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We calculate the O(e') terms of the Wilson expansion of the critical exponents in the Reggeon field

theory with a bare linear trajectory and a triple-Regge interaction. We find that the O(e') and O(e)
terms are comparable at e = 2, and we obtain cr„,(s) — (lns) . We also show that the
Gell-Mann —Low function P(g) expanded to finite order in both & and g carries no information about
the existence of the Gell-Mann-Low zero at finite e.

I. INTRODUCTION

o... -(Ins)-&, (2)

The technique of using the renormalization group'
and the Wilson e expansion' to derive scaling prop-
erties of proper vertices in Reggeon field theory'
was introduced by Migdal, Polyakov, and Ter-
Martirosyan, ' and by Abarbanel and Bronzan. "In
their work the behavior of the proper vertices in
the infrared limit j = 1 and t=0 was examined, and
a number of conclusions were reached. The most
important of these was a prediction that in a theory
with a linear unrenormalized Pomeron trajectory
and a triple-Pomeron coupling, the asymptotic be-
havior of the elastic amplitude is

T(s, t) = s(lns) "E(t(lns)'),

with y & 0. This behavior arises from the coin-
cidence at j =1 and t=0 of an infinite number of
branch points. The scaling exponent y specifies
the logarithmic rise of the total cross section,

and the exponent z specifies the trajectories of
Pomeron cuts and pole for small t,

n(t) = 1+const x (t)'t'

-y = —,', e+(~~2 in~3+ P,)(~~2m)'+O(e'),

z = I+ ~2, e+(~24 in~~+ P)(~~2&)'+O(e') .
(4)

Since the coefficients of the (~»e)' terms are about
7.7 and 3.5, respectively, the O(e') terms are
larger than the O(e) terms at e =2. It would there-
fore seem that the e expansion is a questionable

The exponents y and ~ can be determined in an e

expansion, where e = 4 —D is the difference between
the natural scaling dimension (=4) and the number
of transverse dimensions D; we want answers for
e =2. Although c is large, it was shown4 ' that to
o de, -y=» =6, a=1+,4 =». If e were al-
ways accompanied by a factor like», a few terms
in the e expansion would give good results for y
and z. We have determined that
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means of calculating y and z at c =2. Our results
agree with those obtained independently by Baker. '

In Sec. II we review the Reggeon field theory and
obtain the basic formulas from which y and z can
be calculated. In Sec. III we enumerate the re-.
quired perturbation-theory graphs and obtain Eq.
(4). Integrals are evaluated in the Appendix.

II. REGGEON FIELD THEORY AND THE

RENORMALIZATION GROUP

We begin our discussion with a review of the Reg-
geon field theory. ' We define a free Lagrangian

the triple-Pomeron coupling because it induces
higher couplings or proper vertices. According
to Kogut and Wilson, ' the scaling behavior (and
exponents) is independent of the bare couplings we
retain in the theory. In general, scaling is the
same in our one-coupling theory (with a triple-
Pomeron coupling) as it would be in a theory with

other bare couplings in addition.
We write our full Lagrangian as

2 =So —,'iro(tP—)t)'+H.c.) .

As in Ref. 6, we define dimensions for our the-
ory by

Zo ——2ig —g —no'VP Vg —t)o(l) (I) ~

Bt (5) [x]=k ', [t]=Z

Here ))) =((x, t) is the unrenormalized Reggeon
field, written as a function of x, a D-dimensional
space vector conjugate to the D-dimensional trans-
verse momentum vector k, and t, a variable con-
jugate to E=1 —j. The equation of motion cor-
responding to Zo yields

E = no'k +~0 .
Defining ~, = 1 —a, as a bare "energy gap" then
leads to the linear unrenormalized trajectory
(t = -k')

j=a, +n, 't.

(6)

We choose 6, = 0, corresponding to n, = 1 for the
Pomeron. No mass counterterm is required to
keep n =1 in the presence of interactions within
the e expansion.

The interaction we choose is the triple-Pomeron
coupling with nonzero bare coupling i&,. The factor
i is dictated by signature factors of the even-sig-
nature Pomeron. ' It is sufficient to retain only

and

f d xdtg =1.

