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A field-theoretic model for hadron binding is described in which free quarks are totally screened.
Quarks interact via a dipole vector-gluon field. A second-quantization procedure for the gluon field,
which reduces the field to an embodiment of a direct particle interaction, eliminates unitarity problems.
A detailed description of perturbation-theory rules is given. In contrast to the results of the
pseudoscalar-meson and massive-vector-meson models (without cutoff), scaling occurs in the
electroproduction structure functions. Another possible model having some resemblance to the relativistic
harmonic-oscillator quark model of Feynrnan, Kislinger, and Ravndal is also described. It is unitary
and has scaling structure functions.

I. INTRODUCTION

The current understanding of hadronic structure
allows two apparently contradictory statements
to be made: The constituents of the hadron ap-
pear to be loosely bound, quasifree par ticles. The
constituents of the hadron are not produced and
do not occur outside of hadrons. Several attempts
have been made to resolve this paradoxical situa-
tion. They may be divided into two categories:
"conventional" field-theoretic approaches, "and
ad hoc approaches which postulate manifestly non-
field-theoretic structures for confinement, e.g.,
the bag" model. ' In the first approach Casher,
Kogut, and Susskind' and Wilson' showed that
quarks could be totally screened and not observed.
However, a four -dimensional, Lorentz-invariant
field-theoretic model of hadron binding with its
attendant conceptual and computational advantages
appears to be lacking. We shall discuss a pos-
sible candidate, the dipole gluon model, in detail.
In addition, another possibility is briefly de-
scribed in Appendix 8 which bears some compari-
son with the quark model of Feynman etc'. The
dipole gluon model has two major qualitative fea-
tures in common with the bag model' and the two-
dimensional quantum-electrodynamic model'. (l)
The dipole gluon field has no independent degrees
of freedom; neither does a bag or the two-dimen-
sional electromagnetic field. (2) The 'Coulomb"

potential between quarks is proportional to the
distance between them in all three models. In a
sense the bag model may be regarded as a phe-
nomenological approximation to the dipole model,
and the dipole model as a generalization of the
two-dimensional model to four dimensions.

In Sec. II we describe a quantization procedure
which avoids the introduction of indefinite-metric
in or out states and thus leads to a unitary S
matrix. In Sec. III we describe the properties of
the "free" gluon Lagrangian model. In Sec. IV we
describe the perturbation-theory rules of the
dipole model. Section V contains a discussion of
unitarity, causality, quark confinement, and
scaling properties of the electroproduction struc-
ture functions, For simplicity we shall ignore all
but the dipole quark interaction and do not intro-
duce internal quark quantum numbers.

II. SECOND-QUANTIZATION PROCEDURE FOR
THE GLUGN FIELD

We shall not quantize the gluon field in the con-
ventional manner for three reasons: (l) to be
consistent w'ith experiment where no such particle
has been identified, (2) to avoid unitarity problems
in the S matrix, and (3) to avoid infrared problems
in perturbation theory. We attribute no dynamical
degrees of freedom to the gluon field. Instead we
regard the field as the embodiment of a direct
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quark-quark interaction. The gluon field can thus
be removed from the Lagrangian in favor of a non-
local current-current interaction. However, it
will be of no small technical advantage to keep the
gluon field in the Lagrangian. In order to do this
we shall second-quantize the field following the
normal prescription and then, instead of introduc-
ing a Fock space for free gluons, reduce q-num-
ber expressions in the gluon field to c-number ex-
pressions via suitable operator boundary condi-
tions.

