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The invariance of a theory involving a vector field A „(x) under local gauge transformations
A „(x)~A „(x)+ &„A(x), etc. , for all c-number functions A(x) in some gauge group g, does not
imply that the theory contains a zero-mass gauge particle. It is shown that what is relevant to the
existence of zero-mass excitations is not the existence of g but the presence in 8 of the simple gauge
functions A(x) = R(x) = r.x, r = constants, under which A„(x) «A„(x) + r~. If R(x)C g, then
the transverse gauge particle propagator has a singularity at zero mass. This result and similar results
for the other proper vertex functions are deduced by both structural and functional methods. In
conventional Lorentz-gauge four-dimensional @ED, RC g and so the physical photon can be
interpreted as a Goldstone boson arising from the spontaneous breakdown of the R-transformation
invariance. In two-dimensional massless /ED (Schwinger model), R g g and so there the photon can
be (and is) massive. The point is further illustrated in other two-dimensional soluble models and
four-dimensional perturbative models.

I. INTRODUtI. "TION

q"'+ q'II(q')

of the gauge particle propagator can be avoided if
the invariant function II(q ) in the vacuum-pola. ri-
sation tensor 11„,(q) (gauge particle self-energy
tensor) has the singula. r behavior

II (q') ——Itf '/q' (1.3)

for g'- 0, a behavior which is quite consistent with
the usual gauge invariance which says nothing
about II(q ). Schwlnger showed further that (1.3)
is precisely what happens in two-dimensional
massless quantum electrodynamics (QED). Such
possibilities destroy any simple relation between
gauge lnvarlance and mass.

At a formal level, there is a strong connection
between the existence of a local gauge symmetry
in a field theory and the existence of massless
gauge particles in the theory. For example, the
canonical mass term M': A&A. ~: is certainly not
invariant with respect to the gauge transformation

A„(x)-A~(x)+ s„A(x),

where A(x) is a. c-number function. But at a more
precise level, because of typically quantum effects
such as renormalization and va-.....';un' polarization,
there is no simple connection between mass pa-
rameters in a I.,agrangian "nd;"'.he physi. ;.;a.l mass
spectrum of the theory. In fact, as first pointed
out by Schwinger, ' a zero-mass pole in the trans-
verse part

In this paper we shall describe and illustrate a
new formulation of this point. We will show that
what is relevant to the existence of zero-mass
excitations is not the existence of a gauge symme-
try group g but the pgeqegce in g of the simple
gauge functions

for constant r&, so that the corresponding field
transformation

A~(x) -A„(x)+~„ (1.5)

P(x)- P( )x+r, x =const (1.6)

and zero-mass excitations is of course well known
from the early work on the Goldstone theorem.
For example, the free massless scalar particle
is the Goldstone boson corresponding to the spon-

is a (necessa. rily spontaneously broken) symmetry
transformation. If A is in g, then q II(q')-0 for
q'-0, so that D(q') has a, singularity at q'=0. We
shall deduce this result and similar results for
the other proper functions by both structural and
functional methods. '

This conclusion is nicely illustrated in QED. In
the conventional (Gupta-Bleuler) four-dimensional
perturbative formulation, 8 E g and so the photon
here is massless. In the exactly soluble two-
dimensional formulation, A g g and so the photon
can be (and is) massive. The point will be further
illustrated in other two-dimensional soluble mod-
els and four-dimensional perturbative models.

The connection between the 8 transformation
(1.5), or its sca.lar counterpart
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taneous breakdown of (1.6) in the free-field theory
( Q =0).' The symmetry has also been used to
formulate pion low-energy theorems, ' and we have
previously employed it as a means of obtaining
exact Bjorken scaling in theories with reducible
scale invariance. ' What is new here is the obser-
vation that the presence or absence of A in g can
be used as a simple criterion for the existence of
the dynamical suppression of the zero-mass ex-
citation naively expected in gauge-invariant the-
ories, and hence as a tool to study the infrared
structure of gauge theories. ' The usefulness of
this tool is that it is usually much easier to deter-
mine the symmetry group of a theory than the mass
spectrum.

In a sense our work realizes the often expressed
hope of describing the physical photon as a Gold-
stone particle. It is well known that (in the Lorentz
gauge) the two unphysical photon modes are inter-
pretable as the Goldstone bosons arising from the
spontaneous breakdown of symmetry under the
usual gauge transformations (1.1). Our conclusion
is that the physica/ photon modes are interpretable
as the Goldstone bosons arising from the spontane-
ous breakdown of symmetry under the 8 transfor-
mations (1.5). That is, the presence of (spontane-
ourly broken) 8 symmetry in ordinary QED guar-
antees the presence of a zero-mass excitation in
the physical (transverse) part of the photon prop-
agator.