We find

[q] = kD

[n, ']=Zk ',
[~,) =z,

[r ] Ek D/2-
The Green's functions for e incoming and m out-

going Reggeons are defined as

n m

= II H(ol ney'(y, }q(;,t;}Io& (12)
j =1 y =1

The Fourier transform of the Green's function
is defined by

n m

Q(~)6D(gk)G( ' )(Z k ) =
J

dDx dt;e +' ' ~' ~i I '~d y d7,. e '(s/'/ "~' )'/)G(™)(x;,t y r )
l =1 g =1

G(")(Z, k) =i/(E- n, 'k' —~, +is) . (14}

(5) Supply a factor —,
' for closed loops with Reg-

The 5 functions conserve overall energy and mo-
mentum in the Green's functions. The Feynman
rules for G("' ) (E;, k;) are the same as those listed
in Ref. 6. They are:

(1) Draw all topologically distinct graphs with
arrows indicating the direction of propagation.

(2) Integrate dDq dE, around each loop.
(3) Supply a factor for each vertex:
g (2 )

(D + 1)/ 2

(4) Each Reggeon propagator is the retarded
"nonrelativistic" expression

geon loops having momenta in the same direction.
The unr enormalized connected proper ver tex

functions I' "' are now defined by taking off the
external legs of the connected part of G "' . We
write

r, ;+m
I(o'~)(z k ) = [G( ' )(E, , k, }] G(~'m (E;,k;)

(15)

The vertex functions F "' also depend on the un-
renormalized parameters n, ' and &,. We shall use
dimensional regularization to define the integrals,
as in Ref. 6. The renormalized proper vertex
functions 1"„(E,, k, , n', r, E~) depend on the re-
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normalized slope Q', the renormalized coupling
and a normalization point E„. E = -E~ is chosen
as a point at which to define the coupling & and the
slope Q' through conditions on the appropriate ver-
tex functions I'R. Normalization is imposed away
from the per turbative singularities of the calculus,
l.e., EN & 0. Hence & and Q are functions of EN.
A variation of E„involves a finite renormalization
and thus a change in &, in Q', and in I'R ~ The con-
nection between I'R and I' is

=z{"'"~r21'""'(E. , k, ,', r„~,) . (16)

The wave-function renormalization Z is a function
of Qp ~p and EN.

The normalization conditions on I'„are, then, r(g')=Em sE 1~(n.', ~„E~)
8

N 0'. p ~7pfixc{i
(23)

We should note at this point that we could have
multiplied these definitions by an arbitrary func-
tion of D. This freedom will play a role in some
of our considerations later .'

The renormalization-group equation for I'~"'

is obtained by noting that F( "' ) does not depend
upon E„, so that its derivative with respect to
E~ is zero. Using Eq. (16) and the chain rule,

E,,E + p(g) —, +&(n', g), , —
2 r(g)

9 8, 8 (n+m)

xl {""'(E, , kt 1 g, n', E„)=0 . (22)

We have substituted in our dimensionless cou-
pling g. Here, the coefficients in Eq. (22) are

k2 =o

k2 -o

(18)

&(n', g) =Err, E n'(E, )
8

iV 0'.p', 7p t'ized

P(g)=E, ,E g(E, )
np', 7p t,ivied

(24)

(2s)

,-, tl {,' 'i (E, k ) n(Ear) ~- (19)
As in Ref. 6 we now use the dimensional-analysis

representation for FR(" ' ) which is defined by the
statement that

~R ~ i ~ ki j Ey =-EN=2E2 3 rn x(D+1) /2 (20) [I{n,m)g EyDI1-{n+m)/2]
R (26)

In the weak-couPling limit, r- xp Q Qp'.

It is convenient to define dimensionless couplings
g, (Err) and g(E„) by

go(EN) ~ 1»r4 E~-IQ

g(E„)=
(

)+ATE»'"' '.