To illustrate this procedure we consider a
scalar boson field, g, with Lagrangian I. We
second-quantize the in field, P,„, with equal-time
commutators

is now arbitrary to the extent that II~ may be re-
placed by

Hz =H~+ A.p;„+

Thus

where & and b will be completely determined by
requiring Eq. (5) be true for all time:

(8)

[y. (x), y, (y)]=0,
[II;„(x),II;. (y)] = 0,
[y,„(x), II;„(y)]= i5'(-x —y),

where

(1)

(2)

(3)

(10)

61
11!Ii (x)

~A. (x)
(4)

To see the effects of this procedure more con-
cretely let

and I.~ is the free Lagrangian part of I.. The usual
operator expressions and identities are estab-
lished. In particular the formal expansion of the
S matrix in terms of time-ordered products of in
fields can be made. (We are using only in fields
for convenience —our remarks apply to out fields
also. )

The unequal-time commutator, [P,„(x), P,„(y)],
is a c-number expression which is completely
determined if we require that it be consistent with
the equations of motion, that it be consistent with
Eqs. (1)-(3) in the limit of equal times, and that
it vanish at spacelike distances. Consequently all
terms with an even number of factors of P(x) re-
duce to sums of c numbers times products of anti-
commutators (P(x), P(y)]. Terms with an odd
number of factors have one factor, Q(x), times
sums of c numbers times products of anticom-
mutators. At this point we could introduce a Fock
space of states to complete the reduction of @-
number expressions to c number expressions.
For reasons stated above we do not. In analogy
to Dirac's theory' of Hamiltonian constraints we
impose operator boundary conditions which com-
plete the specification of the dynamics of the sys-
tem. We choose

(12)

then (suppressing the subscript in" for notational
convenience)

i~(x-y) =[4(x), y(y)]
d4k

e (P )Q(j'z2 2)e-l2 ' (X -2)
(2z)2

(13)

(14)

and the time-ordered product becomes

is(x -y) -=T(g(x)y(y)) =-2'ie(x, -y, )a(x-y),
(15)

with e(x) =+I for x~ 0. More generally, for even
N

T(y(1)y(2)" y(~))

per nl u ta tio ns

i"~2m(x, —x2)3.(x2 —x, ) ~ ~ ~ a(x„,—x„),
(16)

where g(i) =Q(x, ). The natural correspondence to
the Wick expansion

(01&(P(x,) "0(x ))I0)

11,.(x) = 0 = y,„(x) (5)
i ~2r (x, —x, ) ~ ~ ~ a (x„,—x„) (1t)

perrnntations

for all x, where = means weakly equal in the
sense of Dirac, i.e., evaluate all commutators be-
fore imposing the constraints. This eliminates
P's degrees of freedom. The free Hamiltonian,

(where h~ is the Feynman propagator correspond-
ing to the field g) allows us to use conventional
perturbation-theory rules, except that diagrams
with incoming or outgoing g lines do not contribute
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to the S matrix and the Feynman propagator

u)= 1
u'- (18)

rr' =Z2
OP

and that conjugate to A.
&

is

(25)

is to be replaced with

1 =1 1 1~(k)=p» . = — » .-+k2 —m +is 2 k —yn +ie k -m —ze

(19)

for internal P lines. In configuration space the
Green's function corresponding to Eq. (19) is half
the sum of the advanced and retarded Green's func-
tions.

If we follow the above procedure in second-
quantizing the electromagnetic field the resulting
model quantum electrodynamics corresponds to
the classical action-at-a-distance electrodynamics
of Schwarzschild, Tetrode, and Fokker. ' The
fact that photon production does not occur in the
model QED corresponds to the absence of radia-
tion reaction in the classical theory. In Sec. V
this will be shown to be the key to maintaining the
unitarity of the S matrix in the dipole gluon model.

III. THE DIPOLE GLUON MODEL

(26)II'„=Z',„.
Since II', = Il'o = 0 we find that A'o and A'o are c num-
bers and thus V A' is also a c number with the
possible exception of the zero-frequency mode. If
we choose the Coulomb gauge for A'„

V A'=0 (27)

then we obtain the equal-time commutation rela-
tions

tel;. (x), Ai(y)]=ie" f ( ),
e' (a„~-~,)

(28)

E =-V4" ——A'
Bt

(29)

for i, j=1, 2, 3, in analogy to similar expressions
in quantum electrodynamics. All other equal-time
commutators are zero. We can define an electric
field, E, and magnetic field, B, by

