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Finally

M', 4'(q) =
d4q' d'q"

M~(q')M, (q")M~(q —q' —q")
(

d'q' d4q"
M s(q')Mp(q")M~(q —q' —q") (2,)4 (2,)4

d4 / d4 II

Ms(q')MA(q")MA. (q q' —q")-( )4 (
4

I'. (A10)

Substituting (A5), (A7), and (A10) into (A4) and transforming it back to x space we obtain Eg. (12) of Sec. II.
We note that the first term of (A5) is exactly equal to the left-hand side of (A4).
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The Nielsen-Olesen interpretation of dual strings as Abrikosov flux lines is extended to the
case of open-ended strings by adapting Dirac's description of magnetic monopoles to a London-
type theory. The mathematical formalism turns out to be similar to that of Kalb and Ramond.
Translated to hadron physics, it implies that the quarks will act as carriers of magnetic
charge, permanently bound in pairs by the string bonds. However, massive axial-vector
gluons can be created by hadrons.

I. INTRODUCTION

In a very interesting paper' Nielsen and Olesen
have pointed out a parallelism between the Higgs
model of broken gauge invariance and the Landau-
Ginzburg theory of superconductivity on the one
hand and the dual string model and the Abrikosov
flux lines in type II superconductors on the other.
According to their suggestion, a dual string is
nothing but a mathematical idealization of a mag-
netic flux tube in equilibrium against the pressure

of the surrounding charged superfluid (Higgs-
scalar field) which it displaces. Only strings with
no ends (infinite strings or loops) were considered
by them. It is known that a closed string could be
a candidate for the Pomeron. But what will happen
if the string is open-ended? Obviously the mag-
netic flux will terminate at the end points, thus
creating a pair of magnetic charges. ' In the dual
quark model ordinary hadrons are viewed as being
made up of quarks bound by dual strings, or, from
the string's point of view, as open strings having
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The theory also contains two mass parameters mv
and m& of the vector and Higgs scalar fields A& and

Q, respectively. These are in turn related to two
characteristic lengths )(.„=I/mv and h~ = 1/nz~ which
determine the transverse dimensions of the vector-
field concentration and of the scalar-field rarifica-
tion, respectively, around the string. Thus the
string is actually two things, a flux of a magnetic
field and a hollow vortex line in the Higgs field.

Once we recognize these basic features, it is
possible to idealize the situation and formulate the
problem without referring to the particular Higgs
model. We will do this in the next section by mod-
ifying Dirac's description of magnetic monopoles.

II. MODIFIED DIRAC MONOPOLE THEORY

Dirac's extension' of the Maxwell equations reads

B~Ep p
———j, ,

B~E~, = -Q, ,

(la)

(lb)

where E„*, is the dual of E&, , j, and k, are electric
and magnetic currents, respectively. 4 The only
new step we take now is to go to the London theory
of superconductivity by making the ansatz'

PPgv A P
2

so that Eq. (la) is repla. ced by

quarks at their ends. From the Nielsen-Olesen
picture it then follows that these quarks will act
as a source of magnetic charge. (Here we are
using the words electric and magnetic not to refer
to actual electromagnetism, but as an analogy in a
simplified model of strong interactions. )

At any rate we are led to the following picture.
The quarks carry magnetic -type charge g whereas
the Higgs field (boson) carries electric-type charge
e, although it is a matter of convention to call one
magnetic and the other electric. The two charges
will be related by the Dirac quantization condition

Here y&(7, o) represents the position of a, point on
the world sheet swept out by the string, and the
sheet is parametrized by the internal coordinates
7, o. G&, is independent of parametrization. '
However, for definiteness we fix the range of
the parameters as —~ & v & ~, 0 & 0 & m so that
y&(7, 0) = y(„" and y&(7, v) = y~) represent the world
lines of the two magnetic charges.

The E&, as defined in Eq. (3) automatically sat-
isfies Eq. (lb):

pp V Vp

=g clv 5 x —g

= -g dv[()'(x —y), y. j

Cfg p=g '-()'(x —y) d7
4T

P(i) (x) g(() ~ ()
()'(x —y)dr,

d7

=g, g =-g.(l. ) (2)

4' p~p p Qwv ApAp

One may therefore regard only Eq. (la') as an
equation of motion. However, one also needs an
equation of motion for the string and the magnetic
monopoles at its ends.