In order to determine the symmetry group of a
theory, it is important to study transformations
on the fundamental independent fields in the theory.
These are the fields which determine the Hilbert
space and the observables of the theory. A sym-
metry transformation must transform these fields
in such a way that the observables remain invari-
ant. Thus, for example, it is not sufficient to find
transformations on the fields in a Lagrangian g
which leave g invariant if the fields mix. As a
simple example, consider a free massive vector
field A„and a free massless scalar field Q:

( +m')A„=O, /=0.
Invariance transformations are

g(x)- g(x)+r ~ x, A„(x)-A„(x).
If one now defines the new vector field

(1.8)

V„=—A„+Bq P,
one has the field equation

( + m') V„= m' s„P,
and (1.8) become

(1.10)

P(x)- P(x)+r x, V~(x)- (V)+xr„; (1.11)

and this seems to contradict our assertions be-

II. FORMALISM

We shall present our analysis in the framework
of ordinary QED. The (renormalized) field equa-
tions are the Dirac equation

(iy'- m)g(x) = -eh(x)

and the Maxwell equation

s'E„,(x) = ej„(x),

where the electromagnetic field strength is

(2 1)

(2.2)

in terms of the field potential A&, the spinor
source ls

h(x) =:A'(x)g(x):,

and the vector current is

i„(x)=:((x)r„4(x): .

(2.4)

(2 5)

We do not now specify the normal products in
(2.4) and (2.5) further except that (2.4) is assumed
to be covariant and (2.5) invariant under the group

g of gauge transformations

A„(x)-A„(x)+a~A(x),

P(x)- e"' i"'g(x),

g(x)- e "''"'y(x),

(2.6a)

(2.6b)

(2.6c)

so that g is a symmetry group of the field equa-

cause the transverse part of the V& propagator is
just (q' —m ) ', which is nonsingular at q' =0.
The point is that the Lagrangian expressed in
terms of V~ and Q contains V„-P-mixing mass
terms and so nothing can be concluded from (1.11).
The fundamental (commuting) fields which deter-
mine the Hilbert space are A„and Q (the Hilbert
space is here the simple tensor product of the
Fock spaces of A„and Q), and only 8 transforma-
tions on them are relevant for our considerations.

The plan of the paper is as follows. After re-
viewing the Lorentz-gauge formalism in Sec. II,
the Ward-Takahashi identities are described in
Sec. III, where new derivations, which can be
simply extended to A invariance, are given. The
connection between II(q'), D(q'), and the electric
charge operator are then noted in Sec. IV. The
zero-momentum theorems arising from A invari-
ance, including D (0) =0, are derived in Sec. V.
In Sec. VI our results are illustrated in some two-
dimensional soluble models: the Schwinger model
and a new simple model which we define and solve.
The same is done in Sec. VII for four-dimensional
perturbative models. The final Sec. VIII contains
a short discussion of the possible usefulness of
our results.
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tions. For now we assume only that g contains
all square -integrable infinitely differentiable
functions B„A. The subgroup corresponding to
A(x) = const has j&(x) as its Noether current, the
conservation of which follows also from the struc-
ture of (2.2) and (2.3):

(2.13)

-=D(q') g, .+E(q') q„q. ; (2. 14)

d'xe" "&0~ T[A„(x)A, (0)] ~
0)

8 "j„(x)=0.

The theory will be quantized in the Lorentz
gauge,

8 "A& = 0 between physical states,

(2 7)

(2 6)

we define the proper photon self-energy function
II~, by

4

e — d'xe" "&0~ T[j„(x)A,(O)] ~O&

in the manifestly Lorentz -covariant Gupta-Bleuler
manner with

&O~A, (x)~O& =O

-=11„.(q)D:(q), (2.»)
and the proper vertex part I'& by

(2.10)

(2.11)

We define the propagators'

G((')=i (2—) d'xe' '"
& Ol T[g(x)g(0)] I 0&

(2. 12')

&olj„(x)IO& =o,

where (0~ is the vacuum state. Then g is further
restricted by

A(x) =0.

