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An extended model of elementary particles based on an analogy with superconductivity is presented.
Starting from the modified Nambu —Jona-Lasinio model of a massless fermion field with the quartic
self-interactions, we derive coupled differential equations for the self-consistent fermion mass based on
the relativistic Hartree-Fock-Bogoliubov approximation. The physical implication of these equations is

explored and is shown to suggest a stringlike picture for the extended hadrons.

I. INTRODUCTION

We develop Bn extended model of elementary
particles in this article by an analogy with super-
conductivity. ' In our view, the hadronic vacuum
is made up of an infinite number of fermion-anti-
fermion pairs, and a hadron is a complicated ob-
ject with a finite spatial extension where the pair-
ing of fermions of the vacuum is locally destroyed.
'The shift in the pair potential makes it possible
to trap quasiparticles within a limited region of
three-dimensional space. In these respects our
picture resembles Abrikosov's vortex line in a
type-II superconductor, ' i.e., a limited region of
the normal state surrounded by the superconduct-
ing vacuum.

Here we present a general field-theoretical
framework to describe such an extended object.
For this purpose we first extend the supercon-
ductor model' of elementary particles to the
spatially inhomogeneous systems. This may
be viewed as the construction of a field-theoret-
ical model based on an analogy with the Ginz-
burg-Landau-Abrikosov-Gorkov (GLAG) theory
of superconductivity' which generalizes the BCS
theory to describe spatially inhomogeneous sys-
tems such as a type-II superconductor or a super-
conductor with magnetic impurities. In the next
section we start from the Lagrangian model of a
massless spinor field with quartic self-interaction.
We derive coupled differential equations for the
self-consistent fermion mass by making use of
the relativistic Hartree -Fock-Bogoliubov approxi-
mation. These equations turn out to have a strik-
ing similarity to the so-called Ginzburg-Landau
(GL) equations, '" though their physical interpreta-
tions are significantly different. These mass equa-
tions are solved to determine the self-consistent
pair potential for the quasiparticles which are
trapped in the potential to constitute an extended
hadron. Our task is to extract the physical implica-

tions of the pair potential for the internal structure
of the hadron. Though we have not completely
analyzed the equations yet, the immediate conclu-
sion is that they suggest the stringlike structure
of the hadrons, i.e. , the potential deviates from
its asymptotic value only in the one-dimensional
region. This seems to be the most significant
achievement of our investigations. In the next sec-
tion we derive our mass equations by making use
of the relativistic Hartree-Fock-Bogoliubov ap-
proximation, and in Sec. III we discuss their impli-
cations on the hadron structure. Section IV is
devoted to the summary and the conclusion.

II. DERIVATION OF MASS EQUATIONS

Let us take as our model the following Lagran-
gian of the massless fermion with the quartic self-
interaction:

L(x) = g(x)i y sf(x) +8 [(gg)' —((&,tt)']

g [(4&u4) +W&5&pC) ]

This is the most general form of four-fermion
interactions invariant under the chirality trans-
formation. Dimensional coupling constants g and
g' are assumed to be positive and need not neces-
sarily be the same. The relation between their
magnitudes will be derived afterwards. This the-
ory is, of course, not renormalizable. We are
forced to introduce a cutoff as usual [see Eq. (10)].
We are not going to discuss in this paper whether
this cutoff corresponds to a certain fundamental
constant, to the mass of a heavy vector meson, or
to something else. In the original Nambu-Jona-
Lasinio model there is no term proportional to g',
which we have inserted to achieve a sufficient
attractive force in the axial-vector channel. An

alternative form of Eq. (1) is obtained on making
a Fierz transformation,
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-(g —zg)((y5yp 0) (2)

m" (x) = -(4g'+g)iTr(y" S (x, x)},
m"„(x) = -(4g' -g)iTr(y, y" S„(x,x)) .

(7)

(8)

m ~(x) = PgiTr(S~(x, x)),

m~(x) =2giTr(iy, S~(x, x)),

(5)

(8)

In the relativistic Hartree-Fock-Bogoliubov ap-
proximation, the self-consistent fermion mass is
determined in such a way as to cancel the self-
energy effects caused by the self-interaction in
Eqs. (1) and (2). If we make use of the alternative
expressions (1) and (2), the self-consistent mass
is given by

nz(x) =-2gi[Tr(S (x, x)}—y, Tr(y, S~(x, x))]
-(4g' +g)iy" Tr ( y „S~(x,x) )

-(4g'+g)iy, y~Tr(y, y„Sz,(x, x)).
'This may be written as

m (x) nz ~(=—x) + iy, m r(x) + y"m"„(x) + y,y"m „"(x),

(4)

where m~(x), mp(x), mv(x), and m„(x) are given
by

Here m ~, ms, , ~v and m„are assumed to be
real. The propaga, tor S~(x, y) satisfies