For this purpose we take a Lagrangian density in
space-time

E p ~vAp (la')

A classical solution to Eqs. (Ib) and (la, ') can be
obtained with the aid of the Dirac string. Let us
consider a pair of point magnetic charges +g
joined by a string. Then define

E~, ——9~A, —B,Aq —G~, ,

G, (») »ff &»'.(» -=»)(»„».],

[y, y,] =- "' ', dv=drd(x.a(y, y.)
s (~, (7)

Here the last term is a contribution from the mo-
nopoles carrying mechanical masses M ' . By
varying A& in the action integral fL d'x, one gets
Eq. (la'), or

( -mv')A, =s„G„,

after substituting Eq. (3) and observing that

epA~ =0.
By varying y„at a point (w, o) in the interior of

the world sheet, we get
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1I.d'x = ——
2

P p
I1 V

3')(

5GP V

PV

I[y„y-,] 6'(y -x6 d~

x F„„(x)d'x

&[y„y,] F„".(yA d&

represents the (oriented) surface element of the
sheet embedded in the real space-time, and one
can always choose, unless the surface intersects
itself, a local Lorentz frame ("normal frame")
so that only one component 0 ~z

——-p.
zz is nonvanish-

ing, where ~ and p are in the tangential plane of
the sheet. Equation (9) then implies that the vector
A„must lie in the tangential plane. In physical
terms, the London current can only flow along the
string.

For a further study of the motion of the string,
let us solve Eq. (6) for A,

=0

which leads, in view of the definition of [y„,y)t], to

'"F„*,(y) --.'[y, , y.l

= [F~., y.] —l[y~, y.]

~XP yX ~yv

A,(x) = s(x —y) 6„( *„„(y)d'y,

and substitute it in Eqs. (5), (9), and (10). Here
b, (x) is a Green's function for a field of mass m~.
In this way we obtain nonlinear equations for y„,
and an effective Lagrangian from which these equa-
tions will follow. A straightforward calculation
shows that the action integral, after discarding
total divergences, can be brought to the form

(6)
2 1 2 2d VcC off &8 MV d vd vv)t~E(y —y )0')I~

This amounts to

~ 'dIp,[y„y.]
Byp

(9a,)
5, 2

(i) ()) ~ (i)&( (i) (i)i)

X y(„"d~d~'

or M(i)(&(i) (i))i(2 d+ (13)
[yp~ yul Av (y) = 0 (9b)

because of Eq. (la').
By varying y&), the coordinates of the magnetic

poles, we get

y(i)M(') d yp ()E* (-) .(;)
g~ (y(i)y(i)) ) & p (y )y

det((T p p) = —,'6(oj, p&p p)' = 0.

This is indeed true because the six-tensor 0„, dv

y( ) dy( )/d (10)

where the right-hand side comes from boundary
contributions in Eq. (7).

Equations (6), (9), and (10), then, are our basic
equations, the first two of which are equivalent to
Eqs. (la. ') and (lb). Equation (6) is a differential
equation in the real space-time, whereas Eqs. (9)
and (10) are differential equations for y„on the
two-dimensional world sheet and its boundary. A
first observation to make is that Eq. (9) is a. linear
constraint on A„at any point on the sheet. For the
existence of a nonzero solution, it is then neces-
sary that the coefficient matrix a» =- [y„,y,] satisfy

It is now defined entirely in the two-dimensional
world, y~ merely being regarded as fields with
four components. The first term represents a
short-range Yukawa interaction between two sur-
face elements; the second is another Yukawa
interaction between magnetic currents, including
self-interaction; the third is, of course, the mech-
anical mass term. Everything is manifestly inde-
pendent of the choice of internal coordinates, and
therefore can be given a direct geometrical inter-
pretation.

