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We formulate and solve an integral-equation approach to spontaneous breakdown in a cer-
tain dual model. The model is not yet physical, but Goldstone and Higgs phenomena are vis-
ible in the explicit spectrum shift which removes the (tachyonic) vacuum instability.

I. INTRODUCTION

This paper is concerned with the problem of ex-
hibiting spontaneous symmetry breakdown in dual
models. In a series of earlier papers, ' ' it was
shown that in any dual model with at least one
zero-mass scalar, the vacuum may be unstable
against the emission of these scalars (the spurion
emission). A nontrivial minimum of the effective
spurion potential, if it exists, corresponds to the
spontaneous breakdown of some symmetry. Un-
fortunately, the computation of the effective po-
tential in general turns out to be a very difficult
task, except in the relatively uninteresting case
of the zero-intercept dual model. ' One of the
things that makes the zero-intercept model un-
interesting is the absence of a tachyonic state,
which, if present, guarantees the instability of
the vacuum. In contrast, the model we are going
to discuss has a tachyon in its spectrum and is
therefore expected to undergo spontaneous sym-
metry breaking. Our starting point is a particular
type of "dual M model, " introduced in Ref. 3. We
are unable to handle this model in its original
form, so we consider the limit of the dimensions
of the space going to infinity; the so-called large-
N limit. ' This limiting procedure, in addition to
some further simplifications, enables us to con-
struct a manageable model. In this model, the
problem of spurion summation turns out to be
mathematically equivalent to a one-dimensional

linear chain with only nearest and next-to-nearest
neighbor correlations. This gives rise to a set of
single-variable linear integral equations for the
spurion S matrix, which is the S matrix in the
presence of a uniform (zero-momentum) external
field (usually called the W function'). A similar
set of integral equations are also derived for the
propagator of the theory.

The rest of the paper is devoted to the examina-
tion of various solutions to these integral equa-
tion. One solution that is always present is the
trivial perturbation solution, for which the propa-
gator returns to its original value when the ex-
ternal field vanishes, or equivalently, when the
spurion-to-vacuum coupling goes to zero. We are
able to show that the equations also possess solu-
tions different from the perturbation solution, and
we explicitly exhibit the propagator and the W func-
tion for some of the solutions in the limit of van-
ishing external field. The existence of several so-
lutions is equivalent to a many-sheeted analytic
structure as a function of the external field, and
the perturbation solution changes into the new so-
lutions smoothly as one goes around the relevant
Riemann sheet. In terms of the effective potential,
the new solutions correspond to nontrivial local
minima (or stationary points) of the potential.
Their existence is no accident; it is made possible
by the fact that the kernel of the integral equation
is singular. This singularity in turn is caused by
the existence of a tachyon in the spectrum; the
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chain of reasoning that relates vacuum instability
to the existence of a tachyon is complete, and a
satisfactory picture of spontaneous symmetry
breaking emerges. Having the propagator, we
show that in one of the solutions, which we call
the leading solution, both the tachyon and the
(zero mass) vector-meson masses are raised by
one unit. The old tachyon is therefore promoted
into a zero-mass particle and the final spectrum
is tachyon-free.

The emphasis throughout the paper is on the
techniques used to derive the fundamental set of
integral equations and on their solutions. The
model is admittedly not physical; we expect, how-
ever, that similar rneNods will continue to work
in the ca.se of more physical (and more compli-
cated) models. We also expect our results to hold
in more physical models: There will in general
be a number of vacua lower in energy than the
intrinsically unstable tachyonic vacuum of present
dual models. As we find here, we expect in gen-
eral to see the entire spectrum shift up until the
tachyon is no longer present.

The organization of the paper is as follows. In
Sec. II, we briefly review the general approach to
spontaneous symmetry breaking in dual models.
In Sec. III, the model of interest is defined and
its properties are discussed. The integral equa-
tions for the W function (spurion summation) a,nd

their solutions are discussed in Sec. IV. Section
V deals with the propagator and the mass spec-
trum. Finally, Sec. VI summarizes our conclu-
sions. There are also two appendixes. Appendix
A is the derivation of our model as a large-N
limit of a ghost-free dual M model. ' Appendix B
presents another spontaneous-breakdown solution,
this time in which the M fields themselves pick up
an explicit vacuum expectation value.

II. DUAL MODELS AND SPONTANEOUS

SYMMETRY BREAKING

We begin with a brief review of the standard gen-
erating function(al) approa. ch to spontaneous break-
down. ' As we are interested only in spurion emis-
sion at zero four-momentum, we need take the
standard source function j(k")= J5'(k~). In this
case, we work only with functions, not functionals.
Our interest is then focused on W(J'), the gen-
erating function for connected S-matrix elements
at zero four-momentum,

(2.1)

where

(2.2)

In the case of a single species of particle of mass
p. (and no vacuum expectation value), we have

J2 " J" S„W(j) =
2 2

—i —
) (

2")„ (2.3)

where S„are connected S-matrix elements suitably
extrapolated to all k",. =0. In terms of S„=-iT„(the
T-matrix elements), all i 's disappear, and we
expect the T„'s to be simple coefficients times
the beta functions of dual theory. The effective
potential V is defined as follows:

(2.4)

(2.5)

Also, the vacuum expectation value of &P, (&j&) = P(0).
In this paper we will never construct V(P) explicit-
ly,

' staying directly with the more physical W(J),
but we will from time to time refer to properties
of V and (Q) easily deducible from W.

It is well known for example that W(j) being
multi sheeted corresponds to spontaneous break-
down: We define the first sheet as in (2.1), it
being the power series of S-matrix elements be-
fore spontaneous breakdown, If indeed there is a
branch point at some finite J, we can go around it
and come back to J=O on the second sheet. Sup-
pose on the second sheet, near J=0, W(J) looks
like W(j)- ~, +J~, + . Then it is easy to see
that we have found a new stationary point of the

potential (8 V/8 IP = J = 0) a,t (P) = &u, . u, is the value
of the potential at the new stationary point. The
foregoing is quite standard; there are, however,
a number of novel features introduced here be-
cause we are working in a dual model, with no
known ghost-free off-mass-shell extrapolation.

In the Lagrangian field theory with many species
of scalar fields, both S' and V are functions of
many variables, and one is free to work with them
all. In dual models, however, we cannot do this.
As explained in Refs. 1-3, we have only a few
zero-mass scalars, (here zero-ma. ss M particles)
for which we can reach k" =0, because we really
have no valid off-mass-shell extrapolation at all.
We are forced then to work with only the zero-
mass scalars externally, while all other scalars
appear internally. Nevertheless, this Pxocedu~e
is entirely adequate for sPontaneous breakdown.

We use a simple argument to illustrate what is
going on in this approach. Suppose V(P, o) is a
function of two scalar fields P and o. Let j& and
J, be the corresponding external fields. Using
only J@ as an external probe is equivalent to setting
J, =0. This is equivalent to eliminating o from
the definition of V through the equation of motion
8 V/ao =0, and one arrives at a reduced potential
V„as follows:
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where cr(P) is the solution of 9 V/So = 0. Since 8 V/
80 =0 is a condition for a stationary point, all sta-
tionary points of Vare also stationary points of
V„. Therefore no information (about stationary
points of V) is lost if only P is coupled to its ex-
ternal field. In principle, any massive scalars in
the theory can be eliminated in this way, in favor
of the others, until one is left with only massless
fields. This process of elimination fails for the
massless fields, however, since the equations of
-motion to be solved become singular in that case.
This question will be treated at length in a sepa-
rate publication' —here we need only the result
that stationary points of the potential are adequate-
ly probed by the zero-mass scalars of the theory.

Once we begin using these reduced potentials,
however, yet another novel feature needs dis-
cussion. Although V is usually a single-valued
field (at least in tree approximation), V„ is in gen-
eral multivalued, and sometimes spontaneous
breakdown may show up by changing sheets of V„
(rather than a new minimum on the same sheet).