We now consider a model' for hadron binding
which has several major qualitative features in
agreement with experimental results: large-
transverse-momenta damping, scaling electropro-
duction structure functions, and complete screen-
ing of free quarks. The Lagrangian is

B=V xA',
which imply

V xE=
Bt

(30)

2 = —2E„',E '" '- —,
'

A. 'A2 A'"+ ((i )t' -g$' —~)y, V B=O (32)

(20) In the Coulomb gauge Eq. (24) can be restated as

where A.
&

and A& are massless gluon fields, E'„,
=B,A'„—B„A „' for i=1, 2, g is the quark field,
and g is a dimensionless and A. a dimensional cou-
pling constant. The equations of motion are

V E=gA. 'J',

BEVxB ——=gA, J,Bt

(33)

(34)

e~~ '„„~X2a2„=0,
9~j'~„+gJ~ =0,
(if —gP' —m)y = 0,

(21)

(22)

(23)

where J~ is the quark current. Equations (29) and

(33) give our analog to the differential equation for
the instantaneous Coulomb potential of QED,

with j„ the quark current Equatio. n (21) implies
8 "A.'„=0 while A. '„ is a gauge-invariant field. As
a result we have

V 2~10 gy2 J.O

while the equivalent vector-potential differential
equation is

e~Z'„„+g~'Z„=0 . (24)

( A '+ vA") =g~'i . (36)
We now consider the "free" gluon case whose
Lagrangian is the first two terms on the right-
hand side of Eq. (20). The canonical momentum
conjugate to A. '„ is

The free gluon unequal-time commutators may
be determined from Eqs. (21), (22), (28), (35),
and (36) (with the current, of course, set to zero):
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8i~'„'(x-y) =- [A', (x), A.,'.(y)] = -i~'(5, , —V,. V„.V-2), , ~(x-y, l ) (37)

in. ', ', (x-. .y) = [A-,'(x), A,'(y)] =i(5,, —v,.vjv-')s(x-y, 0),

ia22„.(x-y) =- [A', (x), A,'(y)] =0,

(36)

(39)

with i, j = 1, 2, 3 and IV. PERTURBATION THEORY

ia(x-y, p) = —,e(k, )5(k' —l(,') e "'&"-» .(2m)'

The commutators, 4" and 4", are zero at space-
like separations due to the form of 4. They are
consistent with the equal-time commutation rela-
tions in that limit and they are also consistent with
the equations of motion due to the ident'ety

ia„,(q) = ig„„x'x —,
Q'

rather than the Feynman photon propagator

(4V)

The rules for forming the integral correspond-
ing to a Feynman diagram in the dipole model are
identical with those of quantum electrodynamics'
except that we use

9.&(x-y, ~)
C}P.

=-a(x-y, 0) . (41) ( )
~&((u

Fp vxg 2+gC (48)

Assuming that we have established all operator
expressions we are now in a position to apply op-
erator boundary conditions to the gluon field. The
key quantities so far as the perturbation theory
we will consider in the next section is concerned
are the time-ordered propagators of the gluon
field

~P;(x)A,'(y)) = 2~(x. -y. )[A;(x), A,'(y)]
= —,'ie (x, - yo)LF,.~q(x -y),

(42)

(43)

1 1 1 1
k~ 2 (k'+is)' (k2 —ie)'

In coordinate space

&(A),(x)A', (y)) =ig„,~'i)((x-y)')/&«

(45)

(46)

The equations of motion of the dipole model dis-
play a close analogy to those of quantum electro-
dynamics. The main difference (with important
physical consequences) is the increased degree of
the differential equation for A& vis-a-vis the cor-
responding QED equations. The result is a dipole
propagator rather than a monopole propagator in
momentum space. One could have second-quant-
ized the dipole field in a manner which leads to
dipole Feynman propagators. In that case the 8
matrix would not be unitary in perturbation theory.