It is interesting to observe that if m~=0, the
first term goes out and we recover the familiar
result of magnetic charges interacting via the
long-range Maxwell field. The string is unphysi-
cal in this case since it does not carry energy-
momentum. Once mz 10, however, the string
acquires physical reality. From dimensional con-
siderations and the short-range nature of b. (x), it
is clear that the first term of Eq. (13) is propor-
tional to the surface area of the world sheet, as
in the dual string model, with a characteristic
coefficient —g'nz~'.

A somewhat more elaborate derivation of the
string Lagrangian from Eq. (13) will be a,s follows.
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At a point (~,o) on the sheet we choose, as before,
a "normal frame" so that

2

(2w)'

e!(03&3+04&4)
d k dx, dx4

+ my

dk, dk,
(2m)' k,'+ k,'+ mv'

(14)

where a momentum cutoff K has been introduced in
directions perpendicular to the sheet, correspond-
ing to the finite thickness of the string. From the
work of Nielsen and Olesen" one may equate it
with a mass parameter m~ characteristic of the
Higgs field.

With Eq. (14) the first term of Eq. (13)becomes
a single integral of surface elements. In covari-
ant notation, then, one gets the string Lagrangian
(density)' in the (r, &x) space

for example. If the curvature of the surface is
small over the range - I/mv of b, (x), and the point
in question is not within a distance - I/m„ from the
boundaries, one can approximate

a(y —y' v(„ud= —i f a(x) dx, dx,

x = cosna cosnv,

y = cosna sinn'',

z =0

t=n7.

(19)

If we ignore the end-point effects, its energy will
be I/n of that in the naive string model if n is odd,
and zero if n is even.

(c) It is an easy matter to generalize our con-
siderations to cases with more than one string.
The total action integral will now consist of a sum
over actions of the type (13) for individual strings,
plus similar terms representing interstring con-
tributions to the surface-surface and boundary-
boundary interactions. Interestingly, a picture of
this kind has been proposed by Kalb and Ramond. '

For a sufficiently long string (l 2 1/m„), the string
energy is dominant; for a short string (l & 1/m )
the singular Yukawa interaction becomes impor-
tant if the size of the end-point monopoles is even
smaller.

(b) The string is oriented, i.e. , has an intrinsic
sense of polarization, like a magnet. ' When two
portions of the world sheet nearly overlap, there
will be a Yukawa interaction between their surface
elements. The interaction is attractive when the
two string elements line up antiparallel, and re-
pulsive when they are parallel. Such an effect mill
become most pronounced if the string folds on it-
self. An example of normal modes of this type is

g2 e -my&

4m
(17)

where 3 is the distance between the end points.
The string energy, on the other hand, will be

where

+1 ~

g', ms'
2m+' 8m mp

This relates the Regge trajectory slope e' to the
parameters of our theory.

We have thus seen that Eq. (13) contains the

string Lagrangian in the local limit. Beside that,
however, Eq. (13) has the following additional im-
portant features.

(a) The end points of the string behave like par-
ticles with mass M" and charge g ", coupled to a
massive vector field. This leads to a Yukawa in-
teraction between the end points and their own

self-energies. In the static picture, this inter-
action energy is

III. QUANTIZATION

—= &n, n =0, +1,+2, . . . .eg
1T

(2o)

As is well known, this condition also appears as
flux quantization in superconductivity. In the

Landau-Ginzburg-Higgs model, e is the electric
charge of a scalar field Q, andm(, is given by

(2 1)

so that the characteristic coefficient in Eq. (13),

@2m 2 g 2e2 (y)2

is independent of e, because (P) is determined by
other parameters in the model.

Quantization of our theory can be done following
Dirac's procedure Starting . from Eq. (7) one first
defines the canonical conjugates to A& and y&, re-
spectively, under displacement of real time t and
fictitious time T. Dirac has shown that the single-
valuedness of the wave function for a system con-
taining both electric and magnetic charges requires
the quantization condition
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Beyond this, the actual passage to a quantum
theory of strings is beset with various well-known
difficulties. We will nevertheless indicate how it
might be carried out.