4

d'x d' ye" '"'"' ( OI 7[A„(x)(t(y)P(0)1 I o&

G(P)~'(-P, q)D.„(q)G(f + q). (2. 16)

and

q'D„, (q) =g„, +II„,(q)D,'(q) (2. 17)

The Maxwell equations (2.2), (2.3), and (2.6) im-
mediately give

4
q'('-(()i" (9,q)D.„(Q)G(9+ q) = (~—, d 'x d 'y e"'""' '

& 0
~
T [j„( )gx(y) P(0)] ~

0) . (2. 16)

The inhomogeneous term in (2. 17) has been chosen
by convention since equal-time commutation re-
lations among the A& have not been assumed. "
Iteration of (2. 17), etc. , lea.ds to renormalized
perturbative solutions to these equations in which
Il&, and I'& have their usual interpretation in
terms of Feynman diagrams. "

III. GAUGE INVARIANCE

so that

11,.(q)= (q, q. -q'g„. )ll(q')

and

q'II„, (q) =0.

Thus, from (2.17),

q'q'D„, .(q) = q, ,

(3 4)

(3.5)

(3.6)

The content of the invariance of the theory under
the gauge transformations (2.6) is contained in the
Ward-Takahashi" (WT) identities obeyed by the
Green's and proper functions. The simplest deri-
vation" of these identities is based on the current
conservation condition (2.7) and the equal-time
commutation relations

so tha, t, using (2.7) and (3.2), (2.18) gives

q. I "(P,q) = G '(P) —~ '(0+ q). (3.7)

Equations (3.3) and (3.7) are the simplest WT iden-
tities. All of the identities can be similarly de-
rived. " We state only one more. The proper
photon-photon amplitude T„,„„(q„q2,q3, q, )

(Zq; = 0) satisfies
[j,(x),A, (0)]5(x,) = 0,
[j.(x), 4(0)]5(x.) = 0(0)6'(x),

(3.1)

(3.2) q,"T...,...,(q„q„q„q.)=0, I=1, . . . , 4.

which express the charge contents of the fields.
Applied to (2.15), (2.7) and (3.1) give" With the forms (2. 14) and (3.4), (2.17) gives

q" 11„,(q) = o, (3.3) q'D(q') =1 —q'11(q')D(q'), (3.9)
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which is just (1.2), and

q'&(q') = 11(q')D(q') . (3.10)

We now present an alternative derivation of (3.3)
which can be used to deduce the consequences of
8 invariance as well. Under (2.6a), the photon
propagator (2.13) undergoes the transformation

D]( (q)-D'„, (q)==D]( (q)+ q„A(q)A, (0),
(3.11)

(g„'+II „,D")11„=(g„'+II„.D'")II,,
This implies that

(3.17)

11,.(q)D.'"(q) =11„.(q)D;(q). (3.15)

Similarly, consideration of (Ol Tj]((x)j„(0)l 0) gives
the identity

(3.16)

in which substitution of (3.15) gives

where II „(q)= II)„(q) (3.18)

and

A(q) = i —-(f'xe"'"A(x)
2r

A, (0) =—B„A(x) l„,.

(3.12)

(3.13)

In the theory constructed from the transformed
fields

"~=~u+ '~A (3.14)

etc. , we define the polarization tensor II„'„(q)as
in (2.15). Equations (2. 10) and (3.14) then give the
identity"

except perhaps at isolated points. " Equations
(3.11), (3.15), and (3.18) thus imply the WT iden-
tity (3.3).

The WT identity (3.8) can be immediately derived
in the same manner. It is, however, more difficult
to derive (3.7) with this method. In the remainder
of this section, we will deduce all of the WT iden-
tities in a concise and simple manner using func-
tional techniques. The same method will after-
wards be used to study A invariance.

The generating functional for Green's functions
in quantum electrodynamics is defined by the func-
tional integral

t«I&„(, (]= J[dd][ k][ ddlexd« d d'x Z(x)+d (x„d') —~, ',x)d'(x) —((x)d(x) —((xlil(x) l, (3., (())

where 2 (x) is the usual Dirac-Maxwell Lagrangian, and the usual gauge-fixing and source terms have
been included. The gauge transformations (2.6) leave Z(x) invariant, and so

«[d„(,(I= J[dd][dd][dd]ex«(& d'x Z(x)+d (B,A")'+ —a„d"(x) d(x) —J„(x)d"(x)

which implies that

—~, (x)x'd(x) —x""'*'(lx)d(x) —x ""'*'((x)i)(x) j, (3.20)

(3.21)0 = —8„—sqJ ~(x) —e ](x) + e ](x) — II'l Jq, $, $ ] .2 6

We make the usual Legendre transformation to obtain the generating functional I"
l Q&, 4', 4] of proper ver-

tices:

Z[d, , «, «] = Z[J„,(, (] —f d'x[7 (x)()'(x)x((x)«(*)x ((x)«(x)], (Z=)x)Z, (3.22)

where

5z 5r
QJ ~ P M

ez or
5$' M

5Z

Then we obtain from (3.21)

(3.23)

or ar
+e

( )
4(x) —e —

( )
C(x), (3.24)

which is the general form of the WT identities.
None of the above three methods of derivation is

totally satisfactory from a mathematical point of
view. It is, however, possible in QED to rigorous-
ly deduce all of the WT identities and prove their
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equivalence to the gauge invariance of the field
equations by consistently using the renormalized
Schwinger-Dyson equations. ' In the following sec-
tion we will rely on the above more formal meth-
ods, believing they ca,n be substantiated by the
more precise methods used in QED.

(P I@ lP') = «(p -p')P. (I —5),
where

(4 4)

This dual role played by (4. 1) can, however, break
down. To see this, note that (2.14), (2.18), and
(4. 1) give in general

IV. THE PHOTON PROPAGATOR AT ZERO MASS
1 —6—= lim q'D(q')

q ~0
(4 5)

Q -=e f d xj(x). ', (4. 1)

Here t. is the electric coupling constant defined,
for example, by the normalization condition"

&(P)1', (P, q)~(P+ q) =e@(P)r,~(P+ q),

According to Eq. (1.2), the behavior of the in-
variant photon polarization amplitude II(q') for
q'- 0 determines the behavior of the invariant
transverse photon propagator for q'-0. If II(0)
= —1, D(q') is more singular than 1/q'. For
II(0) = const w —1, D(q') has a simple pole at q' =0.
This happens in conventional perturba. tive QED
where II(0) = 0 is maintained so that D(q')- 1/q'.
If II(0) =~ but q'II(q')-0, then D(q') [q'II(-q')j '

is singular for q'-0, but less so than is a simple
pole. A zero-mass "excitation" can then be said
to exist, although the extent to which this can be
identified with a zero-mass "particle" is not im-
mediately clear. If q'II(q')-M'=const, then
D(q')- —1/M', and so there is no contributing
zero-mass excitation in the spectrum. This is
the Schwinger mecha. nism (1.3). If (1.3) is valid
also for q' near M', then D(q')- (q'- M') ' for
q'-M' and so there is a mass M particle in the
spectrum. Finally, if q'II(q') -~ for q'- 0,
D(q')-0 and again there is no zero-mass excita-
tion.

It is thus clear that gauge invariance is consis-
tent with any behavior of D(q') for q'-0. The
physical photon can therefore not be thought of as
a Goldstone boson of gauge invariance. Unless

D(q'), ~:.1/q'+ o(q'),

however, it follows from Eq. (2.10) that &(q') is
singular at q'= 0, and so at least the unphysical
photons can be considered as Goldstone bosons of
conventional gauge inva, riance.

I et us now note how the above considerations
are related to the electric charge operator

or

5= lim q'II(q')D(q').
q2-i 0

(4.6)

In conventional QED 5 = 0; but if 5 = 1, then Q van-
ishes between electron states and one says that
the electron charge is completely screened by
vacuum polarization. By (3.9), if 5=1 then D(q')
is less singular than 1/q' for q'- 0. The conven-
tional connection between the charge and the cou-
pling constant is therefore lost if the transverse
photon propagator has no zero-mass pole. This
is actually expected by Gauss's theorem (charge c0
~ 1/r potential ~ mass-zero particle). We repeat
that conventional gauge invariance precludes none
of this. "

V. 8 TRANSFGRMATIGNS

We have seen in Sec. IV that (3.3) is the only
consequence of gauge invariance on II„, when the
gauge group 9 consists only of smooth squa, re-
integrable functions A(x). We will now show that
more information is obtainable if 9 contains as
well certain smooth functions which do not de-
crease for x- ~. Specifically, we consider the
gauge function A(x) =B(x)=r x in Eq. (1.4), so
that s&A(x) = r& and A„ transforms as in (1.5). The
Fourier-transformed field transforms as

&„(q)-&„(q)+r„5'(q) . (5.1)

Because this A(x) does not decrease at infinity,
the Fourier transfor~ exists only as a distri-
bution. Note that the transformed field A„(x)
=A&(x)+r& continues to transform correctly under
translations, and so leads to a translationally in-
variant theory with the same vacuum (zero energy-
momentum eigenstate of the generator P„of trans-
lations, i.e. , of the momentum operator).