where we have suppressed the 'in" subscript on
the field operator. We can take advantage of the
gauge invariance of A& to express T(A'„A', ) in the
Feynman gauge,

d4k
T(A'„(x)A', ( ))=)ix'g, (p —

) e ' e* e

(44)

with

1 1p —,=-2 dnn~(n)exp(ink'), (49)

where e(n) =+1 for n 0. S~ince Feynman param-
eters are not necessarily positive the following
identity will be useful in evaluating loop integra-
tions:

d'k exp[iC(n)k'] =in'e (C)/C' .~~ ~~

~ (50)

As a result the Feynman parameter representation
of a diagram will have the form

The choice of a principal-value propagator has
substantial effects in perturbation theory. For ex-
ample we shall show that consistency with unitarity
requires no diagrams with in or out gluon lines
contribute to the 8 matrix. In addition, there are
novelties in the type of divergences in diagrams
and the analytic structure of the 8 matrix. It also
appears that conclusions based on summing only a
finite number of graphs contributing to an 8-matrix
element may be misleading. This follows from
the fact (to be shown in Sec. V) that free quarks
do not exist upon summation of all orders of per-
turbation theory [Eq. (65)], though this is not seen
in a summation to any finite order. The physical
states are neutral bound states and thus it appears
that the best methods of exploring the physics em-
bodied in this model will involve Bethe-Salpeter
equations' or eikonal summations. They are cur-
rently under study.

We now describe the modifications necessary
to compute diagrams in perturbation theory. The
propagator of Eq. (47) may be exponentiated
through the use of the identity
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"dP, dP,' e(n, n, n~C)Ne' i

(51)

where n; corresponds to an internal gluon line
and P; to an internal fermion line, N symbolizes
numerator terms, and C and D are determinantal
functions. ' If we had given the gluons dipole Feyn-
man propagators we would have obtained

][,. ,o, dn, dP, dP, dP, Nexp(iD/C)
C2

in comparison to Eq. (51). If we now scale all
Feynman parameters with u and use the identity

u
& &

la, +a, + +u, +4+0, +' +8 l')
~ ~

Q Q

(where
~ ~

indicates absolute value) to introduce an
integration over u in Eq. (51), we obtain

where 3 =the number of loop integrations in the
original diagram and N is obtained from ¹ An

example of this procedure is given in Appendix A.
As an alternative to the above method one can in-
troduce light-cone coordinates and evaluate pole
terms by contour integrations with Eq. (45) speci-
fying the location of the poles relative to the con-
tour.

The divergences occurring in this model are
somewhat novel. As one would expect, with a di-
pole propagator the ultraviolet divergences are
restricted to some lower-order diagrams and are
logarithmic in nature (see Fig. 1). The dipole
propagator, because it is in principal value, does
not induce infrared divergences in loop integra-
tions. However, a third type of divergence, which
may be called a light-cone divergence, "does
occur and is connected with a divergence in a loop
integration, Jd~k, associated with the region
where 4'=0,' —&,

' —k~'=0 and kQ ~3 ~. In the
Feynman parameter representation of Eq. (54) the
divergence will appear at the +~ limits of Feyn-
man parameter integrals. The worst divergence
is quadratic and associated with one-loop diagrams
with one internal gluon line (Fig. 2). These diver-
gences can be managed through the use of Pauli-
Villars regularization. Some diagrams containing
light-cone divergences are given in Fig. 2. It
should be noted that they are necessarily one-loop
diagrams. We can demonstrate this by an examin-
ation of the overall degree of light-cone divergence

of a graph in the representation of Eq. (54). Let
us scale all Feynman parameters in Eq. (54) with
A and determine the leading behavior as A-~.
We find, for I, —= number of loops&1,

~-A',
C-A',
D-A' '

(55)

(56)

and as a result
A»+~-&-2t -(e+»-2i)

or convergence of the integral as a whole. How-
ever, for one-loop diagrams (/ =1)

(59)

and consequently

~-A&

I-A'-" .
(60)

(61)

For example, the diagram of Fig. 2(a) has P =1
and diverges quadratically.