It is

r{,""&(E, , k, , g, n', E„)

Using this we obtain the equation'

(27)

=EN —," „—', —k 'k g

]$
—

~
—P(g) —+[n' —t(n', g)], +[2(n+m)r(g) —1] I' s"' '($E, , k, , g, n', Err) =0 . (28)

Here, $ = e' is a scaling parameter whose value
we are at liberty to choose. It has been introduced
in place of the explicit E„dependence through the
dimensional-analysis representation. [This t is
not that in Eq. (9).]

The solution of Eq. (28) is then

I'{~"' '($E;, k;, g, n', E„)
'(E, , k, , g(—t), n'( —t), E„)

dg t =-p(f (t)),

dn'(t)
= n'(t) —g(n'(t), g(t)),

Z(0) =g,
n'(0)=n' .

(30)

(31)

(32)

(33)

xe&p « '[1 —-'(n+ )r( g (t '))], (29)
Scaling expressions for F~"' are obtained by ex-
amining the solution of Eq. (29) as $ -0 or t- -~.
In this limit, g(-t) goes to g„, the Gell-Mann-Low
zero, where p(g, ) =0 and p'(g, ) &0. We find'
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( 2-m-n)D/4 E 1+a'(g&)(2-m-n)D/4-)'(z&)(m+n) /2
I'["'"»(E;,k, , g, n, E ) - Cr E C„o.' N

(E,. E ','
c„,.) .

N
(34)

Here C& and C ~ are constants, E is any linear
combination of the E; 's, and

.(g)=1-" "
0

z(g, ) and y(g, ) are the exponents z and y in E[l.
(4).

The key to the e-expansion calculation of z and

y is that g,' is O(e). Therefore the perturbation
expansion of P, y, and f becomes the e expansion.
To obtain E[l. (4) we must calculate I'[' '» and
F " to order g,' and g, ', respectively. Using

Eqs. (16)-(25) the renormalization can be carried
out to get g/n' and y to order g4, and P to order
g'. From these expressions g, ', z, and y are ob-
tained to O(e').

III. THE SCALING EXPONENTS TO ORDER e&

We begin by calculating I' " to order go' and
to order g '.

The O(go ) contributions to I'["» are illustrated
in Fig. 1. Using the Feynman rules of Sec. II and
integrating over E, and E, by Cauchy's theorem,
we obtain

r'I,""(-E„,k') =

x[E~+no'(k —k, } +no'k2 + no'(k, —k2) ] ',
dDk, d~k, [E„+n,'k, '+ n, '(k —k, )'] '[E„+n,'k, '+n, '(k —k )'] '

x [ E„+n, '(k - k, )'+ n,
' k, ' + n, '(R, - k, )'] ' .

(36)

(37)

In the Appendix we evaluate these integrals and their derivatives with respect to k, at k'=0. Qf course,
since we are calculating to order e' we do not have to calculate the integrals exactly; we only need the
terms proportional to I/e' and I/e. We find

r E 1 1 16
(38)

I 4 I

(39)

4 1 4]i ' 3
87l'Qo ) N

(40)

2Q r 1 I

(41)

y is the Euler-Mascheroni constant.
The O(g, ') contributions to I'["» are illustrated in Fig. 2. After integrating over the two-loop energies,

all diagrams can be expressed in terms of five integrals. These are

J,(a, b, c) = d k, d k, [aE„+2n,'k, '] '[bE„+2n, 'k, '] '[cE„+n,'k, '+n, 'k, '+n, '(k, —k, )'] ', (42)

J,(a, b, c) = dDk, d k, [aE„+2no'k, 'j '[bE„+2n, 'k, '] '[cE„+no'k, +n, '%,'+n, '(k, —R, )'] '

1 BJk(a, b, c)
EN &C

d (a, b)= J d k d b, [ak„+ka, 'k, '] '[bk„+ ,' '+ a'kk'+aa, ']k, —k )'] ', (44}



4212 J, B. BBONZAN AND JAN W. DASH

d(a b)= J d k d lt [ da„+2 a'k, '] '[bd„+a, 'k, '+a„'k, ' ~ a, '(k, —k ]'] '

1 W, (~, 5)
Ba (45)

d, (a, 5, c) = d k, d k, [//E„+2no'k, 'J '[bE„+2n, 'k, '] '[cE„+n,'k, '+n, 'k, '+n, '(k, —k, )'] '

