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Perturbative calculations in a unified gauge-field model
of strong, weak, and electromagnetic interactions*
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We calculate several corrections to zeroth-order symmetry relations in a unified gauge-field model of
strong, weak, and electromagnetic interactions. Among the topics discussed are the proton-neutron mass
difference, the pion mass, the pion mass difference, and parity-violation effects. We discuss the
perturbation scheme and establish the gauge invariance of the results. The pion mass originates from
electromagnetic corrections and we find the value of 37 MeV. The pion mass difference is not affected
by the inclusion of weak interactions and the hard-pion corrections to the mass difference are
approximately 0.5 MeV.

I. INTRODUCTION

One of the most important aspects of renormal-
izable gauge-field theories is that, owing to the
strong implications of gauge invariance, various
physical quantities are calculable and finite. This
was first recognized by 't Hooft, ' who calculated
the electromagnetic mass difference for an iso-
triplet of fermions in a model based on the O(3)
gauge group. The origin of this phenomenon is
that certain counterterms which are necessary to
render the theory finite are prohibited by gauge
invariance. This implies that corresponding
quantities vanish in lowest order and pick up pos-
sible contributions from closed-loop corrections.
For this reason this phenomenon was called a
"zeroth-order" symmetry. ' The absence of
possible counterterms then implies, because of
the renormalizability of the theory, '' that these
quantities are finite and calculable.

As stressed in particular by Weinberg, "the
reason why this phenomenon is so important is
that such theories can provide a natural explana-
tion for the existence of approximate symmetries
in nature, such as isospin or chiral SU(2) SU(2)
symmetry. At present, a large variety of gauge-
field models have been investigated in which many
examples of zeroth-order symmetry relations have
been found. The most simple examples concern
the electromagnetic mass differences of hadrons"
and the muon-electron mass ratio. ' Another
promising kind of zeroth-order symmetry is re-
lated to the so-called pseudo-Goldstone bosons. '
Such bosons can be present if the interactions
among spinless fields have a higher symmetry
than the total Lagrangian for all values of the
parameters in the Lagrangian. In the tree approx-
imation the pseudo-Goldstone bosons are neces-

sarily massless, and possible contributions to
their masses from closed-loop corrections must
again be finite due to the renormalizability. Al-
though it is not clear which approximate symme-
tries in nature are realized in this way, the gen-
eral analysis of zeroth-order relations, even in
unrealistic models, is important in order to de-
termine their characteristic features and to ob-
tain a general estimate for the higher-order cor-
rections. This may also provide us with new
limitations for the construction of more realistic
models.

Some time ago Weinberg carried out the one-
loop corrections to zeroth-order symmetries in
a general renormalizable theory. In particular
he considered the electromagnetic mass differ-
ences of fermions, and the masses of pseudo-
Goldstone bosons. He showed that the fina1. re-
sults were gauge-independent and finite in the
presence of a corresponding zeroth-order sym-
metry. However, in the case that all vector-bo-
son masses except that of the photon were roughly
equal and larger than the fermion masses, the
proton-neutron mass difference generally tended
to give the wrong sign. Weinberg also made an
estimate of the pseudo-Goldstone-boson masses,
and found them to be of order eM, with e and M
a typical gauge-field coupling constant and mass,
respectively. In the case of different vector-bo-
son masses, M is supposed to be the largest
mass. If we want to consider the pions as pseudo-
Goldstone bosons, this indicates that in the pres-
ence of heavy intermediate vector bosons, the
pion mass will be several orders of magnitude
too large.

In this paper we will calculate the one-loop cor-
rections to several zeroth-order symmetries in
a unified gauge-field model of strong, weak, and
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electromagnetic interactions. The model, which
was previously introduced in discussing the cur-
rent-algebra properties of gauge-field theories, "
is a natural extension of the 0 model" to a gauge-
field model of strong interactions, combined with
the Weinberg-Salam model" of weak and electro-
magnetic interactions. Models of this type were
first constructed by Bars, Halpern, and Yoshi-
mura" and by de Wit. ' A similar model for only
strong and electromagnetic interactions was pro-
posed some time ago by Bardakci. " The strongly
interacting particles in our model are two triplets
of vector and axial-vector mesons, presumably
the p and &„atriplet of pions, the nucleon dou-
blet, and one pseudoscalar and two scalar neutral
mesons. The weak and electromagnetic inter-
actions are mediated by three massive vector bo-
sons and one massless photon, respectively.
Apart from leptons there is one additional spin-
less particle, as in the Weinberg-Salam model,
which interacts only weakly.

The calculations are performed in a continuous
set of gauges. For pedagogical reasons we will
discuss in some detail the Ward-Takahashi iden-
tities for the propagators in the tree approxima-
tion. We will make extensive use of those iden-
tities in the one-loop calculation, and show that
they are crucial for the cancellations among the
gauge-dependent parts of our results.

One of the calculated corrections to a zeroth-
order symmetry relation is the proton-neutron
mass difference. As mentioned previously, Wein-
berg's result indicated the wrong sign in the case
that all vector-boson masses except the photon
mass are roughly equal and large. The result in
this model is even more discouraging. It turns
out that the sign is wrong for all possible values
of the parameters. This confirms the general
picture that in models based on SU(2) gauge groups
the proton is always heavier than the neutron in

the one-loop approximation. '
Another correction to a zeroth-order relation is

the pion mass. As was already mentioned in Ref.
10, the pions in this model are pseudo-Goldstone
bosons if an additional reflection symmetry is
superimposed. In that. case the PCAC (partial
conservation of axial-vector current) hypothesis
was proved to be correct, and the origins of the
chiral-symmetry breaking are the weak and elec-
tromagnetic interactions. The first problem is
that according to Weinberg's estimate the pion
mass will be too large because of its proportion-
ality to the weak intermediate-vector-boson
masses. But in addition it was found in a particu-
lar model by Lee, Hawls, and Yu,"and by Lieber-
man" that although the charged pions picked up
a mass due to electromagnetic corrections, the

neutral pion remained massless in the one-loop
approximation. This necessarily implied that the
electromagnetic pion mass difference was enor-
mous. In order to resolve this problem it was
proposed that all the pseudo-Goldstone pions in
a realistic model should probably pick up their
mass in the two-loop approximation, thus being
of order O'M.

In our model we have also performed a calcula-
tion of the pion mass, and we will discuss these
problems extensively. Our main results are that
the pion mass is not proportional to the heavy
intermediate-vector-boson masses. If we use the
experimental values for the p and A, meson
masses, we find that the pion mass is equal to
37 MeV, which is within one order of magnitude
of the experimental value. This is certainly an
encouraging result if one wants to consider the
pions as pseudo-Goldstone bosons. We also find
that the neutral pion remains massless in this
approximation. However, we will argue that this
is a result of the symmetry structure of the model.
Owing to the Abelian character of the electromag-
netic gauge group the neutral pion is an exact
Goldstone boson" in the case that the charged
pions are pseudo-Goldstone bosons. " This ob-
servation shows again an undesirable feature of
Abelian gauge groups, "and provides another re-
striction for the construction of realistic models.

Finally, we calculate the pion mass difference
for the case that the pion is not a pseudo-Goldstone
boson. In the soft-pion limit our result is in
agreement with the current-algebra calculation
of Das, Guralnik, Mathur, Low, and Young. '
As was also found by Dicus and Mathur, ' the con-
tributions from the exchange of weak heavy inter-
mediate bosons are negligible. For hard pions
the corrections from the weak interactions, which
are in principle comparable to the corrections
found by Langacker and Pagels~ in the context
of chiral perturbation theory, cancel in the final
answer. We also compare our result with that of
Gerstein, Lee, Nieh, and Schnitzer, "and find that
the hard-pion corrections, which are manifestly
finite in our case, are somewhat smaller and of
the order of 10%.