Light-cone divergences stem directly from the
use of principal-value propagators for the gluon.
As such they reflect the nontrivial nature of Wick
rotation in this model and they lead to divergences
in the vertex renormalization constant, the wave-
function renormalization constant, and the quark
self-mass which prevent this model from being a
superrenormalizable theory of the conventional
variety.

FIG. 1. Some ultraviolet-divergent diagrams. FIG. 2. Some light-cone divergent diagrams.
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II„„(q)=i 4 Try& Sz(k)I'„(k, k+q)Sz(k+q)
d4k

(62)

=(V„q -Z„q )Ii(q'), (63 )

The Schwinger-Dyson equations for dipole elec-
trodynamics are quite similar to those of quantum
electrodynamics, with the exception of the gluon
Green's functions, which we now discuss. The
proper gluon self-energy, II&„(q), which couples
only to the &'„channel due to the form of our Lag-
rangian, satisfies

In Ref. 1 attention was drawn to the screening of
free quarks due to vacuum polarization. Our
mechanism is a variation of the Schwinger mech-
anism" but differs from it in an important re-
spect: It is manifest in low order and thus not a
matter of conjecture —an important consideration
for insoluble field theories. Even in lowest order
(Fig. I), where II(q) is a constant up to a logarith-
mic term, we find manifest screening.

Let us consider a system containing free quarks
in some bounded region. We choose to work in
the Coulomb gauge. Because of Eq. (35) the total
charge is proportional to

where S~ is the quark propagator and I', is the
proper vertex function (see Fig. 3). The gluon
self-energy is related to the complete gluon propa-
gator, B„'„by

d'xv' HAD

d% ~ v A', .

(68)

(69)
iB~ p=iB~, +i g iB~ g& iBg, , (64)

(q'/&')&.', (q) —A .. (66)

with B„„give bny Eq. (47). Using Eq. (63) we find

( )
~ k"uv VulvA ~ II(q)

q'+A'X'q'II(q) q'+A'X'q'II(q) '

(65)

The Green s function for the gluon field, A'„,
which is zero within the context of the free gluon
Lagrangian [cf. Eq. (39)], is nonzero in the inter-
acting theory due to vacuum-polarization effects.
It is related to B„'„by

However, an examination of Eq. (65) shows that
important vacuum-polarization effects occur at
large distances. The potential corresponding to a
static free quark located at the origin is

0

(if we ignore vacuum-polarization effects) and a
finite contribution to Q would result if substituted
in Eq. (69). At large dista, nces A', is substantially
modified from the expression in Eq. (70). From
Eq. (65) we see that the large-distance behavior
of A', is controlled by

-A'Il(q) A. .
q'+A'X'II(q) (67)

1
A'q'II(q) ' (71)

up to terms proportional to q„q„. Equation (65)
will play an instrumental role in the demonstration
of free-quark screening in the next section.

V. SOME GENERAL PROPERTIES

In this section we will first consider the screen-
ing mechanism for quarks and then discuss uni-
tarity, causality, and scaling properties of the
lowest-order contributions to the electr oproduction
structure functions.

FIG. 3. Representation of the Schwinger-I3yson equa-
tion for the gluon self-energy.

and since II(q) is a. constant up to logarithms in

lowest order and not proportional to a positive
power of q' in any finite order of perturbation theo-
ry we find &0 to be proportional to at most an in-
verse power of ~x~ at large distances. Substituting
an inverse power of ~x~ for &, in Eq. (69) and let-
ting the surface of integration go to infinity shows

Q =0. Thus isolated free quarks do not exist in
this model. Only neutral bound states occur.

We have chosen a propagator for the gluon which
allows the S matrix to be unitarity. Our gluons
are dipole ghosts, and, having indefinite metric,
they would normally destroy the unitarity of the
S matrix. But the quantization procedure elimi-
nates their appearance in in or out states and

their principal-value propagator precludes states
containing gluons from contributing to the absorp-
tive part of any Feynman diagram. " This is re-
quired if the S matrix is to be unitary. But as a
result the S matrix is not analytic. The nonana-
lyticity is closely associated with advanced non-
causal effects. Our procedure forces unitarity to



STEPHEN BLAHA 10

be valid at the expense of noncausality. Tradeoffs
of this type have recently been discussed by Cole-
man. " We return to the question of causality
later.