Under (1.5), the photon propagator transforms as

(4.2) D„.(q)-D„'.(q) =D„.(q) -r„r.&'(q) (5.2)

on the proper vertex function. In conventional
QED, the charge serves both as a conserved quan-
tum number (0 =0) and a,s a, measure of the cou-
pling strength of the photon to charged particles:

(P ~ Q ~P') = e5(p —p') P, (conventional QED) .
(4.3)

The assumed invariance of (2.15) again leads to the
identity (3.15), where now II„'„ is the polarization
tensor appropriate to the field A&. %'e again ob-
tain (3.17), which tells us that 11~, and II„', can
only differ at q=0 by a distribution with support
at q=0. The conserved structures, however, for-
bid the existence of such a difference and so H. „,
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11„.(q)~'(q) = o, (5.3)

=II„', near q=0. Equation (3.15) thus implies that
—.[q'5'(q)] = o, (5.11)

or

Iiq„(0)= 0.
From (3.4), this means that

II(q') & I/q' for q'-0

(5.4)

(5.5)

and hence that the transverse photon propagator
(1.2) has a, singularity a.t q'=0:

D(o) =~. (5.6)

d4xe"'"s&(r x) =r„5(q)

=- q„(~ &,)&'(q),

We see that the presence of 8 in 9 implies the
existence of a zero-mass excitation a,nd so pro-
vides more information than gauge invariance
alone. This result is of the Goldstone-theorem
type (A symmetry is of course spontaneously bro-
ken), although there is here no conserved local
current associated with A invariance. As already
noted in the Introduction, it is the physica/ photon
which here plays the role of the Goldstone boson.

There are a couple of subtle points in the above
which we have glossed over which we would now
like to return to. Using

suggesting that (5.3) is satisfied. Equation (5.10)
is the correct conclusion. A more picturesque
way of phrasing these points is that, although (5.7)
looks longitudinal, it really is not because it has
support at q= 0 where no direction in q space can
be defined.

Similar arguments give

T...,...,(q„q., q. , q, )I, . ,=0, f=1-4 (5.12)

and the similar vanishing of the n-photon proper
amplitude when any external momentum vanishes.
These low-energy theorems are among the conse-
quences of 8 invariance, i.e. , of the presence of
A in 8. They are similar to the low-energy the-
orems previously deduced for the assumed-to-
exist S matrix from B invariance in scalar field
theories. ' Our results are, however, valid off
the mass shell and this is of extreme importance
in massless theories where the existence of an S
matrix is in question.

The further consequences of R invariance are
most easily deduced by functional methods. The
Dirac-Maxwell Lagrangian, together with the
gauge-fixing term, is invariant under the A trans-
formation (1.5) and the associated phase trans-
formations

(5.2) can also be written a.s

(5 7) Pe f8'
'x

P- fe
(5. 13)

D,'.(q)=D„.(q)+ q„(~ &,)&'(q)~, . (5.8)

In view of (3.3), the identity (3.15) now gives no
further information. The point is that the identity
(5.7) is only correct when applied to testing func-
tions. The amplitudes II„,„(q) and D„,(q) are,
however, not testing functions and so must be
separately evaluated before multiplication in
(3.15). That is, the associativity law A(BC)
=(AB)C fails for distributions. With this inter-
pretation, (5.3), and not (3.3), is the correct con-
clusion. A related source of confusion is based
on the observation that

(q„q, —q'a„. )&'(q) =o, (5.9)

which, in view of (3.4), again suggests that (5.3)
is trivially satisfied for any II(q'). The resolution
is again the fact that the distributions II„, and D„,
must be separately evaluated before multiplication.
For example, if II(q') is (q' —ie) ', (5.3) is not
satisfied since

(5.14)

as the counterpart of (3.24). These relations are
the consequences of A invariance.