At this point, a simple example may prove il-
luminating. Consider the following effective poten-
tial of two fields P and cr:

V(&j&, o') = «X, Q +X,P'o'+ 3 A, ,g —~yyg'o', (2.6)

1 2V"(y) =—
6

12

(2.7)

The reduced potential V„ is a many-valued func-
tion of g. Of the two solutions for o, the one cor-
responding to the negative sign of the radical, 0
is the normal or the perturbation solution. This
definition follows from the fact that or ~ -0 as &P

-0, and therefore the trajectory of o in the &P

—v plane passes through the normal stationary
point rtr =0, o =0 of the potential V. The other sta-
tionary points of V are also the stationary points
of either V„or V, . Of particular interest is
the stationary point g =0, o =m'/A. „which corre-
sponds to the stationary point &f& =0 on the nonper-
turbative branch V„' . Here we have an ex-
ample of spontaneous breakdown occurring by
slipping into a different branch of the reduced ef-
fective potential, where the field rtr does not ac-
quire a vacuum expectation value at all. There is,

where the X's are coupling constants. The condition
& V/&cr =0 can be solved for o to yield

however, no paradox, since the field v that has
been eliminated from V, is the one that acquired
a vacuum expectation value. This is a common
phenomenon when the potential is even in one of
the fields {in this case, in P).

One can also easily construct the W'd= J'&rtr —V„,
this being the W with only rtr external. The upshot
of these examples (the reader should continue such
exercises to see for himself) is that in our dual
models both W„and V„are multisheeted. Every
sheet of W, corresponds to a spontaneous break-
down. Thus, even if on the second sheet ~„-0
like t', we interpret this as a spontaneous break-
down in the hidden scalar degrees of freedom
(while (rtr) =0) by shifting to another sheet of V„.
In Sec. IV, we shall in fact find such a case: spon-
taneous breakdown in our dual model in which the
probing field itself acquires no vacuum expectation
value.

So far, we have been careful to distinguish be-
tween the stationary points of the potential well
and an absolute minimum. Unfortunately, our
analysis is inadequate to decide whether a given
stationary point is an absolute minimum. We know
one thing for sure, however: Since the normal
dual model has a tachyon in its spectrum and our
solution does not, our stationary point has lower
energy than the normal one. When there are
several stationary points, all of which are free of
tachyons, we are presently unable to decide be-
tween them.

The last and most technical point of the dual
model application is the off-mass-shell extrapola-
tion, for the series W(J) obviously has a branch
point at 4=0 when p,'=0. Our use of jLL'10 must be
thought of as a regulator procedure, with p,'-0 at
the end of the calculation, Because p.'=0 is the
canonical (conformal) mass, we can in principle
watch to make sure that all ghost structure is van-
ishing as p. -0. We will return to this in Secs.
III and IV and in our conclusions.

III. THE ABELIAN MODEL

Our starting point is a dual model with internal
symmetry introduced in Ref. 3. This model has the
internal-symmetry group U(N), where N is taken
to be arbitrary, and it is an "axiomatic" model, in
the sense that, as far as we know, it is free of
ghosts and possesses all the desirable features a
dual model should possess. Its only drawback is
that it has tachyonic states at m' = -1 and vector
mesons at zero mass. The latter feature is com-
mon to all dual models before spontaneous break-
down. ' We are unable to treat this model as it
stands; so we use it as a stepping stone to a
simpler model we are able to handle. The transi-
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tion to the simpler model is achieved by starting
with singlet external states in the U(N) space, and
then by taking the limit' N-~. Since we shall not
need the original model in what follows, the de-
tails of this limiting operation and of the original
model are given in Appendix A. The rest of the
section is devoted to the definition and a brief de-
scription of the limiting model, which we call the

Abelian model.
The low-lying spectrum of the Abelian model

consists of a tachyon at m'= -1, a zero-mass vec-
tor meson (photon), and a zero-mass scalar which
we call M. Taking the external particles to be
M's, we have the operator formula for the planar
n-point amplitude B„,

12 13
(3.1)

Here n has to be even, the k's are the external mo-
menta, a.nd s;&-—(k&+k;„+'' +k&)'. The multi-
peripheral configuration described by Eq. (3.1) is
depicted in Fig. 1. The definition of the vertices
V and the mass operator R is similar to those of
the standard models, ' with, however, some im-
portant differences. In addition to the standard'
orbital operators &~~, we need another set of Bose
operators n~' with the following properties:

(3.2)

where P runs from 1 to ~, and

()= () ()= () ()= ()

In general, n ~~'~ and (w~~'~)t commute unless i =j
or unless they are identified pairwise as in Eq.
(3.2). We then have the following equations for V
and A:

00

(~p")t(a~~)+Q P(w~")tv~"

(3.3)

~( )+ ~(~) ~

P=1

From these definitions, it is clear that in eval-
uating Eq. (3.1), as fa.r as the n operators are con-
cerned, only pairwise contractions between neigh-

boring vertices are allowed„' and hence the name
"nearest-neighbor model. " These contractions
are indicated by arrows in Fig. 1. It is, of
course, possible to define a different amplitude
by choosing the contractions 1 —2, 3 —4, etc. ,
instead of 2 —3, 4 5, etc. , as we have done.
This alternate possibility for the pattern of con-
tractions is indicated in Fig. 2.

At first sight, it may appear that we have a
spectrum that increases with the number of ex-
ternal legs, since we have to introduce a new op-
erator for each extra pair of legs. This is not
true, however, since an equivalence can be estab-
lished between different pairs of m's. These mat-
ters are discussed at length in an article by Neveu
and Thorn, "where operators similar to our m's

were first introduced in order to shift the inter-
cept of certain dual models. The price paid for
the introduction of the new set of operators is an
enlarged spectrum which in general contains
ghosts. Therefore, the model defined by Eq. (3.1)
has ghosts, although its parent model (Appendix
A) does not.

This price has to be paid in order to arrive at
a nearest-neighbor-type model in the operator
space, which, as we shall see, enables us to
write a simple linear integral equation for the
amplitude.

For the purposes of computation, it is conve-
nient to convert Eq. (3.1) into an integral repre-
sentation in the standard way. ' The answer is
particularly simple and useful when written in the
multiperipheral form. Assigning variables Q1,.
to the channels (1, i), with 2 & i ~ n —2, we have
the following:

n-2 n-I

FIG. 1. The standard multiperipheral configuration. FIG. 2. An alternative channel assignment.
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1 1 1

Bq(k~~. . . , k„)= ''' du~ 2du~ 3'''du~ q g(l-u~ 2) (1-u~ ~) (1-u~ ~) '''(1 —u~ q 2)
0 0. 0

2

x (1 u& ~ u& ~ +&' ' 'u&
g I) J u& &

1IRu&
&

ly3u~ 4
1,4u 1&5

~OP 2

~ ~ ~ g 8] fl ~2l, fl (3.4)

An alternative representation, completely equivalent to Eq. (3.4), results from the choice of u, , as in-
dependent variables:

I 1 1

B„(k„.. . , k„) = ~ ~ du, , ~ du, „,(1-u, ,) '(1-u, ,) ' ~ ~ ~ (1-u, „,) '
0 0 0

gg 2 82 3g 1 82 4g 2 82 5 g 2 82
2/3 2,4 2y5

3
j& j

u . . .u )-2A('k~
2 2eg -1 (3.5)

The lowest-lying spectrum can easily be read
off either from (3.4) and (3.5), or directly from
(3.1), and for the purpose of studying the spectrum,
it is convenient to classify the channels into three
distinct groups, called the M -type channels,
Abelian channels, and heavy channels. Any chan-
nel containing an odd number of external lines is
an M-type channel, and its lowest-lying state is
the zero-mass scalar M discussed earlier. The
Abelian channels are the channels of the type (2, 3),
(2, 5), (2, t), (4, 5), (4, 7), (6, 7), etc. The lowest-
lying states are a tachyon at rn = -1 and a vector
meson at zero mass. The heavy channels are
channels like (1, 2), (1, 4), (3, 4), etc. The lowest-
lying state in these channels has m'=1. Owing to

the presence of the tachyon, the vacuum is un-
stable and the model is a quite satisfactory lab-
oratory for the investigation of spontaneous sym-
metry breakdown.