The Lagrangian (5) conta, ins three dynamical
quantities, the vector field A&, the string variable
y„, and the magnetic source variables y„'. For a
clear separation of the first two, we use the defi-
nition (3) to write Eq. (5) as

4~ ~v+~ + 2+~ G~ + ~G

—2m~ A~Ap —X,2

+pv=8pAv 8vAp

(22)

The second term shows that G~,(x) acts as a
source for the field A, whereas the third term
has the nature of a free Lagrangian for the string.
From the point of view of the string, it is more
convenient to go to a Lagrangian (density) 2 in the
(7,o) space, related to f, by

4~ string d + ~ string d
1 0+L „„ng ———~G~vGpv+~F~, Gpv .

(23)

We find

+~ally~ vs +~pU($) (24)

The first term of Eq. (24) is very much like the
first term of Eq. (13) except that it is quadratically
divergent instead of logarithmically. It seems
sensible, therefore, to replace this term by 2 „„„,
of Eq. (15). The second term is responsible for
emission and absorption of vector-field quanta.
Thus we get a new Lagrangian

+ string + string d &

(29)

The gauge constraint (27) now reads

8y~Kst„„„=0, 6'„„„g =—
mq =0.

80' (30)

K„„n„and 6'„„„g are nothing but the components
T«= T«and T«--- T„of the energy-momentum
tensor in the (7,g) space. Since 2 „„„,does not
explicitly depend on (r, o), they satisfy the con-
tinuity equations

8X 86' 8(P 8X—-- —= ———=0
87 80' 87 8 0'

in the interior of the world sheet. Imposing the
condition (30) everywhere on the sheet, including
the boundaries, is then compatible with the equa-
tions of motion. Actually, one must consider the
contribution of magnetic poles in Eq. (22). In
quantum theory let us assume these poles to be
Dirac particles, and postulate the following equa-
tions':

IV. IMPLICATIONS FOR HADRON PHYSICS

y' m' —iM' =0 (i=1,2).
Equations (31) and (32) are to be regarded as con-
straints on the wave function 4'„8(y&(o),A, (x))
which depends on the Dirac spin indices o. , P of the
poles in addition to the string and field variables.

The real question is, of course, the compatibility
of these constraints with each other and with the
Hamiltonian as operator relations. Unless this
can be shown, the present formalism will remain
only a superficial one.

(25)

which can further be reduced to

+ ~op +p

(26)
under the well-known Virasoro gauge condition'

yp yp 0

The canonical conjugate to y„ following from Eq.
(26) is

3'p

2m'' 87 "' 8a

and the Hamiltonian is

The foregoing model theory has many interesting
features which are relevant to the actual strong
interactions, although some important pieces are
missing. For a more realistic model, one would
have to seek generalizations to non-Abelian gauge
fields. " Nevertheless, it will still be instructive
to take stock of what the present model already
has. First of all, isolated magnetic charges can-
not exist because, in contrast with the case for
Dirac monopoles, an infinite amount of energy is
required to infinitely stretch a string. If these
charges are carried by quarks, then single quarks
cannot exist. Only quark-antiquark pairs ("me-
sons") would exist, which have zero total magnetic
charge. Unfortunately, there are no "baryons. "
However, massive axial-vector gluons can also be
produced by mesons, as we shall see below.
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The forces that bind "quarks" and "antiquarks"
are of two kinds. One is the tension of a string;
the other is a Yukawa force. For long strings
(highly excited mesons) the former will be domi-
nant, leading to the usual linear trajectories of
the dual resonance model. However, the finite
thickness of the string and the short-range inter-
actions between string elements will distort deep-
lying daughter trajectories. If we use Eq. (16)
with the known value n' = 1 GeV ' and the reason-
able ansatz m„,m~ ~ 1 GeV, we find that g'/4m can-
not be very large (S ). It is the electric coupling
e'/4w which is large (z —,').

For low-lying states of the meson (short strings)
the Yukawa interaction as well as the kinetic en-
ergy of the quarks becomes important since both
go like 1/length (the quark mass is here ignored).
The former is attractive, while the latter acts like
a repulsive force. Their effect would lead to a
shift in the trajectory intercepts.

Another effect of the Yukawa interaction would
be to change the short-distance behavior of the
wave function from the Gaussian form of the dual
resonance model to a power form. This should be
highly desirable in view of what we know about
elastic and inelastic form factors of hadrons.