In Sec. II we introduce our model. The perturba-
tion scheme and the choice of the gauge are dis-
cussed. Ward-Takahashi identities are given in
Sec. III, where we also calculate the tadpole dia-
grams. Section IV contains the calculation of the
proton-neutron mass difference and a discussion
of higher-order parity-violation effects. The
pion mass and pion mass difference are calcu-
lated in Sec. V. Finally, in Sec. VI we give our
conclusions. Some of the technical details we
give in Appendixes A-C.
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II. A UNIFIED MODEL OF STRONG, WEAK, AND

ELECTROMAGNETIC INTERACTIONS;

CHOICE OF THE GAUGE

In this section we will first discuss our unified
model, which is a, natural extension of the v

model" to a gauge model of strong interactions,
combined with the Weinberg-Salam model. " This
model was originally introduced in Ref. 10 as an
example in the discussion of the current-algebra
properties of gauge-field theories. The gauge
group of the strong interactions is the chiral
SU(2) S SU(2) group, with corresponding gauge
fields X'„and 1"„(a=1, 2, 3). The weak and elec-
tromagnetic gauge group is SU(2) U(1) with gauge
fields Z'„and Z'„. The transformation properties
of all these fields under the total gauge group are
as follows:

X„(x)-U(x)X~(x)U (x)+igx 'U(x)B„U (x),

1'„(x)- V(x) Y„(x)V (x) i+g z'V(x)B„V (x),

Z„(x)—S(x)Z~ (x)S (x)+ igz, 'S(x)S„S~(x),

Z'„(x)—Z'„(x)+q '&„A'(x).
We have used the notation X&=—2&'„T„I„—= 2Y'„7„
Z&=——,Z&T, . The corresponding coupling constants
are denoted by g~, g~, g~, and q, and U, V, and
S are local SU(2) matrices.

In addition, the model contains a number of
spinless, complex doublet fields, K~, K~, Kz,
and K~. These fields, which are represented as
2X2 matrices, have the following transformation
properties under the combined SU(2) SU(2)

SU(2)8 U(1) gauge group:

Kx(x) - U(x)Kx(x)S (x),

K„(x)- V(x)K, (x)T'(x),

Kr(x)- U(x)Kr(x)V (x)

Kz(x) - S(x)Kz(x)T (x),

with T(x) = exp[ —,'iA'(x)r, ] .
Finally, we will consider the nucleon doublet

N= (P, n) a-nd the electron-neutrino doublet
I=—(v„e), transforming according to"'"

N(x) - —,
' exp[~z'A'(x)]

x [(1+y, )U(x)N(x) + (1 y,) V(x)N(x)],

f(x) 2(1 + y, ) exp[ —2iA (x) ]S(x)l(x)

+ —,'(1 —y, ) exp[- —,'iA'(x)(1 —v, )]l(x) .
The fields Z'„, Z&, Kz, and l were already con-
tained in the Weinberg-Salam model and have only
weak and electromagnetic interactions. The re-
maining fields have weak, electromagnetic, and
strong interactions.

The most general Lagrangian of dimension less
than or equal to four, which is invariant under the
combined strong, weak, and electromagnetic
gauge transformations, can easily be written down.
We divide it into five parts:

I V ~g +2+] M+ ~X+2 +

The first term, Z~, contains only the strongly
interacting fields together with their interactions
with the weak and electromagnetic gauge fields:

Ny„D„N —,&2G„IN(x)Kz(x)(l y, )N(x) +H.c.]

+ p (IKxl '+ IKrl ') +g IKzl '+g'u (IKxl '+ IKrl')+g'a IKxl'IKrl'+g'W IKzl

+g'u. l Kz I '(IKx
I
'+ IKrl ') .

The fields that have only weak and electromagnetic interactions are contained in 2«:M'.

Z,„,;M = «G»G»-—z TQG», G»+D&KzD„Kzj—ly&D& l —«W2G, [/Kz(1 —y, )(1 —T,)l+H, c.]

+ p, IKz I
'+ g~'p, I Kz I

'. (2b)

The remaining terms are given by

&x=gw'[&, (I Kx I
'+

I Krl ')+ &.I Kgl '] IKz I
', (2c)

2« =gg«, b Tr(Kz~KxKzK„), (2d)

~, , =(IK I'-IK I' )[f,'+g '&,(IK I'+IK 'I)+g '&. IK.I'+g '~.IK I']. (2e)
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We have used the following definitions:

G'„„=e „Z,' 8,Z'„,

G»„=s,X, B„X„ig [X„,X,],
and similarly for t"„„and6„,. The covariant
derivatives are given by

DpKx 8
p, Kx ~gxxpKx + ~gwKx~p ~

D K~ —8 K~ —sg~Y K~+ asqd K~73,

D~K~ ——8 pK~ —igxX~K q+ig~K~Fp,

DuKZ =8 VKz —zgwzpKZ+ ziqgouKST3

D~ N = 8
&

N —~ ig»1„(1+y~)N

—2~ ig„Y„(1—'y, )N ——,'iqZ'„N,

D„l =8
„

l —,'igwZ~ (1—+y,) l

+ —,
' iqZ'„[1——,'T, (1 —y, )]l .

Moreover, we define ~K~
' = TrfK K) and

g= —,'(g»+g„). We have explicitly extracted the
factors of g and g~ in the interaction Lagrangian
of the spinless fields so that an expansion in terms
of these parameters (and q, G„,and G, ) corre-
sponds to an expansion in terms of numbers of
closed loops.

Although the Lagrangian (1) does not contain
explicit mass terms for the gauge fields, these
fields can acquire masses by means of the Higgs-
Kibble mechanism. ~ This means that the gauge-
field masses are generated by the presence of non-
zero vacuum expectation values of the spinless
fields. In doing so, the local gauge invariance is
not disturbed and the renormalizability is pre-
served.

As was argued in Ref. 10, the spinless fields
can generally be decomposed as follows:

K» = 2(2 0 2g Mw+ow +ov+ 2tgw + 2I//Jv),

Kv = 2(2 W2g My +op —o v+ 21/w —2Lgv), '

Kr = 2 W2 (v 2 g BMOC +o &. + 2'Lgr),

K, = ,' W~(2gw 'M, +o,--+2iq, ), -

where we use the notation g=—2$'v, .
In these decompositions we have already taken

into account the vacuum expectation values of
oU, oz, and oz in the tree approximation. In doing
so three new parameters, M&, Mz, and &, were
introduced. Because of their presence the Lagran-
gian Eq. (1) will contain terms which are linear
in the fields ov ov or (Tz and. Mv Mz an«are
determined by the requirement that the terms
linear in o~, o z, and o~ vanish. Equivalently, we

Ã~ = 2 v 2 (U„+V„)+ 2eg» 'A „v,,

F„=—,
'

v 2(U„—V„)+ —,'eg„'A„v,,

Zp —~@+2eg& ApT3 p

Z'„=eq 'A„,

with

g»gvgwq(q g» g Y + q g» gw +q gY gw

2g 2g 2) -1/2

The field && remains massless in all orders of
perturbation theory, and is to be identified as the
photon field. All the remaining gauge fields will
turn out to be massive.

In a gauge-field theory higher-order calcula-
tions must be performed in a specific gauge. " A
convenient way of choosing a gauge is to replace
the invariant Lagrangian Eq. (1) by

~ —&mv —~G~ —Td~v +~v +~w )~

where the additional terms completely remove
the original gauge invari. ance. We make the fol-
lowing choice for C~, Cv, C~, C„:

C =~ s„U —~w

Gv=hve~l'I &v 'Mw(lv+&4z—) ~

(4b)Cw =twB„W„
—&w 'Mzlt» —k~&gwg 'MvM» '(4v+4v)]'

CA ~A ~A~,

The parameters $w, $» g» and („are arbitrary,
and physical quantities should be independent of
them. In addition to these gauge-fixing terms we
must add the Faddeev-Popov I agrangian. This
Lagrangian follows straightforwardly from the
behavior of C~, C v, C~, and C„under the infini-
tesimal gauge transformations (see Appendix A):

will consider M~, Mz, and ~ as free parameters,
instead of p, „g„andp„which are then deter-
mined by the previous conditions. " In general,
o v will also have a vacuum expectation value, and
the Lagrangian has a term proportional to ov.
However, we will treat those terms differently
for reasons which are explained below. The pa-
rameter 6,' will be replaced by 6, such that the
coefficient of the term linear in ov is equal to
2&2g 'MwE), .