We have verified that unitarity is maintained in
perturbation theory by an explicit calculation of
the lowest-order quark self-energy [Fig. 2(a)],
which is

from intermediate states (obtained by appropriate-
ly "cutting" internal lines in all possible ways)
which do not contain the gluon. The generalization
to diagrams with many gluon lines is immediate.
First we note that a principal-value propagator
may be decomposed:

8n' q'(q' —A ') q' For the sake of simplicity we shall write the
integral corresponding to our hypothetical diagram
as

where cy & ~y vl the regulator identities
P;c; =g;c;A, ' =0 hold, and P signifies Z(q'+i@)
=Z(q' —ie) as is demonstrated in detail in Appendix
A. The fact that the singularities in Eq. (72) occur
in principal value implies Z has no absorptive
part. This is to be contrasted with the correspond-
ing quantity in QED which has an absorptive part
reflecting the physically allowed decay of an off-
shell electron into an electron and a photon. No
similar possibility exists in our model.

We now will show that the absorptive part (in
the physical region) of a Feynmandiagra, mwithone
internal gluon line only receives contributions

4I= d AI P—
u4 (74)

(75)

where I and I have indices and momenta appro-
priate to the diagram in question and the limits
we have introduced engender no infrared diffi-
culties due to the choice of a principal-value
propagator. Substituting Eq. (73) into Eq. (75) we
can decompose I into three Feynman integrals
(actually their derivative with respect to mass,
etc. ),

I= —, d k, , —+in8(k, )5(k' —p,') + in 8(-k,)5(k' —p,')—p. +26
(75)

in each of which only Feynman propagators are used. The last two terms correspond to opening up the

loop containing the gluon. Their Feynman diagrams have in and out gluon lines of momentum k, which js
summed over. Let us now restrict ourselves to the physical region' of our diagram so that we can take
the absorptive part of I in the following way:

8
Abs(I) =in

Bp,
d 'k[-I '8(k, )5(k' —p.')+ I'8 (k )5(k' - p,') +I ' (-8k, )6(k np') J+It

(77}

The term in square brackets contains all contribu-
tions from intermediate states containing a gluon,
while A contains the remainder of the absorptive
part. The first two terms cancel, while the third
term is zero in the physical region. Thus we have
shown that the absorptive part receives no con-
tributions from states containing the gluon. Con-
sequently only states containing quarks contribute
to unitarity sums for absorptive parts and diagrams
containing external gluons do not contribute to the
S matrix.

The principal-value gluon propagator has intro-
duced noncausal effects into our model in the
sense that the corresponding configuration-space
Qreen's function is half-advanced and half-re-
tarded. However, because we have maintained the
commutativity of field operators at spacelike dis-
tances the principle of microscopic causality is

not violated. Although advanced effects are not
observed in everyday life they do not lead to in-
ternal inconsistency or paradoxes. ' On the micro-
scopic level, for example, within the confines of
a hadron, advanc ed effec ts are not nece ssar ily
ruled out on physical grounds. From the earlier
discussion of vacuum-polarization effects it is
clear that noncausalities must be limited to very
short distances. It thus appears that the only
significant question involving causality is whether
the nonanalyticity of the 8 matrix for low-order
quark-quark scattering will be reflected in the
scattering amplitudes of bound states in a manner
which is in substantial disagreement with our
understanding of 8-matrix analyticity for physical
particle scattering. The answer to this question
is not known,