Strings interact with each other via exchange
of the gluon field, whose source is distributed
over the entire length of a string. This results in
joining and splitting of strings not only by end-to-
end contact of opposite magnetic charges, but also
by antiparallel lineup of two string segments. (See
Fig. 1.)

Another straightforward consequence of the the-
ory is emission of a gluon by a string through the

FIG. 1. Examples of joining and breaking of strings.

interaction term in Eq. (29),

For a gluon of momentum k„and polarization e„,
this is

&P~V~) XPe &II~) P
« . (34)

Obviously the gluon behaves as an axial vector
(8 = 1') instead of a vector (1 ) particle. ' A

simple example of such a process would involve
the transition of a meson string from 0 to 1',
as in a hypothetical hadronic reaction

m-A, +G,

where G stands for the gluon. It is a curious fact
that the axial-vector field nevertheless gives rise
to a vector-type interaction between magnetic
charges, according to Eq. (13). In any case it
appears that unlike the "quarks" the gluons cannot
be permanently contained in our Abelian model.
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A field-theoretic model for hadron binding is described in which free quarks are totally screened.
Quarks interact via a dipole vector-gluon field. A second-quantization procedure for the gluon field,
which reduces the field to an embodiment of a direct particle interaction, eliminates unitarity problems.
A detailed description of perturbation-theory rules is given. In contrast to the results of the
pseudoscalar-meson and massive-vector-meson models (without cutoff), scaling occurs in the
electroproduction structure functions. Another possible model having some resemblance to the relativistic
harmonic-oscillator quark model of Feynrnan, Kislinger, and Ravndal is also described. It is unitary
and has scaling structure functions.

I. INTRODUCTION

The current understanding of hadronic structure
allows two apparently contradictory statements
to be made: The constituents of the hadron ap-
pear to be loosely bound, quasifree par ticles. The
constituents of the hadron are not produced and
do not occur outside of hadrons. Several attempts
have been made to resolve this paradoxical situa-
tion. They may be divided into two categories:
"conventional" field-theoretic approaches, "and
ad hoc approaches which postulate manifestly non-
field-theoretic structures for confinement, e.g.,
the bag" model. ' In the first approach Casher,
Kogut, and Susskind' and Wilson' showed that
quarks could be totally screened and not observed.
However, a four -dimensional, Lorentz-invariant
field-theoretic model of hadron binding with its
attendant conceptual and computational advantages
appears to be lacking. We shall discuss a pos-
sible candidate, the dipole gluon model, in detail.
In addition, another possibility is briefly de-
scribed in Appendix 8 which bears some compari-
son with the quark model of Feynman etc'. The
dipole gluon model has two major qualitative fea-
tures in common with the bag model' and the two-
dimensional quantum-electrodynamic model'. (l)
The dipole gluon field has no independent degrees
of freedom; neither does a bag or the two-dimen-
sional electromagnetic field. (2) The 'Coulomb"

potential between quarks is proportional to the
distance between them in all three models. In a
sense the bag model may be regarded as a phe-
nomenological approximation to the dipole model,
and the dipole model as a generalization of the
two-dimensional model to four dimensions.

In Sec. II we describe a quantization procedure
which avoids the introduction of indefinite-metric
in or out states and thus leads to a unitary S
matrix. In Sec. III we describe the properties of
the "free" gluon Lagrangian model. In Sec. IV we
describe the perturbation-theory rules of the
dipole model. Section V contains a discussion of
unitarity, causality, quark confinement, and
scaling properties of the electroproduction struc-
ture functions, For simplicity we shall ignore all
but the dipole quark interaction and do not intro-
duce internal quark quantum numbers.

II. SECOND-QUANTIZATION PROCEDURE FOR
THE GLUGN FIELD

We shall not quantize the gluon field in the con-
ventional manner for three reasons: (l) to be
consistent w'ith experiment where no such particle
has been identified, (2) to avoid unitarity problems
in the S matrix, and (3) to avoid infrared problems
in perturbation theory. We attribute no dynamical
degrees of freedom to the gluon field. Instead we
regard the field as the embodiment of a direct


