposition of
7% and conformal mapping of g,, and 7°° may be
regarded as defining a certain mapping 9, whose
properties are useful in discussing the initial-
value equations. To define this mapping, let
{gi,}x{n*’} be the collection of all Riemannian
metrics and symmetric tensors. Let C be the sub-
set of this collection that satisfies the constraints
(2.1) and (2.2). Define E ={Z,,}x{0®}x{7}. Then
8 is defined as the mapping §: C -~ E corresponding
to our reformulation of the Einstein constraints
(2.1) and (2.2) as a quasilinear coupled elliptic
system (3.13) and (4.4). One of the central issues
in the initial-value problem is to determine the
true space of independent data D C E, with D de-
fined as the range of §. The method of approach
followed to resolve this question is to determine
those elements of E that lead to unique solutions
of (3.13) and (4.4). For these elements, (3.13)and
(4.4) define a mapping 3¢: D—-C and 3¢ =¢™'. This
problem is treated in the following paper.®

The initial-value equations have now been written
as four quasilinear coupled elliptic equations for
the four unknown functions W* and ¢. If one
chooses 7=constant and S®=0, (3.13) implies
(LW)® =0. Equation (4.4) is then simplified by
the fact that M; =M =0. This case has been ana-
lyzed previously.'® It was found that for “almost
every” choice of independent data (g,,, S*, T%,
and 7=constant), a solution ¢ exists. Whenever
it exists, it is unique, except in the special case
T¥=S8S%=17=0. In this case, (4.4) becomes linear
and homogeneous in ¢ and any constant multiple
of a given solution is also a solution. However,
this special case of nonuniqueness only holds for
closed vacuum manifolds. On asymptotically flat
spaces, the boundary condition ¢ =1 at infinity
assures a unique solution.

In the most general case, (3.13) and (4.4) are
coupled and we have not yet achieved a complete
theory of the existence and uniqueness of solutions
for all assignments of 7(x). However, in the fol-
lowing paper,® we analyze the case in which 7=con-
stant + 67(x) and S*=6S%x). We find that for small
57(x) and 6S%(x), a solution for W* and ¢ always
exists and is unique.

V. PHYSICAL INTERPRETATION AND BOUNDARY
CONDITIONS FOR ISOLATED SYSTEMS

The conformally invariant, freely specified
quantities Z,,, 6%} and 7 constitute the independent
data. We pointed out in the Introduction that 7 may
be regarded as an essentially kinematical variable
serving to label spacelike hypersurfaces, either
directly or implicitly. It has been argued else-

where that 3,, and 6 characterize the “wave-like”

—_—

or “pure spin-two” part of the gravitational field.!!
They form dynamical “coordinates” and conjugate
momenta in an unconstrained Hamiltonian formal-
ism for gravity, similar in spirit to the quantities
denoted g}'f and 11.;'.{ in the work of Arnowitt, Deser,
and Misner.”? The canonical framework provides,
as is well known, a convenient framework for the
definition of gravitation radiation in terms of ex-
citations of the dynamical variables. As has been
previously shown,'! the excitation of g,,, its devi-
ation from (conformal) flatness, is determined by
computing the three-dimensional conformal curva-
ture tensor 3%.

In the case of nonvacuum problems, data char-
acterizing currents and energy density must also
be prescribed on the initial hypersurface. In this
paper, we have regarded these quantities as pos-
sible vector and scalar point functions on the ini-
tial manifold, rather than, for example, building
them up from other fields or from “fluid” models.
We have found it convenient to prescribe only
those features of S® and Tx that are consistent
with an a priori knowledge of the initial metric only
up to a conformal factor.'® To justify our trans-
formations Tx=¢ " T% and 5°=¢"'°S? we may
appeal to dimensional considerations. In keeping
with the desire that the decompositions of g,, and
7% be consistent with a canonical interpretation,
we regard the unit of action to be fixed, as well
as the velocity of light, ¢ =1. In this case, inertial
mass scales as reciprocal length and the dimen-
sions of T are (length)™, which implies Tx
~ ¢ T%. Similarly, if S° refers to the compon-
ents of S in an arbitrary coordinate basis, then
the physical components S? (referred to a local
orthonormal triad), scale as $°=¢"8S?. This
implies S$%=¢"'°S®. Of course, arguments such
as this one can only lead to an over-all power of
¢ and do not tell us whether the quantities should
pick up inhomogeneous terms involving derivatives
of ¢. The simplest choice is the one we have used.
Moreover, as is discussed in detail in a subsequent
paper, these transformations are uniquely derived
by considering the sources to arise from massless
fields, which have well-known “good” conformal
properties. In this case of massive fields, the
problem has a different character and will be
treated elsewhere. If the stress-energy tensor is
phenomenological, then the local rest mass of
the source is not fundamental and the use of the
simplest transformation is indicated.