As an application of the dipole model we shall
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study the deep-inelastic electroproduction struc-
ture functions in low-order perturbation theory.
Previous calculations" of the structure functions
in pseudoscalar-meson or neutral-vector -meson
field-theoretic models (without transverse-mo-
mentum cutoff s) contained logarithmic deviations
from scaling in apparent conflict with experimental
results. The dipole model has strong transverse-
momentum damping and as a result one obtains
scaling structure functions-in fact, the only as-
ymptotically leading contribution appears to be the
diagram of Fig. 4(a). Higher-order diagrams do
not scale by powers of q', the photon mass
squared. For example the diagrams of lowest or-
der in q' [Figs. 4(b)-4(d)] contributing to vW, are
of O(q '). Thus the dipole model establishes a.

parton picture of the deep-inelastic structure
functions since quarks appear to be pointlike par-
ticles in the scaling region. The choice of a prin-
cipal-value propagator for the gluon has the ef-
fect of suppressing corrections to the scaling part
of vW, which would have been of O(q '), such as
the contribution of the diagram of Fig. 5. The
absorptive part of that diagram is zero due to
principal-value gluon propagator. Thus the pre-
cocious nature of scaling could be connected with
the properties of the principal-value gluon propa-
gator in electroproduction. On the other hand, the
principal-value propagator will not play such an
important role (at least in low order) in suppress-
ing nonscaling contributions to the absorptive part
of the amplitude associated with e'e -hadrons.
Thus low-order calculations are suggestive so far
as scaling phenomena are concerned.

VI. CONCLUSION

The dipole electrodynamics model which we
have discussed in the preceding sections is a
prototype for a field theory of hadron binding. It
has a number of desirable qualitative features
such as quark confinement and scaling electropro-
duction structure functions. The physical content
of this model is in the bound-states sector. This
sector is currently under study using Bethe-
Salpeter and eikonal techniques.

In a more realistic version of this model charge
will be replaced by color in such a way that only
zero-triality states are physical. The fields ~&
and A.„' will then become Yang-Mills fields. In
that case the use of principal-value propagators
appears to substantially simplify the model since
closed loops of Yang-Mills fields are necessarily
zero. "
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APPENDIX A

As an example of the modifications in perturba-
tion-theory calculations resulting from principal-
value propagators we evaluate the self-energy
contribution of Fig. 2(a) and verify Eq. (V2):

ig A.
' d4k ].

Z(q)=
(2 ), ( ~), , p ~, y, (g+f+m)y"

(Al )

in the Feynman gauge. Feynman parameters can
be introduced, and using Eqs. (49) and (50) we ob-
tain

(a) (b)

gA,
Z(q)= 22, ddf f (Q)IZ /+4m)

"dP -2n
C C

x e(C)e'~)', (A2)

I

I

I

I
I

(c) (d)

FIG. 4. Lowest-order diagrams contributing to the
inelastic electroproduction structure functions. The
dashed lines indicate the only contributions to the electro-
production structure functions of the absorptive part of
the forward virtual Compton scattering diagram. Exter-
nal "wiggly" lines represent photons, while internal
"wiggly" lines represent dipole gluons.

FIG. 5. A forward virtual Compton scattering diagram
not contributing to the electroproduction structure
functions.
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(As)

-g A.
'

Z(q) = dn o. e(n) —[ 2-ne(C) jf'+4m]dp
D

x6(I —I~+PI) . (A5)

D= npq' —pCm' . (A4)

Scaling n and P and using Eq. (5S) converts Z(q) to
the form

Of the two "points" contributing to the integral,
n + P =+I, the contribution of the term n + P = -1
can be included in the other term by an extension
of the P integration domain:

d
&(I —~ —P)( 2n-g'+4m)

o.pI' —pm' (A6)

c; =-0, (A7)

pc, A, '=O,

This may be shown by letting n - -n and P- —P
in the term in question. Equation (A6) has diver-
gences at n =-+~ after the P integration. These
may be handled by introducing Pauli-Villars regu-
lators of mass A; satisfying

to imply that only "timelike" excitations are
physical, and as a result the analysis of Feynman
etal. cannot be directly appropriated for our use.