&„S~(x,y) —m(x)S~(x, y) = 5(x y) . (9)

Equa. tions (4)-(9) form the basic ingredients of
our theory. Note that in the Nambu theory the
vacuum is taken to be I orentz-invariant and hence
m~(x) and m„(x) vanish identically. This is no

longer true in our case.
We now attempt to solve Eqs. (4)—(9) approxi-

mately. Since we expect our hadrons to have only
finite extensions, we assume that m(x) goes to
the Nambu value m when x- ~. m is obtained
by solving the Eqs. (4)-(9) assuming a constant
mass,

1= 2gz Tr1 4

(2zz)' fz' —m „'+i e
(10)

where the integral over the momentum is cut off at
A'= p

Then we can formally solve Eqs. (4)-(9) by ex-
panding the full propagator Sz(x, y) around Sz"(x, y),

S (x, x) = S (x, x) + S (x, x')[m(x') —m ] S (x', x)d x'

+ S~"(x,x')[m(x') -m„) S~"(x', x")[m(x") —m„]S~"(x",x)d'x' d'x"

+ S~ (x, x")[m(x') —m„]S~"(x',x")[m(x") -m„]S~"(x",x")[m(x"')-m ]S~ (x'", x)d'x'd'x"d'x'"

+ 0 ~ ~

We find that each term in Eq. (11) is a loop integra-
tion with a larger number of mass insertions as
we go up to higher-order terms. Hence, in the
limit: A- ~ only the first few terms in Eq. (11)
diverge, while all the other terms remain conver-
gent. A great simplicity arises, therefore, if we
consider our theory in the limit of large A which

we take to be the case hereafter. Then by retain-
ing the terms only up to the order logA, i.e. , by
neglecting all the other terms which stay finite in
the limit of A-~, we are able to perform the cal-
culations in a closed form.

After some lengthy but rather straightforward
calcula. tions we obtain (see Appendix)

mz(x) —2m„'ms(x) +2m~'(x) +2m+'(x)mz(x) 4m„'m (x) —2m (x)a„m" (x) 4a nz (x)m"„(x) =0

m~(x) —2m 'm~(x) +2m~'(x)m~(x) +2m~'(x) —4m„'nz~(x) +2m~(x) s„m"„(x)+48„m (x)m"„(x) =0,
(12)

( gp. —"ps, )mv(x) + (4, ;~ mvp(x) = o,4g'+I. ) L (i4)

( g&. —sza, )m&(x)+&[&„mz(x)m, (x) —&„m,(x)mJ(x)]+8[m, (x)'+mz(x'}]m„„(x}+, m»(x) =0. (15)4g&

Here I. is a positive infinitesimal quantity,

I= ——gi; dP
(2zz)' (p' —m„'+ie)' ' (18)

and

a„m"„(x)= 0. (18)

Note that Eqs. (12)—(15) imply

&„m,'(x) =0,

Equations (17) and (18) can also be deduced from
Eq. (9) directly. The following remarks are in
order on the above mass equations.
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(i) While there is no cutoff dependence in the
mass equations for m~(x) a.nd m~(x), there appear
cutoff-dependent mass terms in the equations for
mv(x) and m„(x). This is because in Eqs. (5) and
(6) the quadratically divergent terms cancel be-
tween the right- and left-hand sides of the equa-
tions. By setting the coefficients of the logarithmi-
cally divergent terms equal to zero we get Eqs.
(12) and (13) (see Appendix). On the other hand,
in the calculations of the vacuum-polarization ten-
sors, the quadratically divergent terms vanish due
to gauge invariance and hence there arises a mis-
match in the order of A between the right- and
left-hand sides of Eqs. (7) and (8). This is the
cause of the large-mass terms in Eqs. (14) and
(15). Note that we have to set g'& —,'g in order for
these masses to be real.

(ii) As one can see from Eqs. (12)-(15), the vec-
tor density decouples completely from the rest.
This is reasonable because in our theory the vac-
uum and quasiparticles retain a well-defined
charge-conjugation property and hence the nonzero
mv(x) would lead to C violation. Since we do not
want C violation in our theory we set m =0. Next
let us rewrite Eqs. (12), (13), and (15) in a more
transparent fashion. By defining

mg(x) +im~(x) = y(x),

we obtain

[sp+2im»(x)]'y(x) -2~„'y(x)+2I y(x) I'y(x) =0,

(20)

( g„, — s„s) m'( x)+2. [&*(x)s„p(x)—&f)(x)s„y*(x)]
3

external axial-vector gauge field. The original
scalar field of mass 2m„and the massless pseudo-
scalar field combine into a complex scalar field
&f&(x) whose radial I Q(x) I

and angular arg&f&(x)

components are now the eigenstates of the mass
with the eigenvalues 2m„and 0, respectively.