As mentioned earlier, we need an off-mass-
shell extrapolation of the model in order to be able
to define K This we do in the following way: All
intercepts may be shifted by +c' (via, say, the
method of Thorn and Neveu" —an additional near-
est-neighbor interaction). Then, the external (M)
masses may be continued to zero" (via an addi-
tional next-nearest neighbor interaction, roughly
analogous to Thorn and Neveu). The integral rep-
resentations (3.4) and (3.5) are then modified to
the forms

1 1

B„(k„.. . , k„, c') = " ~ ~ du, , du, „,(1 —u„,)' '(1 —u, ,)' (1 —u, ,)' '(1 —u, ,)' ~ ~ ~

0 0 0

&&g '12g ' '1 3g ' '14g ' ' 8» gc2 2 2 2 2
1~2 1,3 1,4 1,5 1,n-2

x
' '

(1 —u ~ u ) '"i''g
1 gf leap 1

f,~f=-2
(3 6)

1

B„(k„.. . , k„, c') =
0 0

du, , du, „,(1 —u»)' (1 —u, ~)' '(1 —u, ,)' (1, —u, )" ' ~ ~ ~

Xg 2 2, 3 2, 4 2 82 5 ~ ~ ~ 2 82, ft-l2 2 2

2e3 g2o4 2&5 2e& 1

, J
3

(3.7)

After the sum given by Eq. (2.1) is performed,
e2 should be set equal to zero and thereby the
original model. is recovered. There is a complica-
tion in our case, however, which invalidates this

conclusion. The shifted-intercept model has a
larger spectrum than the original one. The extra
states introduced by the shifting of the! ntercept
couple to the rest of the states through coupling
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constants proportional to c, so that in the limit
g-0, their contribution to W is expected to disap-
pear. The above argument is correct for states
whose mass remains finite in the limit c-0. How-
ever, it turns out that there are two extra scalar
particles under the vector meson at mass gyes'= c'.
Although these states also have coupling constants
proportional to c, they do not entirely decouple as
c-0, since their propagators become singular in
the same limit. It is therefore necessary to sub-
tract their contribution explicitly before taking the
limit c 0. The resulting set of equations are
somewhat complicated, and will be dealt with in a
future publication. " In the interests of simplicity,
we shall ignore this complication in this paper,
and use the Eqs. (3.6) and (3.7) as they stand.
There is no obvious difficulty if we then keep c2

finite and avoid the limit c- 0. This simplified
version of the model then serves as a good training
ground for the more complicated situation. Apart
from this, the simplified model is aperfectly satis-
factory one for the study of vacuum instability in

its own right, since for c'(1, there is still a
tachyon in the theory.

IV. COMPUTATION OF tV IN THE PRESENCE
OF SPONTANEOUS BREAKDOWN

In this section, we wish to compute 8" given by
Eq. (2.1), using the expression given by (3.6) for
B„. For c2&1, we can directly set A,'; =0 in (3.6),
since the integral representation is convergent,
which, parenthetically, is another technical simpli-
fication gained by the shift of the intercept. The
interesting interval 0& c' &1 will be reached later
by analytic continuation in c . When the external
momenta vanish, all correlations between different
vertices except the ones between nearest and next-
nearest neighbors disappear, and it is possible to
write a recursion relation for B„. It is this fea-
ture of the model that makes it manageable. In
order to derive the promised recursion relations,
we define the following pair of auxiliary functions:

1 1

f „(u)= du, 2 du, 2„2(1 —u, 2)' 2(l —u, 3)' (1 —u, 4)' (1 —u, 2„2)'
Q Q 0

c 2 c2 c2 c2 c2 cx (1 1,2u1, 3) (1 1 3 1 4) ( u12n-2u) , 1,2 1,3 1 4 1,2n-2

1 1 1

f,„„(u)=- ' du» du1, „1(1- u, ,)" '(1 —u»)' (1 —u»„,)'
0 0 0

c2
12 13) (1 13 14) ( 12n 1 ) 12 13 14 12n 1

(4.1)

where

f,„(0)=B,„(k; =0, c'),
as can readily be verified by comparing it with Eq.
(3.6). The following set of recursion relations im-
mediately follow from the defining relations of
(4.1):

f,„„(u)= du'(u')' '(1 —u')'
0

x(1 —uu') ' f2„(u'),
(4.2)

the other hand, B„is defined to include only the
planar Feynman graphs. ' It then follows that we
have to symmetrize B„with respect to the ex-
ternal lines. When all the lines carry zero mo-
mentum, this merely introduces a factor of nt.
On the other hand, since B„is already cyclically
symmetric, the planar graphs are overcounted by
a factor of n in this process. Therefore, the pre-
cise relationship is

(4.3)

It is now convenient to define the auxiliary func-
tion W(J),

x (1 —uu') ' f,„,(u') .
We wish to use the above recursion relations to

carry out the sum of Eq. (2.1) at zero external
momentum. We have to, however, first establish
a relation between the S-matrix elements S„of
Eq. (2.3) and B„ofEq. (3.4) or (3.6). By definition,
S„ is the complete S matrix; it includes all the
Feynman graphs in the tree approximation. On

d J' 2
=J —w(j) ——

gJ 2 (4.4)

W contains the same amount of information as
W; given P—apart from a trivial constant —one
can solve for W. The advantage of using R' is the
fact that it satisfies a simple integral equation.
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To derive this equation, we further define the fol-
lowing:

00 2n

W, (J, u) —= Q, —, f,„(u),
n=2 i

Oo g Qn+]

W2(J, u)=— —
2 + g —

2 f2„+„(u),
C n=2

form of the equations:
l.

W, (X, x) =A. dyy' '(1-y)"
0

x(x+y —xy) "W', (A. , y),
j.

W2(A. , x) =P. '+A. dyy' (1 -y)'

The recursion relations of Eq. (4.2) can then be
used to a,rrive at the following set of equation":

1

H&, (X, u) =X du'(u')' (1 —u')" '
0

x(1 —uu') ' W, (A. , u'), (4.6a)

W (y u) =y'+g du'(u')' '(1 —u')
0

x(1 —uu') '
W, (A. , u'), (4.6b)

X =J'/c' .
The above equations are the fundamental result

of this section, and the rest of the section will be
devoted to solving them. We already know one
solution, namely, the perturbation solution men-
tioned earlier. This solution is generated by itera-
tion from the starting point R' ~2'~ (A, , u) =A. ', and cor-
responds to the original sum of Eq. (4.4). In what
follows, we will find other solutions to the funda-
mental set of equations. These solutions also ad-
mit a power-series expansion in A. ; however, their
starting point is different from the perturbation
solution. The existence of the extra solutions de-
pend on the fact that the kernel of the integral
equations is singular. The nature of this singu-
la.rity depends on the value of c'. Initially, we have
to start with c'& 1, since the integrals of Eq. (4.1)
only exist in this range. The kernels of Eqs.
(4.6a. ) and (4.6b) are then at most marginally (in-
tegrably) singular at either end point u' =0 and
u' =1. However, when c'is continued to the critical
interval 0& c' &1, Eq. (4.6a) develops a noninte-
grable singularity at u' =1. It is this singularity
that makes the existence of nonperturbative solu-
tions possible when c'&1. Since a tachyon is intro-
duced in the spectrum under the same condition,
the new solutions and the instability of the vacuum.
are related in a very satisfactory manner,

It is clear that the behavior of the kernel of Eq.
(4.6a, ) near u'=1 is of crucial importance, where-
a.s the point ~' =0 at most corresponds to a mild
singularity in either equation, so long as c'&0.
It is then convenient to change variables by m=1
—x, u' = 1 -y, in order to arrive at the following

x(x+y —xy)
"

W, (X, y), (4."Ib)

We make the ansatz that the solution can be
written as an infinite superposition of different
powers of x as follows:

~ g {1,2) 0'.~ + n
)

P n=0

where the d's are x-independent. The n~ are in
general expected to depend on A. , as well as the 4's
In fact, we argue that all n~ have to be ~-depen-
dent, and fixed integer values for n~ are not per-
missible: Any fixed power, upon iteration, is not
stable; it eventually generates powers of log(x),
which, when summed, convert the fixed power to
a moving (A. -dependent) power. Moving powers,
on the other hand, are stable under the iteration
procedure, since, unlike the fixed-power case,
there is no mechanism for the genera, tion of poly-
nomials in log(x). The situation is similar to the
absence of fixed singularities in the complex angu-
lar momentum plane in the solution to Schrodinger
or Bethe-Salpeter-type equations.