We shall introduce three vector-gluon fields,
A„'(x) (i =1, 2, S), of which only one will interact
directly with the prototype spin- —,

' quark field,
g(x):

g lF1 F3Pv 1F2 F2Pv g2A2A3P2 PV +4 PV

Equation (A6) then becomes

(A9)

(Alo)

+ 4(&V' -a8' —m )0, (al)
with F&„=8,A„' —8„8', , and A. and g coupling con-
stants. Following the canonical procedure we ob-
tain the equations of motion

-g'&' ~ "
do. n e(n)( 2o.g+-4m)

S2v' ~ ' „(1—n)[o. [q'+is(o. )6] -A,. ') '

(A11)

which may be shown to give Eq. (72) by elementary
integrations. Apparent singularities in the de-
nominator of the integrand of Eq. (A11) do not lead
to difficulties if we take account of the i~'s which
we have suppressed. The ie(n)6 term (6 is in-
finitesimal) shows Z(q) to be in principal value
[Z(q'+i6)=Z(q' —i6)]. It originates in the ex-
ponentiation of the principal-value propagator
using Eq. (49).

APPENDIX 8

We will briefly describe another possible model
for hadron binding. Like the dipole model it is a
member of a class of null-metric gluon theories
with multipole Green's functions. The physical
motivation for considering this model is a gross
similarity to a quark model of Feynman etaI, .4
which posited a r elativistic harmonic oscillator
potential, x"x„, between quarks and obtained quite
successful agreement with experiment. If we
neglect factors due to its vectorial nature (and
also vacuum polarization effects) the interaction
between quarks in our model is x"x 8(x„x") (note
that x&x~ = x,' —x'). The e(x "x„)factor, which is
necessary for unitarity to be maintained, seems

8"F' +Z2A2, = 0,
8 "F A. A =0

PV V

8 "F'„„+gJ„=O,

(i P- gP' —m )q = 0,

(a2)

(as)

(a4)

(a5)

Fgv-~ F'Pv=0 (a7)

(a6)

and as a result

28"F' =gX4J
PV V

irrespective of the gauge choice for A&.
Following the conventional procedure we find

that the canonical equal-time commutation rela-
tions in the radiation gauge (V A' =0) are

[&'„(x),&,'(y)]

(alo)

with J' the quark current. The equations of motior
reveal the Lagrangian to be invariant under local
gauge transformations of A& and g while

8 "A2 = 8 "A.'„=0 . (a6)

Furthermore, Eqs. (a2) and (aS) imply
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iD~~, iG~, =iA. g„pP —
6

in the Feynman gauge, with

1 1 1 1 1
)'a' 2 (@a+is)' 2 ()'aa —ie)' '

In coordinate space the gluon propagator is

(B12)

with g"=g"=-g"=1 and all other Pg'"=0. We can
now choose to quantize the theory as described in

the text. Again we may use the perturbation-the-
ory rules of QED if the photon propagator is re-
placed with the gluon propagator in the following
manner:

X'g~, (x —y)a8((x —y)') (B14)

in the Feynman gauge, which suggests a relation-
ship between our model and that of Feynman,
Kislinger, and Bavndal' as stated previously.

The discussions of unitarity, causality, and
quark confinement given in the text apply to this
model with only superficial changes. The light-
cone divergences encountered in the dipole model
are not so extreme here. For example, the over-
all degree of light-cone divergence for one-loop
diagrams is 3-3P twhere P is the number of in-
ternal gluon lines; cf. Eq. (61)j and thus the low-
est-order quark self-energy (Fig. 2) is only loga-
rithmically divergent,

16& q4 )& n ~& (qa ~a)a +
(qa a)s 1 a + I

(
a a)a (

a a)s

where q is the quark four-momentum, m the quarl.
mass, A is a regulator mass, and P signifies
that all singularities are to be taken in principal
value.

Finally, we would like to note again that the

deep-inelastic structure functions scale in this
model with leading nonscaling corrections of
O(1/qs), where q is the virtual-photon four-mo-
mentum. These corrections come from the dia-
grams of Fig. 4.
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