1 J,(a, c) —J, (b, c) 1 BJ,(a, c)
E// (f] —0) f] —0 8 0 (46)

Define

r, '(2n )'

(2 )5[Dd 1] /2

(54)

Then at the normalization point k, =0, E2 =E,
1 1
2 1 2+Ny

(55)

(48)

(49)

(50)

—z, (-,'-, ,'-) +z, (i, —,')],
1 I"'=&[~.(1, a, 1)+&,(2, a, 1)+J,(-.', 1, l)J,

(56)

1,""= —[Z, (1, —.', —.') -Z, (i, 1, 1)],
N

r['2] = —[J,(1, —,', 1) -Z, (i, 1, 1)],

(51)

(53 )

(58)

The complete vertex function I'{")in fifth order
is twice the sum of the above contributions, with
the exception of I'{."), which is counted once. lt is

I'["]
It tt„„,d„, = (,[/]+» /, , o,

d —,+ —(26 —20yF„+201n]T —61n3+ 521n2) + O(co) (58)

The above expressions must be augmented by the lower-order terms calculated in Ref. 6. The order rp2

terms in X'{")are
D/2

2 21T 2 no

The order r p and rp' terms in 1 '*') are

(60)

2 o ( D/2)
{y 2) 7 p +p &7T 7T {D/2))»l 1 -D/2

Inorm. pt.
=

(2 k[D+]] /2 1 + r2 k[D+]] E &
r I'(1 —pD)E// (1 —2 )

7T j
(61)

To be consistent with other expressions, we should
expand the right-hand side of Eq. (60) and the
bracket on the right-hand side of Eq. (61) in powers
of e, and retain the terms of O(l/e) and O(e') only.

We are now ready to renormalize and calculate
the scaling exponents. From Eqs. (16) and (18),

Z '(r„n, ', E„)= —-- fI'[k "(—E„,k2 =0) .
N

Z (r[kb]r nk] r E]][)= 1 + 82gkr /E + Qdgt] /e

gp 1 3=1—,, -+ (—,ln2+ —,inn ——,y].„)(Bw)' e

+, inn-, y,:„)2- 2-

From Eqs. (38), (40), and (60)

(62) (63 )

The constants a, and a4 will appear later, and can
be read off Eq. (63).
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Equations (16) and (19) show that

/(E
N) p(111( E p)Z sp '

k2 p

We find

(64) (-E Q) I'

(E2,k2) W( —N' )

& (EN) 1
„g'p g'p= 1+&2 +C4

2 1=1—,—+ —,
' (31n2+1n2 -yr, M)

(Sm) 2e

4

(I,2)
(, ')

(I,2)
b

+ 2 lnl/ —
2 ypM)

(65)

Finally, we obtain the renormalized coupling by
evaluating

(I,2)
C

(I,2)
d

g(EN) EN p(1,2)
(2~)(D+1) /2 [ I(@ )]D/4 (66)

Using Eq, (63) for Z ' and Eq, (65) for n'(EN)
we obtain, after some algebra,

~No~
~(& ) =~. (&+

" +

which inverts to give

g, =g —(w/e)g'+ (3w2 —w, )g'/e2 .

Here,

(I,2)
I'e

(I,2)

[-3+a(-~12 ——,
' 1n2 ——,' 1nw+ —,

' yFM)],(6~)'

(69)

w = [22+@(~+~21n2 —~11n31
8+ 4 2 32 8 16

(I,2)
g

(I,2)
h

+ 2 n11 2 yEM)~ (70)

(E2, k2)

(I,I) (-E„,k)N'
a

(EI,kI

(-E —E, k —k )
N I

'
I

E I, kI )

(-E„,k)

(I,2)
I',

I

(I,2)
r, '

J

( I, 2)

FIG. 1. The contributions to the unrenormalized self-
energy 1" ' ) inO(@04).