Notice that, for convenience, the values of a
differing by integer units are lumped together in
one "family" in Eq. (4.8), again in analogy to the
"daughters" of Regge theory.

We are going to break up our approach to solving
these equations into two steps. (1) Consistency
conditions: The homogeneous form of the equa-
tions relate the coefficients of all daughters in a
moving family, leaving one normalization para. m-
eter per family undetermined. (2) Ca.ncellation
(or normalization) conditions which fix the re-
maining parameter of each family by requiring
cancellation of all fixed poles (say, in the in-
homogeneous term).

Consistency condztions. If a member of the
family belonging to a given power n~ is substituted
into the right-hand side of Eq. (4.7), a member of
the same family is again obtained as the output.
It then becomes possible to obtain a consistency
equation involving only one family at a time. De-
fining

(4.9)

and also making the following cha, nge of variable
for convenience,
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(dt
x =

1+(d 1 +cot (4.10)

we obtain the following consistency equations for
TPp,

as A. -O. The function Qp can be evaluated to low-
est order in A. by replacing B's with the relevant
poles and then solving Eq. (4.13). The results are
given below:

W', "((u)= —(1+a))' dtt' '(I+rut) '
CO 0

x(l+t +~t) '~%2" ((ut),

(4.1la)

Q 1 + ~ ~ 4
0 2

1=-C + 2
+' ''

1

W',"((u) =X~(I+(u)' dt t' (I +et) ' '

x (1+t+ vt) ' W ~~~ (ut) .
(4.11b)

, [I'(c' —I+P)I'(C2+P)]'~2

+ (p)0)
Qp= —c +P +1

(4.15)

Notice that we use here only the homogeneous
form of the equations. This is adequate for match-
ing moving powers. One can now substitute Eq.
(4.6) in Eqs. (4.11) and match powers of &u on both
sides. The resulting equations enable one to
determine both Qp and all d's in terms of one
arbitrary normalization parameter. We exhibit
below the equations for two leading powers of ~,

d(') =0,p, 0

r

, [I'(c' —1 -p)I'(c' -p —2)]'t2I'(c')

+ (p (-I)
Notice that there are two trajectories of Qp, and

hence two families starting at each point except
for the points j =0 andP =-1. One can now sub-
stitute n~ back into the equations (4.12), and deter-
mine all the dp's in a given family in terms of
one arbitrarily chosen dp . For example, for the

p = -1 family, everything can be determined in
terms of d ', „and some of these relations in
lowest-order ~ are given below:

—C Xd I, 1B(C + or1, + 1r —oIp)

+(or1, +c )dI, 0

—c A, d p 2B(c + cKp+ 2, —1 —or2)

+ (or.p + c + 1 )d p 1,

(4.12) (2) — ~ (1)-1 1 2 -1,0c —1

d (2) d(')
1,2 (C2 I )(2 2) 1,0 r

d (') A. d(
(C2 1)(2 C2) -1»

(4.16)

where B is the Euler beta function.
Multiplying the third and the second equations,

we obtain the following eigenvalue condition for
Qp.

A2B(C2+ n2, —n2)B(C2+ c.2+ I, —1 —o.2) =1, (4.13)

Qp~ -1+p fol p ~~ 0 ~

Qp -c +p+1 for p + —1
(4.14)

This is a transcendental equation for Qp, which
is in general difficult to solve. However, a power-
series solution in A. is easy to obtain. As A. -0,
one or both of the beta functions must develop a
pole(s) to satisfy Eq. (4.13). This means that o.~
must approach either an integer greater than or
equal to minus one, or it must tend to the points
-c'+n. It is then convenient to classify Qp ac-
cording to the value it reaches at A. =0 as follows:

From these expressions, it is clear that in the
family P = -1, all d's are at least one power of A.

down compared to d ', „ the leading term in P,.
Since this point will be of importance in what fol-
lows, it is worthwhile to understand how it comes
about. A glance at Eqs. (4.12) shows that there is
always an extra factor of A. on the right-hand side.
However, this A. can easily be canceled by a singu-
larity of the beta function. This is what happens in
the second equation; the beta function is near a
pole as Q, —= -c' and develops a singularity of the
form 1/A2. It then follows that d P', - (I/X)d P„
contrary to the initial impression. In all the other
equations, however, the first argument of the
beta function is sufficiently shifted, and there is
no singularity as Q 1 c'. Hence, the extra pow-
er of X exists for all the d's except for d ', ,

Cancellation conditions. The problem of solving
the Eqs. (4.7) then reduces to determining a set
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of an infinite number of normalization parameters,
one for each family. These parameters are to be
determined by what we call the cancellation condi-
tions. We have already postulated that there are
no fixed integer powers in the expansion of the
W 's; however, the right-hand side of Eq. (4.7)
can readily develop such powers. We have to re-
quire the coefficients of these fixed powers to
vanish. This is achieved by expanding the inte-
grals on the right-hand side of Eq. (4.7) directly
into power series in x and setting the coefficients
equal to zero. The result is the following set of
cancellation conditions:

1

dyy ' "(1-y)' '"&,(y) =0, (4.17a.)

1

x'6„,+ dyy "(1-y)' ""R,(y) =0, (4.17b)
0

where n ranges over all positive integers, from
0 to ~.

Needless to say, we are not going to attempt
solving Eqs. (4.17) exactly. Instead, we will re-
sort to an expansion in powers of A. , which simpli-
fies matters considerably. It is of interest to re-
examine the perturbation solution, obtained by the
straightforward iteration of the inhomogeneous
term, in the light of the present approach. The
perturbation solution uses only the families p ~ 0
in the expansion of Eq. (4.9). This becomes clear
when one observes that in the iteration of the in-
homogeneous term, no power of the form x ' '~",
where P is an integer, can ever appear. There-
fore, the families belonging top & -1, as defined
by (4.14), are absent. The expansion of (4.9) can
then be substituted in Eqs. (4.17), yielding a set
of conditions which determines d's. We have
checked that these equations yield the normal iter-
ation solution, and we shall not pursue this topic
any further.

Our main interest lies in nonperturbation solu-
tions. These solutions clearly have to make use
of families with p ~ —1 in order to be different
from the perturbation solution. The simplest pos-
sibility is to replace the family at p =0 by the
family at p = -1, which leads to the following
ansatz:

cance of this ansatz is further discussed at the
end of the section.

Substituting Eq. (4.18) into (4.17), we obtain the
following set of conditions on the unknown coef-
ficients:

g g d~~2~„B(n~+n —1 —m, c2+m+1) =0, (4.19a)
p n=1

(4.20a)

(4.20b)

Via our previous discussion including Eq. (4.16),
we have already proven (4.20a, ). To prove (4.20b),
consider Eq. (4.19b). Since for p ~ 1, n~ is close
to an integer, certain terms in the sum in Eq.
(4.19b) are near the poles of the beta function.
This leads to singularities of the form I/X as fol-
lows:

B(np+ n —m + 1, c'+ m ) - I/& (4.21)

for p ~ 1, and p + n —m = 0. This result imrnediate-
ly follows from Eq. (4.15). However, for p = -1,
one is not near a pole, and there are no I/A. type
singularities. Therefore, the coefficient of d ] 0

has an extra factor of A, compared to the other d's.
If, now, one imagines solving Eq. (4.19b),
will clearly be the leading term by one power of

This enables us to write the result, valid to
the leading order,

W(x)=—d' x1 -1,0 (4.22)

Substituting this in Eq. (4.19b) with m =0, we ob-
tain the final formula, again valid to the leading
order xn A. ,

A. 5 o+g g d&''~ B(n&+n —m+1, c +m) =0,
p n=0

(4.19b)

where 0 ~ e «, and the summation over p starts
at p =-1, skips the value p =0, and then runs over
all positive integers, starting with one.