It is of considerable interest that the so-called
dominant energy condition is preserved under our
transformations.'® This condition is of great
importance in proving a number of the singularity
theorems and is obeyed by all known forms of
matter. It may be stated as follows: Let u* be
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the four-velocity of a local observer at rest with
respect to the initial manifold, i.e., #* is the unit
normal of the surface. The local four-momentum
per unit proper three-volume T* can be written
as T""u,. The “dominant energy condition” as-
serts that 7" is nonspacelike. Therefore,

T,T#=S°S, - (T%P <0 (5.1)
or

s,5¢°

(_;‘_1‘)5 <1. (5.2)

Our conformal transformations assert that
S§%~¢7108% S, -~ ¢°S,, TE—=¢™®T%. Therefore,
(5.2) may be incorporated into the independent
initial data and it is guaranteed that the resulting
stress-energy tensor T*” will satisfy the dominant
energy condition on the initial manifold.

The physical interpretation of the conformal
factor ¢ goes back to Brill’s work on gravitational
waves at a moment-of-time symmetry.'* Brill
showed in that case that the asymptotically O(r™")
part of ¢ contains the total gravitational mass of
the system if the initial data are assumed to be
asymptotically Schwarzschildian, i.e., asymptot-
ically conformally flat and spherically symmetric.
Only with this requirement can the total mass be
physically well defined.

In recent work, this idea has been generalized
by Geroch'® and ourselves.!” We have shown that
the total energy E is given by

1675 =8¢ Vo-d$, (5.3)

where it is assumed that the arbitrarily specified
“base” metric g,, asymptotically approaches a

flat metric f,, faster than O(»™'). This assumption
is justified by the requirement that the total energy
E be finite. In that case, it was shown that g,

~fu +O(r~(3/2*9)) €50, Applying Gauss’s theorem
to (5.3), we can express the total energy in terms
of a specific volume integral by using (4.4):

167E =~ 8§ V-3

—BIJEAcpdax

f Vg d®x[160T5 ™2 +Mpp ¢ +2Mm ¢!
v

s -379) ¢ -R] . (5.4)

The finiteness of E also leads to the requirement
that T*~0 (»r~3*9), g%~ O(r~(/2+9)),

The vector W* is, like ¢, basically a long-range
potential whose dominant asymptotic term is
O(r™'). From (3.13), we require that 7—0(»"?*9)

and S%—~O0(»"®*9)). Not surprisingly, in our ap-
proach the asymptotically dominant terms of W*°
determine the total linear and angular momentum
of the gravitational field.'® The total linear and
angular momentum of a gravitational field can be
defined as an integral at spacelike infinity over
the gravitational momentum as®

Pi=§ guiars, a-1,...,8 (5.5)

where .5? are the three translational and the three
rotational Killing vectors at spacelike infinity.
Now we know that

nij=0ij+gl/2(Lw)ij+%g1/2gil T,

and if we assume that the independent variables
(0%/, 7) are chosen to fall off fast enough, then (5.5)
reduces to

p? =£g“25?(LW)” azs; . (5.6)

This can be seen fromthat fact that an elementary
canonical analysis'® of the action principle of gen-
eral relativity shows that the generator of spatial
displacements is the expression®®

=29, [¢5(LW)®] =16mp° , (5.7)

whose value is determined by (3.13). We wish to
pass via Gauss’s theorem to a surface integral for
total momentum. In order to do this in a physically
and mathematically well-defined manner, one
needs to take the inner product of (5.7) with a vec-
tor field £ defined everywhere on the manifold.
This vector field must have special properties in
order that the final result express the equality of
a surface integral and a volume integral over
“sources.” The source integral should not involve
W*®. Multiplying by £, and integrating, we find

161rP€=161rfP° £.g"/2d%

=2 [ £ 5 VLU . (5.8)
From Gauss’s theorem we find

167P, =-2f %L, (LW)® g'/2 a2,

+fgl/2¢°(1,s)ab (LW)® dox . (5.9)

We see that if £ is an exact Killing vector, (K£)*
=0, or an exact conformal Killing vector, (L£)* =0,
then the second term on the right-hand side of (5.9)
vanishes. Hence, using (3.13) and (5.9), in the
case of £ being an exact symmetry, we have the
desired relation between total momentum and its
sources. If £ corresponds to a translational
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Killing vector, then P, represents a component of
the total linear momentum. If £° represents a
rotational Killing vector, the P, represents a com-
ponent of total angular momentum. Of course, it
is well known that in the presence of exact sym-
metries, exact “Gaussian” conservation laws can
be established. The advantage of the present for-
malism is that exact symmetries are not needed

to establish the “surface integral equals volume
integral over sources” result. In other words,
this formulation suggests a unique generalization
of the entire flat three-space group of exact trans-
lations and rotations to asymptotically flat spaces
corresponding to the gravitational fields of iso-
lated systems possessing finite total energy and
momentum.