FIG. 2. The O(g05) contributions to the unrenormalized
vertex I"
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The E„dependence of all these quantities is
hidden ing, . We use the fact that

Proceeding to the final step of the calculation,
we now eva, luate the zero g, of the P(g) function in
an c expansion. That is, we set

gp = -4P«pP 1 P

&E

We obtain, using Eq. (66) and (67),

p(g)=EN
N j'iXed r p2(XP'

p(g, ) =0 .
This is solved to O(e') by

2

&+ & Lyt:.M- ln"gl J„J 2 I

8n

+~4, (3561n2 —2981n3 —23)] .

(80)

(81)
= -4Egp 1+3' + 5

E
(71)

inserting this expression into that for y and 5/n'
leads finally to

g2 g4
= —4eg 1 + 2w —+ (42c 4

—6w )—2 (72)

3=-—4'eg+ 2 [-,'+e(P+4~ln2+a41nv —
4 y~„)]

j, 8n j'
5

(8v)4 32 16 3(~+~in~) . (73)

We next evaluate y by differentiating lnZ with re-
spect to E„. We obtain

—y = 12e + (12 e ) ( 12 ln3 + 24),

r /n' = —,', e + (~ e )'(-'p ln,'- + ~) .

(82)

(83)

These are the final expressions we obtain. We
note that the dependence on y, , M has cancelled, and
that the final expression for the O(e') terms are
relatively compact. Unfortunately, they are also
rather large. At c =2, corresponding to the real
world, we obtain

y = 2 a 2 g6 + (a 4
—2 a 2 )g 6 /e

= —,'a, g'+ (a, ——,'a, ' —a22c)g'/e
2

[ 2 + 4'E ( 3 1112 ln71 +y1;M)]'M 8v '

(74)

(75) -y = —', + —,', (7.7) = 0.38,

-g/o. '=
—,', +~~ (3.5) =0.18 .

(84)

(85)

+[ —~ln2+aln3 —~]( ), . (76)

1 2 1 2
y 2 2g0 + (2c2 c4)gO /

A

= y —2~

c2 g'+ (2c,' —c, +2c c2)g'/e
2

= —,'[--,'+-,'e (-3 ln2 —lnm+y, .M)] g,
EM (8& 2

4

+(z61n2+~~61n3 —P2)
( ), .

(77)

(78)

(79)

Equations (73), (76), and (79) contain the major
results. We have succeeded in evaluating all of
the functions appearing in the renormalization-
group solution for the Green's functions in per-
turbation theory. At this point we should step back
and notice that these functions have lost all singu-
larities in e, as they must. Second, at this point,
the Euler-Mascheroni constant y~M occurs in each
expression. This will eventually cancel out in the
final results of the e expansion, and is connected
to an invariance of the theory under a rescaling of
the dimensionless coupling g by an arbitrary func-
tion of D. We shall discuss this point more fully
later on.

Finally, we evaluate g/n'(E„) by differentiating
inn'(E„) at fixed o.,', r, with respect to E„We ob-.
tain

g '= (8v)'- t2G'/r(1+ —,'e)
= 8vG [1+2e (y, -. „—ln81T)+ O(e2)]

Defining

(86)

(87)

P. (G) =E. ,

Thus, the e expansion seems at best a rather
slowly convergent series. One might ask the
question at this point of whether there might be a
sensible alternative procedure to use in obtaining
expressions for y and f/n'. A quick look at the
expression for g, ' in Eq. (81) shows that a.t e = 2

the O(e') term is negative, and g, '&0. Not only
that, but returning to the expression for P(g) in
Eq. (73) one can ima. gine setting e = 2 therein and
solving for g, directly. If one does this, one finds

g, '&0. In fact, if one now uses this value of g, in
the expression for y in Eq. (76), one obtains -y
=-', to within 10%. Unfortunately, this line of
reasoning is incorrect. The demonstrationinvolves
an invariance of the theory under rescaling of the
dimensionless coupling g by an arbitrary function
f(e). Such a rescaling does not leave the finite or
der-e perturbative expression for p(g) invariant,
nor does it leave the resultant e expansion for g, '
invariant. However, the c expansions of y and
t/n' are invariant. To illustrate the point, con-
sider the rescaling
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we obtain to O(eG', G')

3

I3c(G) =--,eG+[-, +e(18 —ln2)]-
8m

G5
—(~+~11n~)32 18 3 (8~)2

The equation Pc(G, ) =0 is solved to Q(e') by

G 2 g g2
= —+ (12, (788 ln2 —2981n3 —23) .