We now assert that the d ' 's are down by a fac-
tor of A. compared to d 1 0,

.

d(1 2) Xe +n + ~ ~ d(l 2) Xn& n12 ~ -1 n P, n
n=p p =1 n=0

(4.18)

-10 B(1 2 2)

(4.23)

In Appendix B, we shall generalize this ansatz by
allowing several positive p families to be replaced
by the negative P families. In what follows im-
mediately, we shall show that the ansatz of Eq.
(4.18) indeed produces a, unique solution to the
fundamental set of equations (4. '7). The signifi-

This equation is the starting point of a power-
series expansion in ~ for the new solution. It can
be substituted in Eqs. (4.19) and (4.11) to obtain
the terms of higher order in X. For example,
Eq. (4.16) yields the i esult
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This approach has the merit of keeping the powers
of x intact. An alternative approach is to set A.

= 0 in Eq. (4.22), and use that as a starting point
for a straightforward iteration of the original Eqs.
(4.7). In this case, one encounters powers of
log(x) arising from the expansion of powers of x
in A. . In either approach, it is clear that 8'„as
well as corrections to II, given by Eqs. (4.22),
are at least of the order of A. '.

Now let us examine the solution we have obtained
from the point of view of spontaneous symmetry
breaking. We set x=1 (u=0) in Eq. (4.23), as we
are instructed to do by Eq. (4.5), remind ourselves
that X =J/c', and solve for W from Eq. (4.4). The
result, to the lowest order in J; is the following:

1 J 1
W(J) —= ——— -1)2 c' c'B(1 —c', c') (4.25)

The fact that the quadratic term in J is different
from the standard perturbation value —,'(J'/c')
shows that some kind of spontaneous breakdown
must have taken place. However, the absence of
a linear term in J in Eq. (4.25) tells us that the
probing field has not acquired any vacuum ex-
pectation value; this follows from the well-known
relation

(4.26)

The question is, what has happened? As dis-
cussed in Sec. II, our answer is that the effective
potential at hand is many-valued, and the spon-
taneous breakdown occurred by going to a different
branch of the potential. We refer the reader to
Eqs. (2.6) and (2.7) and to the discussion that fol-
lows these equations. It was shown there that in
a simple Lagrangian example, spontaneous break-
down takes place in exactly the same way as we
are suggesting in the present case. Although the
probing field acquires no vacuum expectation value,
the hidden fields corresponding to internal scalar
particles do acquire nonzero expectation values,
and this reflects itself in the many-valuedness
of the effective potential. Notice also that the
probing field (the M field) must possess some
kind of G parity for this to happen, and in the
present case, this requirement is satisfied. We
see no plausible alternative to the above explana-
tion.

Are there any solutions to our integral equa-
tions where the probing field acquires an expecta-
tion value? As we shall show in Appendix B, such

1
B(c +Qp, —o(p) = 2 +ci,

C +CYp

B(c +Gp+ I) —1 —Ap)—
1

1+(xp
+C2 q

where c, and c, are two constants representing
the background, whose precise values are not of
interest to us. With these approximations, Eq.
(4.13) becomes the following quadratic equa, tion:

Gp (1 —1 cqc2) + o(p Ic + 1 —I (cqc2 —c~ + c2 + cqc2c )]

+c' —A.'(c'c, +1)(c' —1)=0 . (4.28)

solutions emerge when we allow a more compli-
cated reshuffling of the trajectories n~. However,
as far as we can tell, the solution given above is
a perfectly satisfactory and nontrivial example of
spontaneous symmetry breaking. Our form of
the propagator for this solution (Sec. V) will fully
support this conclusion.

At this point, we have to remind the reader that
all we have accomplished so far is find new solu-
tions to Eqs. (4.6) and (4.7). It is gratifying to
note that in the critical interval 0&c'&1, the per-
turbation solution, where W, behaves like x ', is
too singular to satisfy Eq. (4.7b), whereas the new

solution, where F, behaves like x ', is less sing-
ular and satisfies Eq. (4.7b).

Sheet structure in J. What remains to be shown
is that starting with the perturbation solution and

going around some branch point in the J or A,

plane, one ends up with the new solution. This is
not a trivial point since one could end up with a
linear combination of various solutions to the in-
tegral equations. Since we are able to solve the
integral equations only near X =0 as a power series
in A. , the Riemann sheet structure of the solution
is lost, and it may seem that we are forced to go
beyond the power-series expansion. Luckily,
things are not that complicated; all we need to
know is the Riemann sheet structure of n~ in Eq.
(4.8) as a function of X. Since the c(p are defined
to be the solutions of Eq. (4.13), the analyticity
properties of this equation in A. is all that needs
to be studied. Equation (4.13) is, however, a
complicated transcendental equation, and we have
not studied its solutions in full generality. What
we have done, instead, is to study the hypothesis
of interchange of trajectories embodied in the
ansatz of Eq. (4.18), in a somewhat simplified ver-
sion of Eq. (4.13). Since we are dealing only with
trajectories at P = 0 and P = -1 in this ansatz, it
seems like a sensible approximation to replace
the beta functions in Eq. (4.13) by the poles tha, t
generate the above trajectories. The effect of the
other poles is represented by a constant back-
ground term. This amounts to the following ap-

proximationss:
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The solutions to this equation look messy; how-
ever, one can easily verify the following simple
statements. Let a ' be the solutions correspond-
ing to the positive and negative branches of the
square root, respectively. It then follows that for
'&1

n~'~--1, n~ '--c', as X-0
(4.29)

In this approximation, our ansatz about the in-
terchange of the trajectories with p = 0 and p = -1
(when we continue from one branch of the solution
to a.nother branch) is then completely justified.

V. THE PROPAGATOR

In this section, we shall examine the propagator
of the nonperturbation (sic) solution derived in
Sec. IV. Our ma. in result is that the new propa-
gator has its intercept raised by one unit, so that
the M and the photon move to the point m = 1+c',
and the tachyon is lifted to m'= c'. To compute the
new propagator, we imagine an arbitrary number
of M's emitted at zero momentum from an inter-
nal line of the dual model, as shown in Fig. 3. The
contribution of all such M's is summed, and then
the external field J to which they couple is set
equal to zero. One possible final answer is the
original propagator one started from. However,
if the propagator is a many-valued function of J,
in analogy to 8', then a nontrivial final answer is
possible. This approach is similar to Lee' s
treatment of the 0 model. "

The demonstration that emission of M-spurions
(only) is adequate to obtain the propagator follows
the same lines of reasoning as used in Sec, II. The
reader is invited to follow Lee's reasoning
through —e.g., in the simple model of Sec. II—now
emitting only J& spurions. The point is that one
obtains exactly the expected equations for both
propagators and for (o) and (Q), now as a function
of J& (and J,=O). As we intend solving these (non-
linear) relations at both J&=J,=O, we miss no
solutions at all. '

The basic idea. in computing the propagator is
to derive integral equations similar to Eqs. (4.6).
There is, however, an additional complication in
the case of the propagator. The external lines

D=D(u, v, B —s),
where

(5.1)

Notice that D depends on the orbital operators
only through the combination ~ -s, which means
that the trajectories always stay linear, even after
the spontaneous breakdown. '

There is one further complication involved in
the definition of D».'There are two different

can be emitted both in the "up" and the "down"
direction symmetrically. This makes it difficult
to set up a multiperipheral integral similar to Eq.
(3.4). Using arguments based on duality, however,
we can move, say, the lines emitted downward to
the right-hand side, so that there is no intermix-
ing between the up and the down lines, as shown
in Fig. 4. We are then able to sum the up and
down multiperipheral chains separately, and then
combine them at the end as in Fig. 4.

Let us now establish some notation. For the
sake of being definite, let D denote the subpropa. —

gator where all the spurions are emitted in the up
direction. The subpropagator where the spurions
are emitted downward is simply related to the
above and need not be calculated separately. By
definition, the sum for D starts with the emission
of at least one line, and after the summation is
performed, the external field J is set equal to
zero.