VI. UNIQUE EXTENSION OF FLAT - SPACE SYMMETRIES
TO ASYMPTOTICALLY FLAT SPACES;
LINEAR AND ANGULAR MOMENTA

To see how this unique extension of the orthog-
onal group comes about, consider the second term
on the right-hand side of (5.9) and note that its val-
ue, as well as the value of all the other integral
expressions entering this analysis, may be com-
puted in either the base metric g,, or the final
metric g,, = ¢*g,, with no change in value. Thus,

[ 0% (LW (L8 a2

= [ (@'% e Boa WY (LeY a%x . (6.1)
We may again apply Gauss’s theorem to obtain
f @1/2 BacBoa (Zmab (Zg)cd d3x
-2§ 2. W (ZH® (@S,

—2](?71/2ZGCW°§D(Z§)°°d3x. (6.2)

We want both integrals on the right-hand side of
(6.2) to vanish. Thus, we first require that £°
must satisfy everywhere on the manifold the equa-
tions

V, (LE)® =(A,£)°=0. (6.3)

These equations have only the solution £°=0 if as
boundary condition we demand &£° goes to zero at
infinity. Thus, on a topologically Euclidean mani-
fold, (A, W)*=0 =W*=0 since W* vanishes at
infinity. However, the natural boundary condition
on £° is that it becomes at infinity a flat-space
translational or rotational Killing vector (ex-
pressed in any coordinate system that is being
employed). In this case, £° does not vanish at

infinity and (6.3) can be solved uniquely with the
stated boundary condition and asymptotic falloffs
listed earlier in this section.

The proof of this assertion has its simplest form
under the certain conditions which are analogous
to standard potential-theory assumptions. Suppose
we consider a finite system which has only been
radiating gravitationally for a finite time. Since,
as is well known, gravitational radiation cannot
reach spatial infinity in this case, we assume that
the conformal curvature 3*° and 3°, as well as the
“slicing variable” 7, have compact support. Outside
a finite region, the only parts of the gravitational
field that can be felt in this case are its long-range
potentials ¢ and W°. Hence, outside a finite do-
main the metric is conformally flat and possesses
in this region exact conformal symmetries denoted
by £{,), including those corresponding to Killing
symmetries (translations and rotations) at infinity,
where ¢ =1. Now put £°=7" + £(,, and substitute
into (6.3) to obtain

(A == (B &))" - (6.4)

We wish to find #° such that 1 goes to zero at
infinity. Since the right-hand side of (6.4) is ac-
tually zero outside a bounded domain, we have a
strongly elliptic linear system (similar to Poisson’s
equation) which always possesses, for each choice
of £(,, aunique solution for n°. Hence our £°
exists uniquely.

There are several further points of considerable
interest. First, as expected, if £, is an exact
symmetry everywhere on the entire manifold, then
we find n° =0 and £° = £(,,. Second, we see that
asymptotically n° - 0+0(r™"). Clearly the value of
the O(»™") part will not influence the surface
integral for P,. However, the exact unique
form of 7* is needed when P is equated to a vol-
ume integral over sources (see below). Finally
we note that on closed manifolds, (A;£)"=0 is
completely equivalent to (Z£)* =0, the condition
for an exact symmetry, since there are no bound-
ary terms in this case. This is analogous to the
well-known fact?! that on closed (Riemannian)
manifolds, Killing’s equations (K£)* =0 are equiv-
alent to the second-order equations V, (K£)® =0.

Returning to (6.2), we see that the surface inte-
gral term also vanishes since W*~0(»™") and
(Z£)® ~O(»~2) at the slowest. Thus, if & is con-
structed as indicated, the total linear and angular
momenta obey the following Gaussian theorem:

167P¢ = - zf @)% & (ZW)* g, dS,

=16ﬂf(§’)l/2§a5b§abd3x +f(§»)x/2 £ aa‘rd”x .
(6.5)



This expression may be readily rewritten in terms
of the freely specified (unbarred) data and ¢:

167P = -2 § 6%, (LW)® (g)}/2 ds,
=161rf (9)'/28, % d%x

+f (&) /2¢8c% 8, Td3x . (6.8)

We have verified that these expressions trans-
form in the expected manner if the “almost sym-
metry” frame is subjected to “displacement of
origin” and “rotation of axes.” Their correct be-
havior under asymptotically Lorentzian trans-
formations (tilting the slice at infinity) can be
inferred from their numerical equality with the
surface integrals appearing in correct pseudo-
tensor-type surface integrals. We plan to treat
these matters in more detail elsewhere.