(88)

(89)

found in O(e). We cannot verify stability within
the e expansion.

We emphasize that Eqs. (82) and (83) are un-
changed by the res caling procedure. For better
or worse, they are the scaling exponents to O(e').
In the above example we obtain to O(e G', G4)

1G' 5 9 5 G
y = ———+ -- ln2+ —ln3--

2 8n 2 4 8 (8w)2' (9o)

which becomes Eq. (82) upon insertion of Eq. (89).

Now at c = 2, G,' & 0, unlike the solution g, ',
which was negative to O(e'). Furthermore, setting
e =2 in Eq. (88) results in 4 complex roots. We
see that our e-expanded P functions evaluated at
e = 2 provide no insight into the existence or non-
existence of the Gell-Mann-Low zero. Since this
discussion revolves around changing the O(eg')
coefficient of I3(g) through transformations like
Eq. (87), this ambiguity does not occur in lower
order, where P is needed only to O(e'g') and where
the existence of the zero with P'(g, ) &0 is assured.
We must assume that our O(e') expansion of g, 2

does not spoil the infrared stability of the theory

ACKNOWLEDGMENT

One of us (J.D. ) would like to tha. nk H. Abarbanel
for helpful discussions.

APPENDIX

In this appendix we shall calculate the integrals
for the self-energy F~ "~ in O(g9 ) and the vertex
function I'~ "1 in O(g9') used in the text.

We begin with the integral for I'P" in Eq. (36).
Introducing the Feynman parameter x, we get

4 1
{g z) 2+0 xdx d k, d kD[E2„+2 nk9, 22+nk9(212—x)+n, 'P —2n, 'k k, —2n, 'k, k, (1 —x)] '

(A1)

Next, we use the following integral:

dDI3, dDI32(ak1'+bk2'+ck, k, +d+ek k, +f k R2) '=(2m)DdD 'I'(cr —D)(4ab —c') D~2/I'(o),
~J

where

k
d =d—,(be'+af' —cef) .

4ah —c2

(A2)

We obtain at k = 0 and E = -E~

-2T."'"~g2, = — '( „D E„3 xdx[(1 —x)(3+x)] ~~2, (A4)

(A5)

To evaluate the integrals in Eqs. (A4) and (A5)
we integrate by parts, using the formula

dxf(x)x'i' ' = —f'(0)+f'(0) -f(1)l 2

0

J
' lnxdx

( )3
=,—', (ln'; —-', ),

f
' lnxdx ~(1 3 1 ~)

(4 x)4 192 4 3 18
0

(A8)

1 f"(x)lnxdx+ O(e ) .
0

Letting x-1 —x in formula (A4) we have

f(x) = (1 —x)(4 —x)'~

Using the formulas

(A6)

(A7)

a.nd expanding everything to O(e ), we obtain

4~

32(4 n ')

1 1 5 16' ao'
x ~+ —

2
—y„„+in ', (A9)

e 2 3E~
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+6(4 —x)'/' ', (A 10)

which is Eq (38).
To obtain the k' derivative of I'," we again use

Eq. (A6) with

f(x) (4 x)«2-& 5 (4 x)'/&

l 191
/4 h5 5144 (6 in 4

—
57 )

0 ( x) (All)

This then leads eventually to Eq. (39).
The other self-energy graph in fourth order is

I ~5"~ [see Eq. (31)]. For this graph wemustintro-
duce two Feynman parameters x and y. We obtain,
after using Eq. (A2),

(A12)

We set

x= 5(u+ v), y = 2(u —v)

To evaluate the integral at k' =0 we integrate by parts using

(A»)

-'v
du(3 2u v5)'/5 2 = 1

[(1 —v')~ 5 ' —(3 —2v —v5)~ 2 ~]
2 —6 (A14)

Setting @=1 -m and using the formula
1

f(w)w' ' 'dw = 2f 0) f'(w)lnw dw+ 0(e), (A15)

f(w ) (2 w )E/2-1 (4 w)E/2-1 (A16)

then allows us to obtain I'5' ' to O(e') as in Eq. (40).
The integral for -(8/Bk')iI't5 '~ is the same as Eq. (A12) with an additional factor from differentiating.