It is convenient to label D as follows. First of
all, D can depend on the channels it connects. Let
the letters A, M, and II stand for the Abelian, M,
and heavy channels, respectively. This then leads
to the labeling D», D», D», etc. Furthermore,
the subpropagator is a function of the variables
u and v, associated with the initial and final lines,
and of the variable s, the square of the momentum
it carries. In addition, there is some operator
dependence that can be read off from Eq. (3.1).
We imagine having performed the nearest-neighbor
contractions between the n's so they will not ap-
pear in the final integral representation. In con-
trast, the &'s are capable of long-range contrac-
tions that cannot be carried out solely in the propa-
ga, tor, and so they have to remain in the definition
of D. These arguments show that the subpropagat-
or must be of the following form:

I I
I ~ s I I I I I

I I II I III
I II I III &

I

I IIIII
I II II

I I I I I Il
U I I I I II &&ly

I I I I I I l I I

FIG. 3. Spurion emission from an internal line. FIG. 4. Separation of up and down spurions.
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patterns of contraction for the emitted spurion
lines. tThe term "contraction" is used in the
sense of the paragraph following Eq. (3.3).] One
pattern of contraction leads to the sequence of
channels M, II, M, B, etc. , as we follow the propa-
gator line, and the other results in the sequence
M, A. , M, &, etc. , as shown in Fig. 5. We denote
the second kind of D by D», to distinguish it from
the first possibility, which has no wiggly line.

We are now ready to proceed with our derivation
in a manner similar to that of Sec. IV. In fact,
the steps leading to Eq. (4.6) can be taken over
with only minor modifications. In parallel to Eq.
(4.5), it is convenient to define the following
series:

uu(» "~
n =1

Oo l

E~H(X) u, v, R —s) =— Q A.
"

n=0

(5.2)

D(u, v, R —s) =E(A. = 0, u, v, R —s) . (5.3)

The functions E '" and E '"+' can be written in
the form of integrals very similar to Eq. (4.1),
1.e.)

with similar definitions for the other combinations
of channels. Here X = J'/c' as before, and the con-
nection between D and E is

du, du, „,(1 —u, )' '(1 —u, )' (1 —u, )' ' ~ (1 —u,„,)'
x(1 —uui) (1 —uiuR) (1 —uRuB) ' ' ' (1 —uR„ Iv)

C + R s C 1 8 S ~ ~ ~ C 2+/ sX@1 Q2
' ' '+2n-1

1 1 1

~~„'g" (u, v, R —s) = du, du, „(1—u, )' '(1 —u, )' (1-us)' 2 ~ ~ ~ (1 —u, „)'
0 0 0

x(1 —uu, )
' (1 —u, u, )

" (1 —u, „v) "u,'"s 'u ' " ' ~ ~ u

A similar set of equations hold for the E's:
1 1

P„'u~(u, v, R —s) = du, du, „,(1 —u, )' (1 —u2)' '(1 —u, )' ~ ~ ~ (1 —u,„,)'
0 0

x(l —uu) "(1—uu)" (1 —u v) 'u' '" 'u" "~ ' ~ ~ ~ u1 1 2 2n-1 1 2 2n-1

(5.4)

1 1p~'"" (u, v, R —s) = du, du, „(1—u, )' (1 —u, )' ' ~ (1 —u, „)"'
0 0

(5.5)

The reader can easily supply the expressions
for the other E 's by factorizing, for example,
Eqs. (3.6) and (3.7).

Notice that, when the external legs of the propa-
gator are on the mass shell, the difference be-
tween Eqs. (5.4) and (5.5) disappears. The two

expressions are then related by a cyclic trans-
formation, just like (3.4) and (3.5). When the legs
are off the mass shell, however, we have to dis-
tinguish between them.

Equations (5.5) and (5.4) lead to recursion rela-
tions of the type given by Eq. (4.2), from which
we finally obtain the fundamental set of integral
equations, analogous to (4.2). In terms of the
convenient set of variables z =1 —u, x=1 —v,

y =1 —v', s —R=s, these equations are given be-
low:

xE»(A. , y, x, s), (5.6a)

I I I

M A M A

FIG. 5. The two different M subpropagators.

1

Euu(A, x, z, s) =A, dyy' '(1-y)" '(x+y —xy) "
0
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c2E z(g, x, z, s) = A. (z + x —xz )

+X dyy' (1-y)'

x (x+y —xy) ' E,~„(A, x, z. , s) .
1

E~~(A. , x, z, s) =A. dyy' 2(1 -y)' ' '(x+y —xy)
0

xE„z(h. , y, z, s),
(5.6b)

the coefficients of the leading powers are again
the first three equations in (4.12), with no modi-
fication. In particular, Eq. (4.13) is unchanged,
so we have the same trajectories as before. The
equations for nonleading d's are in general modi-
fied by terms proportional to T'. In this section,
however, we shall not need the nonleading terms.

The cancellation conditions of Eqs. (4.17) still
remain valid, with some minor modifications. For
example, I'» and E„„satisfy the following:

E„~(Z, x, z, s) =Z(x+z —xz) "
1

+X dyy' (1 -y)'
0

x (x+y —xy) ' E„„(A,y, z, .s) .

( 1

dyy ' "(1-y)'"" 'E,„(y,z, s)=0

1

dyy "(1-y)' ""'E„(y, z, s)

(5.10a)

Qnce the above integral equations are solved,
the other I' 's can be determined directly through
the recursion relations. For example, I'„,~ and

E» can be computed as follows:
1

P „(x, x, z, s)=z dz'(z')"(1-z')' -'-'

I c 2x(z+z'-zz') '

xE„z(A, , x, z', s),
(5.7)

E„„(X,x, z, s) =Z dz'(z')' (1-z')' -'-'

+F 1 2 z (I z) =0 (510b)
I'(1 —c')

where n again ranges from 0 to ~.
To obtain a solution different from the perturba-

tion solution, we again adopt the ansatz of Eq.
(4.18), and in analogy to Eq. (4.19), we arrive at
the following set of equations:

03

g g ds' „"'B(ns+n —1 —m, c'+m +1 —s) =0,
P n =-1

x(z+z' —zz') '

xF „(A., x, z ', s) .

CO

g g d&,"„~'a(ns+ n —m +1, c'+m —s)

(5.1 la. )

In addition, the following symmetry relations
are useful:

E „(Z, x, z, s)=E„„(z,z, x, s),
r„„(~,z, x, s) =E„„(Z,x, z, s),
etc.

(5.8)

E' ' (~)= —(I+(u)' dtt" '(I+&et) " '

It is also a useful check on the results to notice
that the diagonal E 's of the form I"», I"», etc.,
have to be symmetric in the variables x and z.

The method of solving Eqs. (5.6) completely
parallels the approach we used in solving Eqs.
(4.7). We a.gain make the ansatz (4.8), where the
d's can now be functions of z and s. The analogs
of Eqs. (4.11) in the case of E„„and Ezs are the
following:

+ 2
— z ' "(1—z)"=0, (5.lib)

I'(1 —c')

E „(&=0,x, z, s)=- (xz) '
B& —c' c' —s

E,„(~=0,x, z, s)=0.
(5.12)

Equations (5.6b) can be treated along the same
lines with only trivial modifications. The results
are given below:

where, again, 0 & rn & ~. The arguments about the
order of various terms in X [which follow Eq.
(4.16)] remain valid in the present case also. It
then follows that the only d which is zeroth order
in A. is d~™,,'; all other 4's are proportional to at
least one power of A. . Solving Eq. (5.lib) with
&pe =0 for d', ,', we obtain

x (1+t+~t) "E'~~~(t(u),

E(P) (v) X(u(1+ (u) dt t (1 ~~t)-i-c -s
0

(5.9)

E~~(A. =O, x, z, s) =0 .

(xz) '
~].—c' c' —s —1

(5.13 )

x('+t+~t) ' E~'~(t~)

It is now easy to ver ify that the equations for
Further, the use of Eqs. (5.7) and (5.8) shows

that all the other E's are zero:
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F,„(~=0,x, z, s)=0,
F„„(X=0,x, z, s)=0,

F,„(~=0, x, z, s)=0,
etc.

(5.14)

Here we have also switched back to the original
variables u=1-z, v=1 —x.

The expression analogous to Eq. (5.15) for the
Abelian propagator is the following:

a„„=u~ ' ""(1—u)"5(u —v)

1 c 2-g -s+ R

B(1 —c', c2 —s + R —1)

(5.16)

Actually, Eq. (5.16) has to be symmetrized with

respect to "up" and "down" emissions; however,
since this does not alter any of our results, we
shall not enter into this further complication.

The propagator of Eq. (5.15) is to be sandwiched
between vertices that depend on u and v, and the
result should be integrated over these variables.
One may first suspect that there are double poles
coming from the second term on the right be-
cause of the double integration; however, these
cancel against the poles of the beta function at the
same positions.