At this point readers may note the striking simi-
larity of Eqs. (20)-(22) to the GL equations and
suspect that our derivation is a field-theoretic
analog of Gorkov's derivation of the GL equation
from the microscopic theory of superconductivity
near the critical temperature. ' The crucial dif-
ference between the GLAG theory of supercon-
ductivity and our mass equations exists, however,
in the following point: In contrast with the case
of the GL equation the quantity m„(x) in our theory
is not an external field. It describes the collec-
tive excitations of quasiparticle pairs just as the
scalar and the pseudoscalar densities do. We
should also remark that the similarity between
our mass equations and the GL equations already
suggests the string-like picture for the extended
hadrons.

III. EXTENDED MODEL OF HADRONS

Our extended model of hadrons is formulated in
two steps. The first is to solve the mass equations
(12), (13), and (15) and determine the one-particle
Hartree-Fock-Bogoliubov field. This provides us
an inhomogeneous, locally excited vacuum to trap
quasiparticles in the Hartree potential. The next
step is to solve the potential problem

i)'sg(x) =m(x)g(x), (23)
+6Iy(x)I'm»(x)+, , m„q(x) =0.(4g'-g L

(21)

These two equations may be deduced from the
Lagrangian

L(x) =1[8„+2i~»(x)] y(x) I'- 3~p, (x)~"'(x)

+,' m".(x)'+2~ 'I q(x) I'- Iq(x) I';2g
3 (4g' g)L-

(22)

here

(iii) Our next remark is on the problem of the
massless pseudosealar mode. The asymptotic
form of the solution to Eq. (20) shows that there
exists no long-range pair potential in our theory.
This means that the massless pseudoscalar mode
does not imply a long-range force. In contrast
with the case of Freundlich and Lurie, ' the mass-
less pseudoscalar mode is not absorbed into the

to determine various bound and continuum states.
g(x) is decomposed into a sum of the orthonormal
set of solutions to Eq. (23),

g (x) =Q a;u,. (x) +g 5, v) (x) .

Our excited vacuum is defined by

a,. lo&=0, f, lo&=0.

(24)

(25)

The scalar and other densities characterize its
internal structures,

2gi Tr (0 I
-', [q (x), q ( )]xI 0) = —m, (x), (26)

(27)2gi Tr (0 I 5 [ q (x), i),q (x) ] 10& = —m~(x),

-(4g' —g)i Tr(012[y (x), )',r„y(x)] I0& = -m„"(x),

(26)

(0IP(x), ~ 0(x)] lo&=0. (29)

Our extended hadrons are constructed by applying
to our vacuum the creation operators of bound
states determined by Eq. (23),
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bound

~hadron) =II a, h, .
~ 0) . (80)

What picture should we have for our excited vac-
uum? Since m„(x) has an infinitesimal penetration
depth due to its infinite mass, the region where it
is different from zero is limited to the stringlike
one-dimensional configuration (the origin of the
stringlike structure will be discussed below).
Along this stringlike extension rn~(x) and mp(x)
also deviate from Nambu-BCS values. Therefore
we can picture our vacuum as the Nambu-BCS
vacuum broken in a cylindrical region in space
where the pairing of fermions and antifermions is
destroyed and their spins are lined up to yield non-
zero spin density m„(x). The radius of the cylin-
drical region is I/2m„, as is known in the GL
theory. Since the chirality current is conserved
[ B„m"„(x)=0], the cylinder cannot have open ends,
i.e. , it is a closed loop (see Fig. 1).

The origin of the stringlike structure is under-
stood in the following way. As we have already
noted in the preceding section, in the calculations
of the right-hand sides of Eqs. (7) and (8) the
quadratically divergent term vanishes due to the
gauge invariance. This is physically reasonable
since mv(x) and m„(x) are identically zero in the
case of homogeneous vacuum and hence their con-
tributions come only from the locally excited part
of our inhomogeneous vacuum. Because these
contributions are logarithmically divergent we
can conclude that the excitation of the vacuum oc-
curs in the one-dimensional region on the basis of
the dimensional argument.

IV. SUMMARY AND CONCLUSION

Starting from a Lagrangian model of a fundamen-
tal massless spinor field with self-interaction, we

have developed above an extended model of hadrons
based on an analogy with superconductivity. In the
foregoing sections we have derived self-consistent
mass equations for the quasiparticles and have
outlined the qualitative features of the solutions.
Most strikingly these equations are shown to sug-
gest a string picture of the hadrons.