Owing to the presence of the nonzero vacuum ex-
pectation values, all the gauge fields except one
will acquire a mass. In order to make this more
transparent, let us make the following substitu-
tions:
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&»p = —2~&»fkvBalvBI'™4v+&v 'Mv'&Pvkv+ &»B»4'»Bt" 4»+(» 'M»'454»j

—2&w Tr[splwBp 4'w+&w Mw Pw4wj

—(&B&Q&B&gx+&2g wg
'Mv Trav QvQw+$» 'Q$Pw+v 2 $w Pw(Qv+ Q»)j

—»gTr[4v p4'v([4v Up]+[4» Vg]+eg '[@~a&a Ug])+&»Bi 4'~v(EV&v V~]+[4'» UJ-' eg '[Cga&a, Val)j

-2 &w»[ p 4w(gw[4'w, Wj 1+e[4'~aTa, Wj1)j

gM-v»Av '4v(4vvv+ 0'»v»+'I kv 4v]+&[0'» 0'»])

+h» 'y»(yvv»+g»(vv+2«p)+&[gv, 0»+2&lzl+&[4», (vl)j

—gwMshw Tr[pwlw(vz +~a~2gwg MvMz (vv+v»)) +&0'wl kw~ Nz]+ 2~~gwl'w[@~~aTa~ 4]j
+ agwMv Tr[(~v 4v+ ~» 4»)(4w(vv+v») —&[@w i tv+ 4»])j

—»eMv Tr[&v '4'v[4~a&a, kv]+&» '4»[4'~a&a &»+'4z]j

+ a ~2gwMv~w Trfkw(fv+ 4»)(vv+v») + &4w[4v+ &p» tv+ 4»]

+»eg Aw~[kgaTa Iv+4»]+agwg Aw[lw tv+4»] j

The fields P„,&pv, Q», and Qw are the unphysical Paddeev-Popov ghost fields, which obey Fermi-Dirac
statistics. We have used the definitions

a gg r.M 1 ~

'tI v, »,w aAU, »,w~ AU, », w a4'v', »,wT B j 4' = Bat —a&e&a[Ta 4'],

Mw =Mz +gw g Mv, and M» =Mv (1+~ )

Subsequently, we consider the effects of the vacuum expectation values in the free part of the Lagran-
gian, which is given by the terms linear or quadratic in the fields:

&.= - a[(B„&.)' —(1 —4')(B„&,)']
—Tr((BEAU, ) —(1 —(v )(BqUa)a+Mv Ua + (BaV„)a—(1 —$» )(BaVa) +M» Va + (BaW») —(1 —$w )(BaWa)

a

+MwaWq'j

—e(B„A,—B,AJ Trig 'v 2B„U„v,+gw 'B„W„v,j
+gwg 'v 2Mv' Tr(Wa(U„+V„)j
—»((Ba4v)'+ (B,4»)'+ (Bp4 z)'+ (B,4)'

+($v '+ agw'g '&w ')Mv'4v'+(h» '+ gw'g 'hw '-8~2&bMsMv ')Mv'4»'

+(e g» Mv —8W2c 'bMvMz)kr +(kw Mz —4~2&bgw g' Mv Mz )kz

—2(e (» aMv —8 v 2 bMs)Mvg»t/) s+ gw g a$w aMv gvtJ)»

—~2gwg (w MvMzlz(tv+4»)+16bgw Mv 4(~4»+4z)j
—a[(B„vv)'+(B„v»)'+(B„v&)'+ (B „vz)']
+8[4ij, Mv'vv +(u aMv+4~~EbMz)Mvv» +(&'aV Mv+~2& 'bMs)Mvvza

+(2lva+ a~2 ~gwag 'Mv'Mz a)Msavsa

+(2e paMv —2W2bMz)Mvvvvr+v 2gwg 'MvMz(2Xpv +b'av„)crs

+gwg 'Mv(2gwg Mvbavv+ ~gwg Mvb vs+a 2M 5~vs)v» —2bgwg 'Mv (cvv+vz)vz]

+ 5~(2W2g M vv(T »0+vs»vg+») —N'(paB +»»I, )N —/[paBa+ atÃ((1 —Ta)]l .
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In this expression we neglected terms of order
g~ -g&. The nucleon and lepton masses were given
by

III. WARD -TAKAHASHI IDENTITIES; DEFINITION

OF THE PION FIELD; CALCULATION OF THE

VACUUM EXPECTATION VALUES

m =W2eg G~MU,

mi =2gw 'G)Mz.

As follows from Eq. (7) the previously defined
quantities M&, M~, and M~ correspond to the
masses of the strongly interacting gauge fields
U& and U„and of the weak intermediate vector bo-
sons W„(up to electromagnetic corrections). The
calculation of the propagators in lowest order is
now straightforward. Notice that due to the choice
of the gauge we have eliminated the transitions
between gauge fields and spinless fields. The
propagators of the vector bosons are decomposed
into two parts:

D, „(q)=Dr(q')(5„„q„q„q')-+D~(q')q„q„q'.
It turns out that only Dr(q') depends on the charge
of the vector field. Therefore, the first term of
the neutral vector propagators will be denoted by
D~. Appendix B gives the expressions for D» D»
DI, the propagators of the Faddeev-Popov fields
D„.„,and the propagators of the spinless triplet
fields D~.

The reason why we neglected terms of order
g» -g„in the Lagrangian Eq. (7) and why we
treated the vacuum expectation value of a ~ dif-
ferently from those of a&, o &, and oz is that those
terms will contribute to the violation of parity.
As is well known, the total Lagrangian does not
necessarily lead to hadronic parity violations in
higher orders which are of the size of G~, the
Fermi coupling constant of the weak interactions.
Even if we neglect b;, g~ —g„,and the vacuum
expectation value of-o & in the tree approximation,
this will not guarantee that parity violations in
higher orders are of the size of G~. In general,
5; and g~ -g~ have to be adjusted in higher orders
so that these parity violations are canceled. This
is particularly the case when we need 5; and

g~ —g„ascounterterms in the Lagrangian. We
will make some more comments on parity viola-
tion in these kinds of models in Sec. IV.

The intermediate vector bosons of the weak in-
teractions are very massive, because the vacuum
expectation value of oz is supposed to be large.
Therefore the Fermi coupling constant is given
by G~ =8 v 2g~'Mx '. This, however, implies that
the coupling of 0& with the hadrons must be small,
because otherwise the vacuum expectation value
of e~ would induce effects which would be too
large. Hence X, and X, are supposed to be of
order G~, whereas b must be of order G~'".

Before starting any higher-order calculation,
we will analyze the Ward-Takahashi identities
for the propagators in lowest order. They give us
a check on the consistency of the lowest-order
calculations, and provide us with simple relations
among various propagators which will turn out to
be crucial in order to establish the gauge inde-
pendence of physical quantities. "

Let us first generally give the Ward-Takahashi
identities in the diagrammatic formulation of
't Hooft and Veltman. ' The behavior of the fields
under the infinitesimal gauge transformations can
be written as

A. , (x)-A; (x) + t,"A (x) +gs,",.A,.(x)A "(x) .

p p
0- =xt; + =xs;j

FIG. 1. The Ward-Takahashi identities for the propa-
gator s.

For our model these transformation properties
are given in Appendix A. Here the fields are de-
noted by A„and t", is either a constant or a deriv-
ative. The quantities s,, are simple constants,
which may depend on the coupling constants. With
these definitions the generalized Ward- Takahashi
identities for the propagators can be graphically
represented as in Fig. 1. A solid line with index
i belongs to the field A&, and C denotes one of
the linear combinations of the fields that are given
by C» C» C&, or C~, which were defined in
Eqs. (4). A dashed line with index o. denotes one
of the Faddeev-Popov ghost fields Q„,
or Q~. The vertices t, Q8 and gs,~,A&p, w. hich do
not occur in the S matrix, are defined by the in-
finitesimal transformation properties of the
fields &;.

In the tree approximation the last term of the
first identity will not contribute. The identities
then have a simple form, especially since, for
our choice of the gauge, there are no transitions
between gauge fields and spinless meson fields.
Using the quantities t&, which are given in Appen-
dix A, we find the following relations for the

propagator s:
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Dz" = $„q,Dz"'=0 for t= U, V, IV, Dl, =0 2 )U 'D, p,-

DVV I/2 t 1DFV DWW $
-lD IVW DUV DVU I/2 $ 1DUV I/2 $

-1DVU

DUIV DlvU
g

-1DUw I/ 2 $
-1DwU D vlv Dwv

$
-1Dvw It 2 $

-1DW v

~2 h UD I P ~2 ~2 $Ugwg DUPP DII ~2 IUD I
pv 2 ~2 tUgwg D I'WP

Dp~ —-v 2e)UD, ,", -Dp~ =)UM MU D,„,Dp +eDp ——I/2$ D, .„——'V 2)vg g 'D,:

+ ~Dg ~2 (FDI:p ~2W2 ~ vgwg DI ps -.D~" + @DE =9 2 & $ vD I:p 1 DII + &DW = t VMZMU

MZDW —2V 2gwg MU(Dg +DW ) =V 2 )wMUD) p —2 II 2 )wg g MUDI p,
MzD,'" 2V 2-g—,g 'MU(DWUF+D ) =V 2(WMUDwIpv- —2'~2]wgwg 'M, D', :pw,

MzDw 2 v 2gwg MU(DW +D$ ) v 2 e~wMUD I'p 1 MZDp 2 ~2gwg MU(Dtp +Dg ) h WMzDI p

Z2qDUU~ (" 2M 2DUU 1 ( 2q2DFF+ ( 2M 2(Dvv+e2DEE+ 2eDFE)

(wzq2Dz +(w [Mz Dw —W2gwg 'MUM»(DI, +DI, ) + 2gw'g MU'(Dg +DP "+2DI, )]= 1,
2( 2q2DUF+M 2(DUF+ ~DU z) 0 t 2( Zq2DUW +M M DUz I ~2g g-lM 2(DUU +DU v) 0

kv ~w q Di~+MUMZDI +eMUMZDW —2&2gwg MU'(D2 +DI, +PDW +eDp, ) =0.