It is also of interest to determine the location of
the lowest pole. We imagine having expanded the
vertices in powers of u and v, and notice that the
lowest pole comes from the zeroth-order terms.
This pole located at c'+R —s =0 cancels between
the two terms in Eq. (5.15). We interpret this as
the M trajectory having moved up a unit. A sim-
ilar analysis of Eq. (5.16) leads to the same con-

Since I' at X =0 is the subpropagator D, we have
to collect our results in order to construct the
full propagator. Consider the 3glf propagator,
given in Fig. 5. As argued earlier, if the spurions
are emitted in the up direction, we get the se-
quence of channels M, II, M, II, etc. , whereas if
they are emitted in the down direction, the se-
quence is M, &, M, 4, etc. The contribution of the
second sequence is zero, however, since D» is
zero. Hence, we obtain the full propagator 4»
by multiplying D» by the propagators of the two
external lines and the "cross channel" factor
(1 —u)' (1 —v)', which were omitted in the defini-
tion of (5.5), and then adding this to the bare prop-
agator, which again was omitted from the defini-
tion:

au„=u" ' "' (1 —u)' 6(u —v)

elusion, that the photon-tachyon trajectory c2+R
—s —1=0 is canceled, and these partic]. es move
up a unit.

In more detail, trajectories appear at s = c'+R
+ (n+1) and s =R+n+1 in the M-channels, and at
s =c'+R+n and s =R+n in the Abelian channels
(n=0, 1, . . . ). For very small c', residues of par-
ticles near the same mass tend to cancel, reveal-
ing a bad ghost structure in this spectrum. Such
diseases cannot be present when the ghost scalars
are properly subtracted at c'=0."

One remaining question is: How do we know
that the above solution for the propagator goes to-
gether with the solution for W obtained in Sec. IV?

The comparison of the two results rests on the
fact that the M propagator must reduce to W when
the two external legs are on the mass shell, i.e.,
when s=0 and &=v=0. It is easy to verify that
both the equations and the solutions of this section
go over to those of Sec. IV in this limit.

It is instructive to put our method for evaluating
the propagator in perspective with a more standard
operator approach. As discussed in Ref. 1, the
whole spurion summation can be put in the form of
the geometrical sum of the zero-four-momentum
spurion operator on the bare propagator, a form
which we might schematically indicate as
(I,, —1) '- (I, —1+J'b) ', where 6 would be
quadratic in the M spurion. It is quite clear that
our integral-equation formulation here is simply
a way of giving meaning to this formal sum —in, the
limit as J 0. It may also be possible to develop
other procedures (for diagonalizing at J =0) that
stay closer to the operators.

Finally, how do we construct the new dual ampli-
tude? Having the propagator, we lack only the
vertex. Since the only coupling in the dual model
is a three-point vertex, it is unchanged under
spontaneous breakdown (We ha. ve put all spurion
corrections on the propagator. ) The states, how-
ever, do change-the new ones are constructible
by diagonalizing the propagator. The new vertex
is then the old vertex, sandwiched between the
new states. This construction will not be attempted
in this paper.

VI. CONCLUSIONS

Starting with a ghost-free dual IVI model, we
have made certain controllable approximations
(a large-N limit, etc. ) to cast the problem of
spontaneous breakdown in the form of (singular)
integral equations. Our conclusions are that spon-
taneous breakdown does occur, and we have given
explicit constructions for the new connected vacu-
um functional and the propagator. Goldstone
phenomena and the Higgs effect are all observed
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explicitly, and the mass spectrum cures itself of
vacuum instability by shifting uniformly up until
there are no more tachyons. We conjecture that
such features will be true in more physical mod-
els: For example in a dual M model with spin
(Neveu-Schwarz type), one expects the tachyon a.t

gyes = -2 to dictate the magnitude of the shift. It
would move to zero mass, carrying the entire
spectrum by —,

' unit. The resulting spectrum would
be indeed exciting.

In our approach, we worked directly with the
physical S matrix at zero four-momentum &(J),
eschewing the effective potential itself. Neverthe-
less, we constantly regard the dual model as a
complex Lagrangian involving an infinite number
of scalar species. Many of our arguments in cal-
culating and interpreting the behavior of the solu-
tions are based on the dictum that "whatever is
true in any Lagrangian is true. " In particular,
our contention that "probing with zero-mass par-
ticles is adequate" is true in any Lagrangian. Our
expectation that no new ghosts will be introduced
in the spectrum by going from one sheet of the
theory to another is also based on Lagrangians:
Spontaneous breakdown of ghost-free Lagrangians
lead to ghost-free broken theories.

As a laboratory in its own right, we find our
model highly interesting. For contact with phys-
ics, it has probably one most outstanding problem:
That we have not yet gone back to c'=0. This in-
volves subtra. cting certain "regulator" scalars (s)
under the p explicitly, and will proceed by emitting
these along with M's and solving with the constraint
the BW/BJ, =0, which is equivalent to eliminating
these fields from the theory. Work is proceeding
along this line, with the optimism that, after all,
the whole problem of spontaneous breakdown in
dual models now appears conceptually clear and
essentially tractable.

APPENDIX A: THE NIODEL AS LARGE-N LIMIT
OF A GHOST-FREE MODEL

In our Ref. 8 we sketched a large class of dual
models containing the correct M-scalars" for
hadronic spontaneous breakdown. In that study,
we concentrated on models "with spin,

" indicating
the analogous procedures for similar orbital mod-
els. Here, for simplicity, we have use for the
very simplest oxhita/ model of this class.

From that reference, we recall that M's are the
spin-zero mesons which, before spontaneous
breakdown, transform as fundamental representa-
tions under both the hadronic (gauge) group (Chan-
Paton factors), and the weak (exotic) group. Thus
the simplest orbital M vertex can be taken as

V~ =- V,{1)g'v (1), V "t =- V(l)v"(l)y't . (Al)

Here, as in Ref. 3, Vo is the usual orbital vertex,
the numerical SU(N) "spinors" y', y't generate the
usual Chan-Paton factors, and the complex pro-
jective vectors v, nt carry the "weak" SU(N). For
our purposes here, we are taking the M's as form-
ing an ¹&Xsquare matrix, that is with weak and

strong groups the same size.
Following Ref. 3, we construct the desired sec-

tors by alternating M's and M~'s in forming &-
point functions. We are concerned with spontaneous
breakdown via the emission of an arbitrary nurn-
ber of M-spurions. Drawing on our Lagrangian ex-
perience, the appropriate spurions are the t ace
of M (or M ), because a vacuum expectation value
of these will leave the sum group SU(N) intact:

SU(N), ,„„=SU(N) „,„„„+SU(N) „,,„. (A2)

Thus we concern ourselves with vertices for the
tra, ce

—P {O~v (z)~ (1)~O)

(1 —z )' (A3)

This positive power of N depends on having the n's
contract in sympathy with the y's; other n contrac-
tions, failing this, will indeed be down in size by
one or more factors of Ã. This is illustrated
graphically in Figs. 6(a, ) and 6(b). In particula. r
Fig. 6(a) shows the leading (order N') contribu-
tion to each S-matrix element. Figure 6{b) shows
a particular (neglected) configuration of lower or-
der. In these figures, each external M carries
both a, Chan-Paton index (da.shed line) and a "weak"
index (solid line). In the leading approximation,
the weak indices follow the strong indices in their
contraction pattern. Each closed loop is a factor
of ¹

The leading (order N') configuration is evident-
ly a nearest-neighbor contra. ction scheme (with
respect to n, v ), and is precisely the model con-
sidered in the text. In this order, only the Abelian
sector ("ninth") of both weak and strong groups
survive to couple to the trace of M. This is ap-
parent from Figs. 6(a) and 6(b).