Recently there has been much interest in con-
structing the field-theoretical models of extended
hadrons. ' In these theories authors generally
assume the existence of the so-called Higgs scalar
meson and attempt to build an extended object with
three-dimensional extension. The stringlike pic-
ture of our theory seems to be in sharp contrast
to these theories. It will be extremely interesting
if our theory indeed has some fundamental connec-
tion with the conventional string model of hadrons. '

Finally we should comment on the recovery of

the lost symmetries in our one-particle Hartree
field which we have left unsolved in this paper. In
contrast with the case of the Nambu-BCS theory
our one-particle field violates Lorentz invariance
as well as the invariance under chirality trans-
formations. It is therefore necessary to restore
the translational and the rotational symmetries of
our original Lagrangian by diagonalizing the resi-
dual interactions. This will be achieved, for in-
stance, by the use of the relativistic generaliza-
tion of the generator coordinate methods of the
theory of nuclear collective motions. ' Then, as
an analog of the nuclear rotational levels, Regge
recurrence will appear. All these problems need
further investigation.
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S~(x, x) =S~ (x, x)+ S2,"(x, x')[m(x') -m„]S~"(x', x)d'x'

S "(x,x')[m(x') —m„] S "(x', x")[m(x") —m„] S "(x",x)d x'dqx"

+ Ss "(x,x')[m(x') —m„] S2, "(x', x")[m(x") —m„] Sz (x",x")[m(x"') —m„]

& Ss "(x"',x) d'x' d 'x" d 4x"'

+ 4 ~ ~

The contribution of the first term to (Al) is simply
equal to m„. The second term corresponds to the
Feynman diagram Fig. 2(a). The fermion is scat-
tered by the effective potential M(x') =—m(x') -m
and returns to its original position. The third and
the fourth terms correspond to the diagrams 2(b)
and 2(c), respectively. All the other terms con-
verge when A goes to infinity and can be neglected
as explained in Sec. II. By the Fourier transform

M (e)—= m (e) —m„=,fe "*M (q)d'4, (AS}

(A2)

(A4)

(A5)

where

Eq. (A1) becomes

Ms(q) =Ms'(q) ™s"(q) +M's" (q),

where Ms' (q), Ms'~(q), and Ms'~(q) are the con-
tributions from the diagrams 2(a), 2(b), and 2(c),
respectively. The results of the calculations are

Ms" (q) =Ms(q)[1+ L'(2m„2 ——,'q')],

d4P 1
~42

(27))4 (P2 m 2)2

d4' 4 ))

MP'(q) — Sm„jM,(q')M, (q —q') (,- em M (q')M (q —q'l

d' ' 4

+j q+q' Mz q' M~ q —q' —2m„M~ q' M& q —q' (A7)

where

m (x)=,M~(q)e "", (A8)

4

m„"(x) = (- 4M„"(q)e "". (A9)

mern

4

p-f-g
&SS-

p-q I p g'ii

(c)
FIG. 2. Feynman diagrams used in the calculation of mass equations.
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Finally

M', 4'(q) =
d4q' d'q"

M~(q')M, (q")M~(q —q' —q")
(

d'q' d4q"
M s(q')Mp(q")M~(q —q' —q") (2,)4 (2,)4

d4 / d4 II

Ms(q')MA(q")MA. (q q' —q")-( )4 (
4

I'. (A10)

Substituting (A5), (A7), and (A10) into (A4) and transforming it back to x space we obtain Eg. (12) of Sec. II.
We note that the first term of (A5) is exactly equal to the left-hand side of (A4).
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The Nielsen-Olesen interpretation of dual strings as Abrikosov flux lines is extended to the
case of open-ended strings by adapting Dirac's description of magnetic monopoles to a London-
type theory. The mathematical formalism turns out to be similar to that of Kalb and Ramond.
Translated to hadron physics, it implies that the quarks will act as carriers of magnetic
charge, permanently bound in pairs by the string bonds. However, massive axial-vector
gluons can be created by hadrons.

I. INTRODUCTION

In a very interesting paper' Nielsen and Olesen
have pointed out a parallelism between the Higgs
model of broken gauge invariance and the Landau-
Ginzburg theory of superconductivity on the one
hand and the dual string model and the Abrikosov
flux lines in type II superconductors on the other.
According to their suggestion, a dual string is
nothing but a mathematical idealization of a mag-
netic flux tube in equilibrium against the pressure

of the surrounding charged superfluid (Higgs-
scalar field) which it displaces. Only strings with
no ends (infinite strings or loops) were considered
by them. It is known that a closed string could be
a candidate for the Pomeron. But what will happen
if the string is open-ended? Obviously the mag-
netic flux will terminate at the end points, thus
creating a pair of magnetic charges. ' In the dual
quark model ordinary hadrons are viewed as being
made up of quarks bound by dual strings, or, from
the string's point of view, as open strings having