Although the III propagators are in general $-de-
pendent, there are certain combinations which do
not depend on the gauge. This follows from the
fact that there is one linear combination of the
fields III,

(1 + e2 ~ 1~2g 2g -2M 2M 2) 1/2

(—&It'v+ It' p —2 v 2 &gwg MUMz It'z) (10)
which, in this order of perturbation theory, has a
gauge-independent mass p,'. This field is the
physical pion field and is the only physical spin-
less triplet field in the model. Its mass is given
by

p, '=81/2 eMUMzb(1+& '+Zgw'g 'MU'Mz ') . (ll)
Using the fact that the pion field is an eigenstate
of the III propagator, we have the following useful
relations:

eDF —Dw~ + 21/ 2 cgwg MUMz Dtp ——0,
eDp —DI, + 2&2egwg 'M„Mz 1DI, ——e(q'+ I12)

(12)

EDII —Dw + 2&2egwg MUMz DW = -(q + Il )

~DW De + 2 ~2egwg MUMz DW~

= 2 I/2 &gwg MUMz (q + tl )

Because Z, is the only term in the original Lagran-
gian (1) which was linear in each of the fields K»,
K» Kz, and K» we can consider b=0 consistently
in all orders of perturbation theory. In that case
the pion is a pseudo-Goldstone boson in this model,
as was already obvious from Eq. (11), because the
pion mass in tree approximation is proportional
to b. If b=0, the contributions to the pion mass
must originate from cLosed-loop corrections, and
those contributions should be finite because there
is no corresponding mass counterterm in the La-

I
\ I

I

T
I
I

I
I
I

(c)

2~g

I

I

I

I

I

I cry

(e)

FIG. 2. The diagrams which contribute to the vacuum
expectation values of oU, o~, o&, and oz in the one-loop
approximation: {a) vector-boson tadpole; (b) Faddeev-
Popov tadpole; (c) scalar-boson tadpole; (d) fermion
tadpole; (e) contribution from the linear term in o~ in
the Lagrangian.

grangaan.
Finally, we turn to the calculation of the vacuum

expectation values of the fields 0~, &~, vz, and o~
in the one-loop approximation. The diagrams
which contribute are depicted in Fig. 2. Notice
that we have an additional contribution to the vacu-
um expectation values coming from the term
2I/2g 'MU5, o F in the Lagrangian. This was dis-
cussed in Sec. II.

Making use of the Ward-Takahashi identities
Eqs. (9), it turns out that the contribution of the
Faddeev-Popov ghost loops and the DI pa. rt of the
gauge-field loops cancel each other. If we then
use the relations between certain coupling con-
stants and the inverse propagators of the o fields,
as was first proposed by Weinberg, 4 we can write
the result in the following form:

T,'"'=D, '(0)"tl+T, , i,j =U, V, Z, Z (13a)

where T "'is the sum of a,ll one-loop tadpole gra, phs
with a 0; line vanishing into the vacuum, and D',~

is the propagator of the 0 fields'. Making use of
Eq. (12) we find that the quantitte~s T; are $-inde-
pendent, as they should be. The results are given

by
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1, = l-c qgM, f'd q['2D (q)+ 2D„"'(q)+D".(q)+D.'"(q)1,

1, =--,'q ggM, ' f d q[2D'c "(q)+D". (2)],

in==,'WggM 'c 'f d'q[2Dcc'(q)+D,"(q)1,

tz =-4g~Mz ' d"q 3Dg q +D q

—,'qqg 'M (n —1)fd"q[g*(2D +D +2B "+D„)"
v 2 gg, (2D", +D", +2D, +D,"w)+g, '(2D, '+D", )]

+!q 2gM. f d "q q—*(D-+D'")

+4gMzb d"q[(eD, "—e DG +v 2gwg MvMz DG —kegw'g 'Mv'Mz 'D,

—3E(E + zgw g Mv Mz )(q +)L( ) ]2

T„=2qgi(2 )'g 'Mc2, — ', qqg 'M (n —1—) f d q[g'(2D ""+D ) ——,'dqgg„(2D +D +2D„+D )

+ Tg z (2Dww+Dww)]

+-,'c qgM ' fdqqD, "+qgM gf dq(2cD" —D, —q , gqc'MgM 'D*), ,

T = =', d 2 cg 'M f d"q[(n —1)g'(2D„"+D )+16G„'(q'+I') ' —g'M 'c 'q'D, c]

(l3b)

+2gMzb d"q -4~ 'D '+6m ',"-2D", +2 2g~g 'M~M 'D, —e 'D,'-g 'g 'M 'M, 'D",

—6(l —E + g gg M M )(q + p ) ]

Tz =-age Mz d q + —1 gg' 2Dg +D +166,' q'+m, ' '-gg'Mz 'q'D

+qqqg M if d'q[2D—cD —c 'D, —d2cg g 'M M '(D, *+c 'D, *)

+& zg'wgMv Mz 'D" —3&(&+& ' —zgwg Mv Mz )(q + p ) ].
We calculated this result in the context of the n-dimensional regularization method, "and the argument

of the various propagators is the n-dimensional integration variable q. An important observation, which
was originally made by Weinberg, is that T&, T&, T~, and Tz are gauge-independent. " This must be the
case, because a (-dependent term in T;, in general, can never be canceled by other closed-loop contribu-
tions to physical quantities.

IV. THE NUCLEON PROPAGATOR AND THE PROTON-NEUTRON MASS DIFFERENCE

In this section we will discuss a number of aspects which are related to the higher-order corrections to
the nucleon propagator. The diagrams which contribute in the one closed-loop approximation are depicted
in Fig. 3. After a straightforward calculation we find the following result for the inverse nucleon propa-
gator:

2 '(g)=P —im —(2c) G[i +D'(0)T;] '-i(2c) ' f, d"q
P —q '+m' ' (14a)



4286 B. DE WIT, S. - Y. PI, AND J. SMITH 10

~( P, q) = G&'[D."(q') (P —(]t+ im ) + 3Di"-(q') (P —]iI —im)]

—4g'[Dr (q~)+ ~Dr (q')+Dr" (q')+ ~Dr" (q') —2Dr (q )y, —Dr (q')y, ][(3 —n)P+(n —2)g —(P +m')q ~4I]

--,'g'im(n —l)[2Dr (q')+Dr (q') —2Dr" (q') —Dr (q')]

+ag~[D~v (q')+D~ v(q~) + 2D~ (q~)y~][p —ivn —(p~+m~)q '(t]+ ~img'[D~ (q )+Dz (q~)y, ]
—-'~2 eg(1+ v, )(ID'"(q') —D'"(q')y, ][(3 —n)P'+ (n —2)4 —(P'+ m')q '&]+ im (n —1)D'"(q')l
—-'e'(1+ ~,)(D","(q') [(3 —n)P+ (n —2)q-(P'-m')q '4{+im(n -1)]+& 'q 'I (P'+m')q'- q'(P - im)]).

(14b)

-(2v) ~G„t

+ 3i(2v) ~ g

(p —q)'+ m'

x [G„'Dy' (q')0 ——,im-g'D {q')] .

Notice that in this order of perturbation theory
terms proportional to y, do not contribute to the
masses. Making use of Lorentz covariance and
symmetrical integration enables us to write the
integrand as

In deriving this result, we have made use of sym-
metric integration (which is allowed in the n-di-
mensional regularization method) and replaced
2(pq)l hy (P'+m'+q')0 in ~(p, q).