An amplitude for the scattering of n of these par-
ticles appears to have a multiplicative factor
(N' ') ". This is illusory, however, because the
contractions among the n 's and m~ 's tend to give
positive powers of ¹ For example, using the iden-
tity y

N

0 Q v"(z)g p lt8v8t(1) 0
n=1 8 =1
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There are a number of remarks pertinent to our
application of the large-N limit. In order of in-
creasing interest they are the following: (1)
There are also order N' contributions to the S
matrix in the non-Abelian sector (non-trace-M's
externally). In our spurion summation on the
propagators, however, these do not matter. (2)
It is not entirely clear that the non-Abelian vector
mesons acquire a mass in the same order. They
do however appear to acquire an ¹independent
mass, along with the non-Abelian member; if we
sum the analogous set of propagator graphs of or-
der (I/N)"~' 4"= J,"ff (n spurions, no closed loops).
This raises the interesting question of just how
formal is our large-N approach: To what extent
precisely does the leading approximation to the
S matrix actually dominate a spontaneous break-
down'? (3) Our large N connotes a. large number
of (effective) degrees of space-time, and we cannot
think of N arbitrarily large. For this orbital mod-
el, remembering that each v is complex, we
must imagine the weak and strong groups as
SU(N), N& 11. For the corresponding models with
spin, as discussed in Ref. 3, we would have to
maintain N ~ 3 [SU(3)]. As long as N is bounded
in this way, we can expect that ghost residues
(introduced in the leading approximation) will be
of order 1/N, and correspondingly smaller a.s
the approximation is improved.

low terms odd in A, to appear in the solution. There
are a large number of possibilities, and we shall
only present what we think is a particularly simple
solution.

Let us distinguish between the two branches of
the double trajectories at the points P &0 and

P & -1 by labeling them as e~~'~, where the plus
label goes with the positive sign on the right-hand
side of Eq. (4.15), and similarly for the minus
label. We now imagine that in addition to e~ at
p =0 moving to P =- -1 one of the trajectories at
P =1 moves over to P = -2. There are four pos-
sibilities to choose from, and we assume that n, '
goes over to e ', . The choice Q, -Q 2 turns out
to be physically equivalent, and the other two pos-
sibilities n, -n ', or n, ' -n, are incapable
of satisfying the fundamental integral equation, as
will be discussed later. Notice that by splitting
e~+ from its accompanying n~, we are able to
generate solutions odd in A. .

We have now to examine Eqs. (4.12) and (4.17)
in order to segregate terms of lowest order in A. .
A careful analysis, which will not be reproduced
here, indicates that, to the lowest order, W, and

W, are of the following form:

x 2n C2+g2 j(C2 &) & 3~ 1~C+ 3X

APPENDIX B: SOLUTION WITH 91)4 0

We wish to find a. solution to Eqs. (4.7) which
results in a %' with a linear term in A, . This re-
quires an ansatz more complicated than that of
Eq. (4.18), and in particular, the ansatz must al-

W (x):—— ' x ' +' ' —9,'cP, x'
C

where P' s are the unknown constants. Notice that
we have already solved the homogeneous system
of Eqs. (4.12) in writing (Bl). Only Eqs. (4.17), or
equivalently (4.19), remain to be satisfied. To
the lowest order in X, it can be shown that only
(4.17a) with m = 0 and (4.17b) with m = 0 and m = 1

need be considered. These lead to the following
set of equations:

—' B(-1—c'+ inc, c'+1)+PP = 0,

iA
A, + P,B(-c'+ ih. c, c')+ —P,B(l —c', c')

+ P+B(1 —c', c') =0, (B2)

P,B(-c' —1+iA.c, c'+1)+ —P,B(-c', c'+1)

(b)

FIG. 6. (a) The leading terms in the large-N expansi. on

(b) An omitted contraction of order (N) " 2+ .

+P, AB(-c, c +1)——P., =0 .2 2 iA,

Some of the beta functions in the above equations
are of the order of A. ; for example,
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B( c'-+i X c, c') =i A cI'(c')I'(-c'),
B(-1—c'+inc, c'+1) =—ih cl'(1+ c')

xr(-1 —c') .

1
r (c')I'(1 —c') (B4)

and hence, the linear term in ~is given by

iJ 1
2 I'(c'+1)1 (1 —c') ' (B5)

It then follows that the classical field g acquires
a vacuum expectation value equal to the right-hand
side of (B5) divided by J. The imaginary value
for this quantity is unphysical and presumably has

Upon this observation, all the X dependence
from Eq. (B2) cancels.

We therefore see that, although terms propor-
tional to P, and P, appear with higher powers of
A. compared to the term proportional to P, in Eq.
(B1), they all appea. r to the same order in X in
Eqs. (B2).

Upon substitution of (B3) in (B2), and after some
simplification, we have the following results:

to do with the existence of ghosts in the regulator
procedure (c'o0). If one started with the ansatz
z', '-n, ", this would lead to a mere change of
sign in Eq. (B5). The choices o.'I ~ —u~, ~ or o., '~

—n, , on the other hand, would lead to an incon-
sistent set of equations for the P's.

The propagator for this solution is obtainable
via the methods of Sec, V. It is more complicated
than that of the leading solution, and will not be
presented here. A qualitative remark is in order
however: Since W is essentially X' times the
I-M propagator at s=0, and the propagator is
O(X'), how can W have terms of order A. ? The
answer, borne out exPlicitly in the M-M propaga-
tor, is that there is a Goldstone pole at s = 0,
which is like 1/s - I/iX as we go from propagator
to W: The Goldstone theorem that (M) o0 implies
Goldstone pole is, as it should be, quite inescap-
able. The actual pole is expected to decouple in
the diagonalization with the Abelian (Higgs phe-
nomenon).

Finally, we mention that this solution is really
best defined in the range c'&0 (or complex). A
careful study of convergence of integrals used in
the computation bears this out. This makes good
physical sense, in that, by starting thus with
tachyonic M's, we force (M) e0. On the other
hand, this makes it even more clear that the solu-
tion is intimately involved with the regulator
ghosts.

*This work was supported by the U. S. Atomic Energy
Commission.

K. Bardakci, Nucl. Phys. B68, 331 (1974).
2K. Bardakci, Nucl. Phys. B70, 397 (1974).
SK. Bardakci and M. B. Halpern, Nucl. Phys. B73, 295

(1974) .
4For other applications of the large-N limit, see

D. Gross and A. Neveu, Phys. Rev. D 10, 3235 (1974);
G. 't Hooft, CERN report, 1974 (unpublished).

5For a review of topics connected with spontaneous
breakdown in field theory, see S. Coleman, in Con-
structive Quantum Field Theory, proceedings of the
International School of Mathematical Physics "Ettore
Majorana, " Erice, Italy, 1973, edited by G. Velo anJ
A. Wightman (Springer, New York, 1973).

6It appears that small-slope limits will not be of much
value in constructing the effective potential: On di-
mensional grounds

j2ll ~PI 2~ v' —Q g (Q 2)&~n 2

n 71=2

where the c's are dimensionless numbers and & is the
slope. Thus, the part of the B„'swhich is contributing
is of order n for all n. This is, unfortunately, deeper
and deeper inside B„as n grows.

YK. Bardakci, unpublished work.
M. B. Halpern, Phys. Rev. D 3, 3068 (1971).

~For a review of dual models, see S. Mandelstam, in
Lectures on Elementary Particles and Quantum Field
Theory, 1970 Brandeis Summer Institute, edited by
S. Deser, M. Grisaru, and H. Pendleton (MIT Press,
Cambridge, Mass. , 1970), Vol. I, or J. H. Schwarz,
Phys. Rep. 8C, 269 (1973).
A. Neveu and C. B. Thorn, Phys. Rev. Lett. 27, 1758
(1971).
This is essentially the extrapolation of C. Lovelace
[, Phys. Lett. 28B, 264 (1968)], and it is factorizable
as mentioned in the text.

~2K. Bardakci and M. B. Halpern, unpublished work.
B. W. Lee, Nucl. Phys. B9, 649 (1969).

~4Strictly speaking, this result holds for all particles o
that couple to some number of Q's. Particles 0 with a
separate 6 parity (couple pairwise to (II) 's) would be
assigned (o) =0 in our procedure. As we define our
models by the spectrum which couples to Q 's (M 's),
this is just adequate for us.

5K. Bardakci and M. B. Halpern, Phys. Rev. D 6, 696
(1972); I. Bars, M. B. Halpern, and M. Yoshimura,
Phys. Rev. Lett. 29, 969 (1972); Phys. Rev. D 7, 1233
(1973).