This becomes, after changing variables and integrating by parts,

1 1

dv du(l ——,'u' —,'v')(3 2u —v')'/' '
0 V

(Al 7)

dv 1 —v)'/' '
8(1 —-', e )(1 ——,'e )

[(2 ——,'e)(1+v)' ' ' —(2 —e)(1+v)(3+v)' ' ' —v(3+v)' ' ']

1

16(1 ——,'e }(1——,'e )
(A18)

After some algebra, we obtain Eq. (41) in the
text.

We see by Eqs. (42)—(46) that we need only eval-
uate the integrals J, and J,. For J, we use Eq.
(A2) after introducing parameters x and y. We ob-
tain

J, is obtained similarly, except that only one
Feynman parameter is needed. We get

D

J,(a, b)=, r(2 —D)E,' 'I, (a, b), -
0

where

D

J,(a, b, c) = —, I'(3 —D)E„D 5/, (a, b, c),
Qp

[a+ x(b —a)]I,(a, b) = dx
4 —x)

(A22}

where

We now outline the procedure used in evaluating
I, and I,. We begin with I,. We define

[c+ (a —c)x+ (b —c)y]I( & 9 } y [3 2( ) ( )2]D/5

(A20)

n =-,'(a+b) -c, p=-,'(a —b),

and change to u, v variables (A13). We get

I, = I, (n, P, c) +I, (c., P, c),

(A23)

(A24)
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where I, (n, P, c)=I, (n, —P, c) . (A26)
~1 1

I,'(n, P, c) =-,' dv du(c+o, u+Pv)' '
~o v

x (3 —2u —v')'I' 2 (A25)

Now the singularities in e in Eq. (A25) come
from the vanishing of the second term in the inte-
grand at u= v=1. Integrating by parts several
times yields

1

I,'(a, P, c)=, , dvqh„z, ' 'w'i' ' —k, s, ' 'z'i' '+ —(1 —a)[h„'s(-1+m'i')-k, z, '(-1+a'i')]I .41 —2E) 0

(A27)

b 8, and k„s, are equal to (c+u+Pv) and (c+ov+Pv), respectively. u and z are (1 —v') and (3-2v —v'),
r espec tively.

We next expand in e and extract the singularities in c by integrating the v integrals by parts, using

~1 1

J
dvf(v)(1 —v)'I' ' = —f(1)+ dvf'(v)ln(1 —v)+O(e) .

0 E 0

After some algebra, we obtain

I, (a, b, c) = +[—,
' (a+b)](~-in4+ —,'ln3)+ —,'cln, ——,

' (al an+blnb)+O(e) .

(A28)

(A29)

Using Eq. (A24) we finally get

m '(2(a b+) 1 Ao
Z, (a, b, c)= E„-, , + — (a+b) 3 —2yE„+21n ' +31n3 +4cln-', —2(alna +bi nb) +O(e') .

2cMO E 4mE„

(A30)

Next we turn to the evaluation of the integral I, (&, b) in Eq. (A22). The singularities in I, came from the

factor x'I' ' near x=0. We integrate by parts, using Eq. (A6) with

f(x) = [a+ x(b —a)]' '(4 —x)'I' ' .

We also use Eq. (A8). After some algebra we get

I,(a, b) = —(ab —~4 a')+»~b'+P a'(1+in~~ca')+~4 ab(-1+1n4 —2~ in3a') .1

(A31)

(A32)

Using Eq. (A21) we then obtain J,(a, b) as

(A33)

1

0 N

+,—'4 b' —~» a'(1 ——,
' ln P; a')+ —,',ab (1 —ln ~+ a') + O(e o) .

This completes our evaluation of the needed integral& J, and J,. J„J4, and J, are then obtained by Eqs.
(43), (45), and (46).
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