We will first establish the gauge independence of
the nucleon masses in the one-loop approximation.
The gauge-dependent contribution to the masses
is given by

[(p-q)" '] '

x[+ ,'G„'D&—~r(q')(P'+m'+q')P 'P+ —,'img'D (q')]

—-'G 'D "(q')P-'i
On the mass shell, the last term will cancel the
gauge-dependent terms in t~, whereas the first
term turns out to be gauge-independent by virtue
of the relation

q2D zr( 2q) + e2M 2D vv(q2)

=1 —8~2e 'MvMeb(q'+ p, ') ',
which can either be derived from the Ward-Taka-
hashi identities Eqs. (9) together with E(ls. (12),
or found from the propagators listed in Appendix
B. Hence we have established the gauge indepen-
dence of the masses, which follows from a delicate
cancellation between the various diagrams.

The expression for the proton-neutron mass dif-
ference can easily be found from the nucleon
propagator {14). The result is

" =-i(2v) ~e', — [2 —(n —2)(P q)m '][Dr"(q')+ ,'age 'D—vr"(q')],
APE g —2p'g

where we have again used Lorentz covariance and symmetric integration. Inserting the results for the
propagators D~ from Appendix B, we find

Dr (q )+ ~age Dr (q )=Mv q D {q~)[qq +(~Mv +M]v —pgq, g Mv')q +Mv M~7 —~g)v'g 'Mv'(Mv'+Mv )],
where D(q') is also given in Appendix B.

Now one can easily verify that the mass difference is finite, as it should be, since the gauge invariance
does not allow a counterterm for the mass difference in the Lagrangian. Unfortuantely, the sign turns out
to be positive for all allowed values of the parameters. To show this, we write

2 2 2 1 2 2 2 -1m~ —~ e 1 2 e 2~ 2 2 1 2 +W e 2e1 — —
2

— 2- Iy ™UMg + 2M' 2MU & —
2 2 I2+I3m Bm g~ g 2g gw

with

5 —3x
[(A]v' —Av')z + (Av' —A v')y+ Av'x+ m'(1 —x)~Q

m'(1 —x)'(2 —x)
((x ' —A ') +(x ' — ') xx„'x+xmx'(1 —x)']'I '

(16a)

[{A ' —Av')&+(Av'- Av')y+Av'x+m'(1 —x)']"

o o o
y [(Aw' —Av')w + (Av' —Av')&+ Av'y+ m'(1 —x)']' '
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where A~', A~', Aw' are defined by

x (q'+ A~')(q'+ A»')(q'+ A~') . (16c)I„I.„andI, are always positive, because AU-",

A~', 3nd Aw' must be positive. Finally, the co-
efficients of these integrals are always positive,
as follows from the original definition of e and

Mw in Sec. II so that the mass difference is posi-
tive-definite. This confirms the general picture
that in models based on SU(2) gauge groups the
proton is always heavier than the neutron in the
one-loop approximation. ' As argued by Lieber-
man, " it is, in general, possible to change the
sign by adding additional spinless fields, some-
thing which will, however, dra, stically change the
model.

Finally, let us discuss the parity-breaking ef-
fects in the nucleon propagator (14). The terms
proportional to y, turn out to be finite, and more-
over these terms are damped by a factor Mw ',
which means that all parity violations are of order
G~, rather than gw' or e'. The reason for this
suppression of parity violation is clear. Owing to
the fact that the weak interactions with hadrons
occur mainly through the exchange of the strongly
interacting gauge fields U'„and V'„, most of the
weak radiative corrections to hadronic amplitudes
are convergent, and, as is well known, finite cor-
rections from heavy intermediate bosons are al-
ways of order G~. The only diagrams which can
give infinite contributions to weak hadronic cor-
rections must necessarily involve the spinless
fields o» o», g, or tP», because it is only to
those hadron fields that the intermediate bosons
TV'„are coupled directly. An example of such di-
agrams mill be calculated in the next section, and
one of our results given in Eq. (18) indicates that,
especially when b =0, the parity-violating terms
are much weaker than one mould generally ex-
pect."

V. THE PION MASS AND PION MASS DIFFERENCE

We argued in Sec. III thai. the 2„term in the La-
grangian is not needed for the theory to be renor-
malizable. If we take b =0, the mass of the pion
will be finite and calculable in all orders of per-
turbation theory. The possibility of this so-called
pseudo-Goldstone character of the pion was sug-
gested some time ago by Weinberg, ' mho also pre-
sented some arguments about the typical order of
magnitude of its mass. ~ In the one-loop approxi-
mation, he found that the masses of pseudo-Gold-
stone bosons are of the order of eM, with e and
M a typical gauge-field coupling constant and

(a)

I
't

(c)

FIG. 3. The diagrams which contribute to the nucleon
propagators in the one-loop approximation: (a) Oz

tadpole; (b) vector-boson exchange; (c) scalar-boson
exchange.

mass, respectively. However, when the gauge
fields have different masses, M is defined to be
the largest mass. If this is indeed the case, it
would imply that weak or electromagnetic correc-
tions to hadronic amplitudes are not necessarily
small, because they can be proportional to the
large intermediate vector-boson masses of the
weak interactions.

In order to still have a reasonable mass for a
pseudo-Goldstone pion, one could assume that the
pseudo-symmetry (or "accidental" symmetry:
the symmetry that is connected with the pseudo-
Goldstone mechanism), is broken by weakly inter-
acting vector bosons mith masses around 1 or 2

GeV. A strong interaction model of this type was
proposed some time ago by Bars and Lane, "and a
reasonable answer for the pion mass was obtained.
Although this model ignored the weak interactions
completely, the actual equation for the pion mass
indicated that it remains finite mhen one of the
vector-boson masses becomes infinitely large.
This would contradict Weinberg's estimate that a
pseudo-Goldstone mass is proportional to the
largest vector-boson mass. "

Making explicit use of Weinberg's result, the
pion mass mas also calculated by Lee, Ramls,
and Yu, ' and Lieberman' in a model mhere all
the vector-boson masses (except the photon mass)
are large. In this model the origin of the pion
mass is electromagnetic and it mas found that the
charged-pion mass was of order eM, where e is
the electromagnetic charge and M is the vector-
boson mass. However, it turned out that the
neutral-pion mass remained zero in the one-loop
approximation, which means that the electromag-
netic pion mass difference mas unusually large. "
In order to resolve this problem, it was conjec-
tured that the mass of the pion possibly originates
purely from the two-loop contributions, thus being
of order e'M. Hence, one should try to find a
realistic model where this is the case.

However, a more careful analysis shows that
the neutral pion is an exact Goldstone boson in the
case that the charged pions are pseudo-Goldstone
bosons which pick up their masses from higher-
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order electromagnetic contributions. This implies
that the neutral pion. will remain massless in all
orders of perturbation theory. The reason for
this phenomenon can be traced back to the fact
that a subgroup of the pseudo-symmetry, which is
still sufficient to prove that the pions are massless
in tree approximation, can be extended to R sym-
metry acting on. Rll the fields which is broken only

by electromagnetic interactions. However, the
interactions with the Abelian photon field do not
completely break this extended symmetry. There
is a surviving subgroup which has the neutral pion
as its real Goldstone boson. If one wan'cs to have
pseudo-Goldstone bosons, then it is clear that
this phenomenon can be an important constraint
for the construction of realistic models with an
Abelian gauge field. "

In our model the photon is also related to an
Abelian gauge group. In order to show somewhat
more explicitly that we willi have the same phe-
nomenon, consider the following subgroup 0 of the
pseudo-symmetry group defined by

where tt', -k', are independent global SU(2) trans-
formations and W, =exp(iA, 7,). As stated pre-
viously, we can consistently take b equal to zero.
In that case the scalar potential is invariant under
G, and making use of the Goldstone theorem" we
can show that this invariance is sufficient to prove
the pseudo-Goldstone chRIRcteI of the pions. , How-
ever) G cRn be extended to R group which Rcts on
ail fields in Lagrangian such that (if b=o) the only
breaking of this extended group comes from the
interactions with the photon field (provided we
have chosen a gauge which is also symmetric
under these transformations). One can then ex-
plicitly show that due to the Abelian character of
the photon field, the U(l) 8 U(1)8 U(l) @ U(l) sub-
group of G defined by

(b) (c)

(e)

electromagnetic mass difference. However, if the
weak interactions are ignored, we expect the mass
difference to be given by Bardakci's result, "which
was in agreement z'ith the current-algebra pre-
diction. ' One of the questions we will consider
in this section is whether the addition of weak in-
teractions through heavy intermediate vector bo-
sons will change this result by large terms of
order eM~. If it changes, in agreement with Wein-
berg's estimate, this would imply that something
essential is missing in the current understanding
of electromagnetic radiative corrections to hadron-
ic amplitudes.