As a final observation, we can see why Eqs.
(3.13) and (4.4) must in general be coupled in ¢
and W This is simply because in relativistic
mechanics the total energy and (linear) three-mo-
mentum are coupled by the well-known relation
E?=my +P2% Of course, when P=0, E=m,. There-
fore, consider an asymptotically flat, nonsingular,
topologically Euclidean vacuum solution of Ein-
stein’s equations. Moreover, suppose 7=0, a
maximal slicing or “foliation” of the solution. Then
we have vanishing total momentum. In this case,
the choice of a maximal foliation defines a global
“rest frame” for a collection of singularity-free
gravitational “waves.”

VII. CLOSED UNIVERSES

In closed universes, it is meaningless to speak
of total mass, linear momentum, angular momen
tum, or electric charge. The latter quantities
are defined by boundary integrals, and a closed
world by definition has no boundaries. Yet it is
still meaningful to speak of gravitational “waves”
when a smoothed-out background can be defined.??
It is also meaningful to speak of dynamical field
“coordinates” and momenta, as exemplified, for
example, in the “quantum cosmology” program.?
We have discussed elsewhere® the relation of our
variables g,, to the anisotropy variables and of the
7 =constant foliations of closed worlds to the Q-
time foliations of Misner® and others.

In a closed world, our prescription does not
allow an a priori specification of the total volume
of the universe. This scale of the universe is
found from the solutions of the initial value equa-
tions by computing
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volume = f VZ d3x

- [ o vz ax, (7.1)
where Vg is arbitrary. In this case, W*° does not
define total momentum, but when W*° #0 in a closed
world, a “preferred” spatial direction is singled
out. This arises from nonuniform expansion and/
or currents of matter or other fields. Suppose we
describe a closed world in a frame comoving with
the objects of nonvanishing rest mass. Further-
more, assume that the spatial slices one obtains
in this way have an average (i.e., volume) ex-
pansion that is at any epoch, independent of posi-
tion in space. Then the only way W* can arise

is from existence of currents of massless objects
such as photons or neutrinos. Such currents cause
the anisotropy of the world to vary. Another cause
of “dynamic” anisotropy is of purely gravitational
origin through */, This transverse-traceless
object determines, locally, a direction in space
k°, where %k, =0. Both & and W* result in
“dynamic anisotropy” through

£,80 =280 Bra8 20+ 5%, (1.2)

where [ =g5/¢(LW)®. However, the effects of
gravitational and nongravitational anisotropy

changes can always be distinguished in the large
because G and [i® are globally orthogonal ten-

sors.

APPENDIX: CONFORMALLY FLAT INITIAL DATA?S

Suppose the arbitrarily specified “base” metric
g i8 flat: g, =f,,. Then the construction of the
transverse-traceless part S of the momentum p®
can be somewhat simplified since covariant deriva-
tives commute on flat space. Thus, as is well
known, the tensor

pab=f-1€a""'€b” V,, vjAm{ (Al)

satisfies v, p® =0 on flat space, where A, is any
symmetric tensor and €™ denotes the unit permu-
tation tensor of weight +1. The vanishing diver-
gence of p® is not a conformally local attribute of
p° unless the trace of p? also vanishes. This will
not be true in general because from (Al) we have

P=gpp® =VA-V"V'A,,. (A2)

Hence, (Al) is not useful in conjunction with the
conformal mapping that is needed to simultaneous-
ly satisfy the Hamiltonian constraint. However,
this defect can be easily remedied by defining a
symmetric tensor B,, as the trace-free part of
Ay

B, Ay -3 nl, (A3)
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where A=f%A ,. Now in (A2) we may set p=0 to
obtain

v:A=%V"V'B,,. (A4)

Treating the traceless tensor B,, as given, (A4)
can be solved for A. Using this result in (A1) will
produce a transverse-traceless tensor

S0 =f_l€a"m ebii v, V!(Bm‘ +%Afm‘) . (A5)

For any ¢, we then find that §% = ¢7'°S% is trans-
verse-traceless with respect to any conformally
flat metric g, = ¢*f,,. One may now proceed to
satisfy the constraints just as in the general case.
In particular, for a maximal (7=0) initial data set

with no currents (S*=0) to be constructed on a
Euclidean base metric, the complete solution is
obtained by solving for the two scalars A and ¢
from (A4) and

-8A¢p =M ¢~ +1671 TLp™°, (A8)

which is (4.4) specialized to the present example.
Equations (A4) and (A6) are two elliptic equations
for scalar “potentials” A and ¢ with ordinary flat-
space Laplacians. These equations are not coupled:
Solve (A4), then (A6). An immediate consequence
which has been previously deduced by less trans-
parent methods is that the total mass of such a
solution [cf. (5.4)] is manifestly positive.?®
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