Let us now turn to the calculations in our unified
model. We have determined the full propagator of
the spinless triplets gc, $„,gr, , and gs again under
the previously mentioned assumptions that

gx =-g~ =g and 6, = 0 in the tree approximation.
The diagrams that contribute to the g propagator
in the one-loop approximation are depicted in
Fig. 4. In the calculations we made extensive use
of the Ward-Takahashi identities Eqs. (9). More-
over, we often rewrote terms by making use of
the relations between certain coupling constants
and inverse propagators. After rather involved
calculations, we found that only the parts of dia-
grams (a), (c), and (d) of Fig. 4 containing the
transversal part D~ of the vector-meson propaga-
tors contribute to the pion mass in agreement
with Weinberg. We then calculated the form for
the inverse propagator of the spinless fields
go, gv, (r, gs. At zero momentum and in the limit
5 = 0 this inverse propagator is

W„=exp(fA„T,), n = 1, . . . , 5

can similarly be extended to an exact invariance
group of the total Lagrangian. This invariance is
sufficient to show that all neutral members of
the spinless isotriplets g, and thus the neutral
pion, are exact Goldstone bosons.

This conclusion holds in all orders of perturba-
tion theory, and our one-loop calculation confirmed
that if 6 =0, the neutral pion picks up no mass.
Hence, the charged-pion mass will be equal to the

FIG. 4. The diagrams which contribute to the $ propa-
gators in the one-loop approximation: (a) sum of all
tadpoles; '(b) scalar-boson seagull diagram; {c)vector-
boson seagull diagram; (d) vector-boson-vector-boson
exchange; (e) vector-boson-scalar-boson exchange;
( f) Faddeev-Popov exchange; (g) scalar-boson-scalar-
boson exchange; (h) ferrnion exchange.
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D& '(0) + (1 —f)„)e'y'

»

0

Q
2 —,'~2e'gwg MvMz '

-zv 2eg)»g MvMz

0 z W2 gwg MvMz —zW2eg)»g MvMz z& g)» g Mv Mz

D& is the zeroth-order propagator as given in Appendix B, with b =0, a denotes the isospin component,
and y' is defined by the equation

Making use of the expressions listed in Appendix B, we can rewrite the previous equation as

sf(2~) -'M, 'M, ' d'q[q'D(q'))-'

2 e' A A
2Mv Mz — z

—2 z (A)» —Av )(A)» —A» )(Av —A» ) Av ln —z+A»'ln, +Aw'ln

where Av, A», A~ were defined by Eq. (16e).
This result is finite and gauge-independent, as

it should be. It turns out that the one-loop correc-
tions do not contribute to the propagator of the
neutral fields (a=3), so that the neutral pion re-
mains massless as conjectured previously. In
spite of the corrections, the physical pion field in
lowest approximation (10) is still an eigenstate.
Its corresponding eigenvalue, which is the
charged-pion mass in this approximation, is
given by

Evaluating this equation for physical values of the
parameters (Mz- ~, e/g«1, g)»/g«l), we find
the following result:

3e MU M~ M~
16&' M v'- MU' MU'

If we interpret this result as the electromagnetic
mass difference M„&'-M, o', it is i.n agreement
with previous calculations. ""The important
point is that we find no substantial corrections
from the weak interactions, in contradiction to
steinberg's general estimate. If we identify U„
and t/'„as the p and A. , vector mesons, we find

that the value for the charged-pion mass is

M~p = 37 MeV.

Of course, a one-loop result is not very appro-
priate, and will be affected by strong interaction
corrections. Moreover, due to the specific sym-
metry structure of the model, the neutral pion
remains massless. However, we find it very
encouraging that the experimental pion mass can
be obtained within one order of magnitude for
pseudo-Goldstone pions which receive their mass
from electromagnetic interactions.

In order to demonstrate more explicitly how the
cancellations among gauge-dependent and divergent
parts occur, we have also calculated the pion mass
difference in the case where b40. This calcula-
tion, which is presented in some detail in Appen-
dix C, yields t.he following result for the mass
difference:

=M~&2 —M~o

1gW MU
(27()' 2 g' Mz'

x[f1,(—u')+f1, (-p')+ ll, (—p')

+ fl.(-) ')+ 11.(-~') j.
The functions H, -II, are given in Appendix C and

are finite and gauge-independent. If we evaluate
the previous equation, neglecting terms of order
G~ and p, , we find

3e 1+6

/3e', M~2 1 ~2 x x 5, 2+~
+ z i(. ln z + —

z 1nx+1 + 3e 6(1+@ )+ —e +, ln(l+e )16m' p2 4 1+E2 1 —x 1 —x 4 1+a'

3e45e23 1 1
1+6 2 1+6 4 1+6' 2

(21)
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where we made the following substitution for the
propagator of the field o'~:

For reasonable values of x, the correction is ap-
proximately 10%, which is smaller than the result
found by Gerstein et al.

The pion mass in lowest order, p. ', was defined
previously in Eq. (11), and e' =M„'/M~' —l.

The first term of Eq. (21), which is independent
of p, ', is exactly the current-algebra result found
by Das, Guralnik, Mathur, low, and Young" for
soft pions. More recently this answer was found

by Bardakci" in a gauge-field model for strong
and electromagnetic interactions. Although it has
been shown" that the current algebra and PCAC
assumptions are valid in the sof t-pion limi t p, = 0,
this agreement is somewhat surprising because
we do not find additional contributions from the
exchange of the heavy vector bosons of the weak
interactions, which were ignored in Refs. 15 and
21. A similar result was also found by Dicus and
Mathur, "who repeated the current-algebra cal-
culation for soft pions, taking into account the
additional terms from the weak currents. In
their model, which was based on SU(4), the cor-
responding contributions proportional to lnM~'
were negligible if the p and &] leptonic decay con-
stants g~ and g„were equal. In our case we have
terms proportional to p, 'lnM~' in both II, and H4

which, however, cancel exactly in the final answer
(21).

The term proportional to p In', in Eq. (21) was
found by Langacker and Pagels" by using chiral
perturbation theory. However, we wish to point
out that in applications of chiral perturbation theo-
ry to amplitudes which are of order e'. the pre-
viously mentioned terms proportional to p,

' lnM~'
are of the same size as the p, lnp. ' terms found
from chiral perturbation theory. Although these
p, lgjVI&' terms are absent in our result for the
pion mass difference, they may occur in two-loop
contributions, as well as in other amplitudes like,
for example, the q-3m decay amplitude.

Finally we compare Eq. (21) with the hard-pion
calculation of Gerstein, Lee, Nieh, and Schnit-
zer. '4 The main difference is that our result is
finite. If we identify U„and V„asthe p and &y
vector mesons, we find

VI. CONCLUSIONS

We have calculated several one-loop corrections
to zeroth-order symmetry relations in a unified
gauge-field model of strong, weak, and electro-
magnetic interactions. We explicitly established
the finiteness and the gauge invariance of our re-
sults by making use of the Ward-Takahashi iden-
tities for the propagators. The proton-neutron
mass difference turns out to have the wrong sign
for all possible values of the parameters. This
result has been found in a large class of models
based on the SU(2) group, and in order to find the
correct sign one probably has to choose a higher
symmetry group like SU(3).'

In our final results, the parity violations from
weak radiative corrections are found to be of the
order of the Fermi coupling constant G~.

In the case that the pions are pseudo-Goldstone
bosons we calculated their mass. The neutral pion
remains massless in all orders, due to the fact
that the electromagnetic gauge group is Abelian in
our model. This problem can easily be resolved
in principle if the pseudo-Goldstone boson masses
are also due to interactions other than with an
Abelian gauge field. The mass of the charged
pions is 37 MeV.

We also calculated the pion mass difference for
the case that the pions are not pseudo-Goldstone
bosons. It is remarkable that in the final result
for both the pion mass and mass difference the
contributions from the weak interactions are neg-
ligible. This is not necessarily true in higher
orders or in other amplitudes, and it may be that
weak interactions play a more important role in the
calculation of, for example, kaon mass differences
or the g- 37t' amplitude.

The hard-pion corrections to the pion mass dif-
ference were compared with previous calculations,
and found to be approximately 0.5 MeV.

APPENDIX A: THE TRANSFORMATION PROPERTIES

OF THE FIELDS

;M& x 2ln2+ 2
——+ ln 2 + —ln2

+ — lnx+ 1

Numerically, we have for the mass difference

6p. = 5 1+0.09+0.003- lnx+ 1

In this appendix we will list the behavior of the
fields under the infinitesimal local transformations
of the total SU(2)S SU(2)8 SU(2)IS U(l) gauge group
of strong, weak, and electromagnetic interactions.
We use the following parameterization of the gauge
transformations:

U(x) = 1+ igIAu(x) + A~(x)]+ 2ieA„(x)~,,

V(x) = 1+ig[AU(x) —A„(x)]+,'ieA„(x)~,, —
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S(x) = 1+ ig w A„(x)+ Zie A„(x)r2,

T(x) = 1+ —,'ieA„(x)r2,

where the transforn1ations U(x), V(x), S(x), and
T(x) were introduced in Sec. II. We use the nota-
t1011 AU v w(x) 2AU v w(x)r, . A straightforward
calculation gives the following transformation
properties for the various fields.

Vector fields.

U„-U„+v28„AU+ig[AU, U„]+ig[A„,V„]
+ie[A„2»2)U„—]+le W2[ AUA„—'2r),

V2 - V2+v 2 8 2AV+i g[ AU, V2]+ig[AV, U2]

+ie[A„'2r„V„]+ieW2[AV, A„-,'r, ],
W2 —W2 + 8

2 Aw+igw [A«, , W2 ]+ie[A~ 2r, W„]
+ie[AW, A„,'r, ], -

Aq -Aq+8 A„.
SPinless triPlet fields.

)t)U-)I)U+4 2MUAU —2U 2gwg MUAW+ zgAUUU

+ 2gA»U»- «gwAW(UU+Uv)+ zing[AU) NU)

+ zig[Av, 4»1+ie[A~2r2, IU]+ «igw[AW, SU+ 0»],

$»- Qv+v 2MUAV —2)t 2gwg 'MUAW+ zgAUUV

+ 2gAVUU —«gwAW(UU +U y) + 2ig[AU) 4»1

+ 22g[Av AU] + 2e[AA 2& )t v) + «&gw[AW PU+ )t v],

$ z+ e W2MUA y+ gA»o z + 2g[AU) $ z]

+ le[A~ 2r. , qz],

(z - Pz +MZAW+ zgwAWUZ + 2igw[AW 4z]

+ Ze [A„-2r„qz] .
Spinless singlet fields.

UU UU 2gAUSU 2gA»kv+ «gwAw(NU+ 4v) )

o v U v 2 gAU)t v 2 gA»PU + «g Aww(4 AU»+) ~

Uz- Uz —gA viz )

a a
UZ UZ 2 gWAWIZ

Nucleon fields.

N- N+igAUN+igAV&2N'+ieA„2(I +—r2)N .

Lepton fields

l-l+igwAw 2(I +y, )l ieA„-,'(1 —r, )l.

APPENDIX 8: THE PROPAGATORS OF THE FIELDS

The propagator of the vector fields O'„, V'„,
W&, and A& is decomposed as follows:

D„.)t))=)) )q*) ()),.— ".")+& iq*) '. '.
For the charged vector fields, we find the follow-
ing expressions for D~:

Dr'(q') = [(q'+M v')(q'+Mw') —2 g w'g 'M U']

xD '(q'),

Dr (q') = [(q'+MU')(q'+Mw') —2gw g MU ]

x D-'(q')

Dr" (q') = (q'+MU')(q'+M„')D '(q'),

D"(q') = D'"(q')

= zgw'g 'MU'D '(q'),

Dr'(q') = Dr'(q')

= Zv 2g„g 'MU (q +My')D '(q ),
Dr" (q') =Dr'(q')

= 2W2gwg 'MU'(q +MU )D '(q ),
with D(q') defined by

D(q') = (q'+ MU')(q'+ M v')(q'+ Mw')

,'gw'g 'MU'(2q'—+MU'+M„') .

We distinguish the neutral vector propagators
from the charged vector propagators by a tilde.
The exact formulas are

DUrU(q ) = [(q +Mv )(q'+Mw ) — g 'g 'MU' —e'g 'q'(q'+M„')]D '(q'),

Dr (q )=[(q +MU )(q +Mw ) —zgw g MU —e gw q (q +MU ) —28 g q (q +Mw +MU )]D (q ),
Dr (q') = [(q'+MU')(q'+My') —2e'g 'q'(q'+My')]D '(q'),

Dr" (q') =q 'D(q')D '(q'),

DU»(q2): DVU(q2) = ( g 2g 2M «+ e2g 2M 2q2)D 1(q2)

Dr (q')=Dr (q') =[,'v 2 gwg 'MU'(q'+M—y')+W2ezg 'gw 'q'(q'+M »')]D '(q'),

Dr (q )=DT (q ):—2W2eg [MU (q +My )+2(q +My )(q +Mw ) —gw g MU )D (q )

Dr (q )=Dr (q )=[z~~gwg MU (q +'MU ) —~~e gwg MU q ]D (q ))
Dr" (q') =Dr (q') =-zv 2eg '[MU'(q'+MU')+g„'g 'MU']D '(q'),
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Dr" (q') =Dr (q') = e—gw 'f(q'+Mv')(q'+M«')+gw'g 'Mv'(q'+M«'))D '(q'),

with

D(q') =D(q') —e'gw 'q'(q'+Mv')(q'+M«') —2e'g 'q'(q'+M«')(q'+Mw') —2e'g 'Mv'q'(q'+M„')

+ e'g~'g M~'q'.

The second part of the gauge-field propagators,
Dl, , does not depend on the charge in this approx-
imation. It is given by

DL"(q') = [(& «'q'+ M «')(& w'q'+ Mw')

—zgw g Mv ]D (q ) 1

DL "(q') = [(&„'q'+MU2)($ w'q'+ Mw')

—zgw g Mv ]D '(q'),

DL (q') = (&v'q'+Mv')(& «'q'+M «')D '(q'),
DAA(q2))2q2

D:"(q') = D."(q')
=-'g 'g 'M 'D '(q')

DUW(q2) Dwv(q2)

~2g g lM 2($ 2q2+M 2)D 1(q2)

DL (q') =DL'(q')

= zv 2gwg 'Mv'()v'q'+Mv')D '(q'),

DL"(q') = DL'(q') = 0,
DL" (q') = DL" (q') = o,
DAW( 2) DWA( 2) 0

with

D(q') = ()v'q2+MU2)($ «'q'+M «')()wzq2+MW2)

—2gw g Mv ()v q +Mv +$«q +M«).
The propagators of the Faddeev-Popov fields are

related to the gauge field propagators Dl through
the Ward-Takahashi identities. We have explicitly
verified those relations. The Faddeev-Popov prop-
agators can easily be read off from the identities
in Eq. (9) using the explicit forms for DL. Notice
that these propagators are not symmetric.

Finally, we give the propagators of the spinless
triplet fields gv, g«, gz, and ltlz, which are
charge-independent in this approximation. It turns
out that they can be expressed in the following
form.'

D~ (q')=[1 —M 'D (q')+v 2g g 'M 'D (q')

—'2 gw'g 'Mv'DLW'(q')]q '
Dg"(q') = [1 Mv'DL "(q') +~~ gw g—'Mv'DL" (q')

zgwg MUDL (q)
—8 v 2 eMUMzb(q2+ p2) ']q ',

D& (q') = [1 —e'M 'D" (q')

—8&2& 1MUMzb(q2+ 112) 1]q 2

D"(q') = [1—M. 'D."(q')
—4 V 2 egw'g 'Mv'Mz 'b(q'+ P )2']q ',

DU «(q2) D«v(q2)

=(-M 'D (q')

+ '~&gwg 'Mv'[DL" (q')+DL (q')]

—2gw'g 'Mv'DL" (q') fq ',
Dw" (q') =D"(q')

=e[™v'DL(q')+ z~~gwg 'Mv'DL (q')]q ',
Dg '(q') = Dg '(q')

=MvMz[ DL (q')+-2~&gwg 'DL'(q')]q '

D "(q') = D'"(q')

= [ eMU'DL (q-')+ —W2egwg 'Mv DL (q')

+8& 2MUMzb(q'+ p,2) ']q ',
D"(q') = D"(q')

= [ MUMzDL (q -)+ 2&2gwg 1MUMzDLW (q')

—Begwg 'MU'b(q'+ p.2) ']q ',
D"(q') = D"(q')

= [ EMUMzDL —(q ) + Bgwg Mv b(q + /1 ) ]q

p2 was defined in Eq. (11)as the pion ma. ss in the
tree approximation. These decompositions of the
g propagators turn out to be very convenient in
order to find the cancellations necessary for the
gauge independence of various quantities. They
satisfy the Ward-Takahashi identities Eqs. (9) and
the relations Eq. (12) and could in fact be derived
from them.

The propagator for the spinless meson fields
D'~ can be found by inverting the quadratic terms
in the Lagrangian. We have not required the ex-
plicit expressions for these propagators so there
is no need to list them. In Sec. V we assume that
D has a pole at q'=-xM&', and give our result
for the hard-pion mass difference in terms of the
parameter x.

APPENDIX C: THE PION MASS DIFFERENCE
We will show in some detail that the pion mass

difference is finite in our model, and show how
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the gauge-dependent parts cancel such that the
final answer is gauge-independent. The diagrams
that contribute to the pion mass difference are the
diagrams (c), (d), and (e) depicted in Fig. 4. The
pion mass difference also receives contributions
from the interactions with leptons, cf. diagram

4(h). However, these contributions are of order
m, G~' so they can be neglected. A straightfor-
ward calculation of the remaining diagrams gives
the following results, where the vector-boson
propagators are decomposed as in Appendix B.

Diagram 4(c):

-e2Dz, "+(n —l)(1+&'+ '2e2gw-2g 'MU'Mz ') '

x[-e2Dr" (1+&2+ 2'e2gw2-g 'Mv'Mz ') ——,W2eg(2+F2)Dr" —2e2egwM— w'Mz 2Dr

+ A/2 EggW(4'+6 )+ 2g ((-2 —(-2 )] ~

Diagram 4(d):

2

(1+ '+-,'g 'g 'M 'M ') '(2 —2+

X(—1g2M 2(gUUDVV+ gVVDUU 2gUVDUV)

1 2M
2[gWW

(DUU D VV 2DVV) (/VV /VV 2/VV)DWW 2(/UW + /VW)(DU)V +DVW)]

1 egg M 2[gvw(DUU ~ DUv) n Uw(Dvv +DU v) + ~UUD~ ~vvDUw + QUv(Dvw DUw)] )
~ )2

XI, g'M '(n.-—D +b, D 2 D )

-'g 'M 2[r "(D"+D""+2D'") +(~"+~"+2~")D' —2(&"+ &"')(D"+DE )]
1
~egg M 2 [~VW

(D
UV + DU V) gUW (D

V V + DU V) + gU UD VW g V VDUW + ~U V(D VW DU W )])

Diagram 4(e):

(t22 p2)2q 2e2DAA [~2D vv ~D EE 2eDvE+ ~i) ~g g lM M 1(~Dvz D Ez) + ~2g 2g 2M 2M 2Dzz]

Pe g
+4(1+2 +, 2'g g 'M 'M ') '(1 — ' (2q'

xfe DAEA[e2Dp +Dg —2eDZ +v 2 egwg 1MUMz (ED' —DWE )+ 2e2gw g MUZMz DZ ]

+ , W2egD "(e'D—"+2D& —3rD&" + —,v 2eg g 'M M '(eD& +&DE —Dw )]

+ 2&2eegDr""(cD&—"—D& +ZM 2egwg 'MUMz 'D& )

+ 'ceg D "-[cD""+eD" D" D+—Zv 2gwg —'M M '(eD +eD" —2D& )]

g 2gUU(DEE+ ~2DVV) —~2g2~VVDUU ~2g2~U VDU V

Z2g 2(22WW[DUU +DVV ~ 2DU V+ 2 lt 2g g-lM M -1(D VZ +DUZ) + 2g 2g-2M 2M -2DZZ]

—2 W2eggw(2 v [ED' + eDz —2DZ" —2Dg +2( 2 g2g 1MUMz 1(@DE —2DzE )]

—22(2e2ggwb, (Dz" +Dw
"+v 2gwg 'M„Mz 'Dz ))

O'P
+ (1+2 '+ —'g 'g 'M 'M ') '(1 2'

x(1g2gvUDvv+ 1 g 2~vv(DUU +4e 2D EE 4DUE) +g ZgU v(Dvv 2Dvz)

Znww[2DUU + 1Dvv ~ DU v ~2g g -lM M -l(DUz +Dvz)+g 2g-2M 2M -2Dz ]

u2gg b. [(D, +D,")—u
—2g g 'M„M '(D, +D, )]

—2 v 2ggwrg" [D~ +Dg —2e (D~ +D~ ) —2&2' g2g MUMz 'D~ ]j.
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We have suppressed a factor 2(221) 4 and an integra-
tion over q, the momentum of the propagators D~
or 4. The argument of a second propagator is
denoted by P, which is defined by P=k —q, where
A' is the external momentum. We used the defini-
tinn 4(q2) =Dr (q2) Dr-(q2)

If we now substitute the expressions for D& as
given in Appendix B, we find that the gauge-de-
pendent terms involving DJ cancel straightfor-
wardly against the gauge-dependent terms from
the diagram 4(d) except for the term

eD""(q')(k' P'-)'q '(P'+ I ') '
This expression together with the term -e'D~"
from diagram 4(c) are the only gauge-dependent
terms which are left. After symmetric integra-
tion we can write these terms as

(k'+ ~')e'Dz" (q')(k' P')q-'(P'+ u, ') '.
After some tedious algebra. ' rewriting certain
coupling constants in terms of the elements of
D~ ', we can write the difference of the self-ener-
gy graphs for charged and neutral pions as

11'(k') —ll'(k') =2(221) 'e2$A 2(k2+ p2) d "q(q' 2k q)q '[(k —q)'+ p.'] '

with

+2(211) '(I+a ' +-,'g 'g 'M 'M ') '[II,(k')+II, (k')+II, (k')+II,(k')+Il, (k')],

tI, (k')=In —kI f g "e(-e (e ll","e'e'kegD-', IIke D,
"—M'„',D, ')

+ —'u 2 e 'eg[D "(M 'D M 'D ")—M 'D""(D —D ")]
2g lq2(D ADvw D ADUw) M 2(e2DAA + v 2 egDUA)Dww

g-lM 2 (e2DAA ~~2 egDUA) (DUw ~ Dvw) 1 ~zs2M 2M 2M -2DAADU v

+ (Fl I) d" q(k2 2k q)[2e 2g2[a "(Dr Dr") + (4 U——W2eg 'Dr")(Dr"" —Dr")

y2 2 (y, )2
II (k') = —'g'M ' d'q

2 2 U q2(k q)2

—(6 +2ezg 2Dr" +v 2eg 'Dr")(Dr Dr )]-
g2(1k vwDUw gUwDvw) k[e2DAA +V 2 sgDUA 1

V 2gg (Ik Uw + ~vw)]Dwlv

2M -2[(e2DAA eg DwA)Dww + eg DvAD

+0 2gwg '(e2Dr" + 2W2egDZ")Dr ]I,

II,(k') = -'g '

X(+UU(D FV~ ~2g g-ID VIV + g 2g-2DWW) ~ ~ VV(DUU ei 2 g g lDUW ~ g 2g--2DWW)

ZU v[2DU v ~2g g-1(DUw + Dvlv) g 2g-2Dww] g 2-g+2w( wDU+UD Fv + 2DUF)

+~2g g-1 V
eel[

WUD+UDU V
V 2 g g l(DUW +DFW)]

—v 2gwg 'rk. [D" +D + —'W2g g '(D +D )] j,
k'q' —(k q)'

q'

x(~UUDFF +~ Fv(DUU 4DUz + 4e -2D zz) + 21k U v(DU v 2Dvz)

2-g~2ww[ DUU + Dvv+ DUv v 2g g lM M
—1(DUZ ~-D Fz)

+gw'g 'MU Mz 2Do —Mw Mz '(k —q) ]

—v 2g„,g 'LP [D~ +Do —kI 2gwg MUMz '(D~ +D~ )]

—&2g g 6 (D +D 26 D —2E D +2&2f g g M M D )j
k' ' —k

II,(k') = d"q, , —[2MW'Mz 2(ezDZ" +egwDZA)+2(i+2m 2)(e2Dr" +v 2egDr")

—-'g'(I +4& ')& — g'& — ~2 gwg(& + & )k
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k'q' (k q)'
II,(k') =8&2@ MvMzb d "q

'(k — )'[(k — ) 'j

x(- 2e (1+ e + egg g Mv Mz )IMn Mz (e Dz, +eggD~ )

+ (1+2' ')(e'D~~" +W2egD~~")]

-g'(2+2@ '+ ze )6 + zv 2ggN, (2+e )Mq, 'Mz b, —4e g~ M~ Mz 6 }.
It is obvious that on the mass shell where k'+ p,

' =0, the answer is gauge-independent. Moreover, it
follows straightforwardly from the explicit expressions for the various propagators that all the functions
II,-II, are finite.
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