From (5.14) we obtain by functional differentia-
tion

0=
5I' g 5I'

58„(x)M (y)5i(z) M (y)57(z)

e'r
5C(y)54(z) ' (5.15)

which implies for the proper vertices in momen-
tum space

(5.16)

The derivation of the WT identity proceeds in the
same way as before, except that the constant A
transformation necessitates the integrated form

or er 6I"—
0 = d'x — —ex~ @(x)+ex„=4(x)

—,q' 5'q =5'q c0, (5.10) Equations (5.16) would follow from (3.7) if

although the wrong interpretation would give lim q), I' (q, p) =0.x

q ~o ()q
(5.17)
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R invariance thus implies the validity of (5.17).
From (5.14), we can perform functional differ-

entiation with respect to 8 any number of times,
and we get

~(n+ 1)I
5e„(x)5a (y, ) ~ ~ 5e (y„)

'

m(n. (5.18)

This statement is translated in momentum space
to be

O=I' i'''"~(q, p, =O, . . . ,p =0; p „,. . . , p„).
(5.19}

In particular, the inverse photon propagator
(D ')„,(q) vanishes as q -0. This was our pre-
vious conclusion (5.6).

In conclusion, let us note that one can try to
generalize our ana, lysis by considering the pres-
ence in 9 of

so that (6.1) becomes

( + m')A„= ek„, (6.7)

although this is not necessary. Equations (6.1)-
(6.6) now define our model.

We will use the Dirac matrices" "
('01 ) (0

10 ) I —1 Of
(6.8)

and also

(6.5)

The conserved current (6.4) is therefore well de-
fined and is taken as the source of the massive
vector field A„. (The field equations do not follow
from a Lagrangian. ) We will further impose the
divergence condition

(6.6)

(5.20)

This would lead naively, e.g. , to the vanishing of
n —1 derivatives of the photon amplitudes at zero
four-momentum, even if R„(x)=0. This naive
conclusion is actually not necessarily correct be-
cause of the loss of translational invariance caused
by an A„ transformation. We omit the details in
this paper and will study only the A, =A transfor-
mation.

(-I 0) ( 0
y'=r'y'=

/

0 1 —1 0

which are related by

yp y5 = &
p I y

Some useful relations are

(6.9)

(6.10)

VI. TYCHO-DIMENSIONAL SOLUBLE MODELS

UW tC

&pv~

try&y, = 2g&, , try, y& y, = 2e &, . (6. 12)

Two-dimensional massless QED (Schwinger
model') is exactly soluble. It is gauge-invariant
but ha, s no physical zero-mass excitation. It
therefore follows from our results in the previous
section that R is not in the Schwinger gauge group
9~. We will show this explicitly below. For clar-
ity, we will first define a,nd solve a different but
related two-dimensional model which illustrates
the same points in a simpler way.

As field equations, we take

Before solving the model, we will show that the
field equations are invariant under the local gauge
transformations

A(x) =0

and such that

(6. 15)

A„(x)-A ~ (x) + s„A(x), (6. 13)

y(x) - exp(+ (ivr m'/e) [A(x) —y,x(x)])X(x), (6. 14)

where A(x) is any c-number function satisfying

O'Ep, + m'A~ ——e&p, (6.1)

(6.2}
"1

Z(x) -=dx', s, A(x„x', ) (6.16)

where

E~, -—cI,A~ -BpA, (6 8)

exists. Such functions constitute the gauge group
9 of the model. The key property of (6.16) is

s„z(x) = e„,s'A(x) . (6.17)

(6.4)

is the free-field Wick product. The spinor y satis-
fies the massless free Dirac equation (6.2) and we
can append the free-field anticommutation rela-
tions

m'
k „(x)- k „(x)+—S„A(x) . (6.18)

The invariance of the free Dirac equation (6.2)
under (6.14) follows immediately from (6.17) and
(6.10). We note next that under (6.14) the current
(6.4) transforms as
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This follows from the explicit form

(6.19)

and

j„(x)= lim LiTI(x+ ()y"P(x)

of the free Green's function, the trace expressions
(6.12), and the relation where

—G„(() [1 —i e&'A, (x)]), (6.26)

(6.20) G„(g}=&Oly(g)r y(0)IO& . (6.27)

The invariance of (6.1) is then an immediate con-
sequence of (6.13) and (6.18).

At this point, everything is in conformity with
our expectations. We have a massive vector me-
son and a local gauge-invariance group 9 given by
(6.13) and (6.14), but clearly A g 9 since (6.16)
does not exist for A(x) =r ~ x, B,A(x) =&,g0. Actu-
ally, the analysis is not yet complete for two
reasons: (i) The mass spectrum has not yet
been determined and so a massless excitation
is not yet definitely excluded, and (ii) A& and ll

are not necessarily independent fields (no appro-
priate commutation relation ha. s been specified),
and so it is not yet clear that the transformations
(6.13) and (6.14) ca.n be consistently implemented
by symmetry transformations on fundamental in-
dependent fields. We will now affirmatively re-
solve these points by explicitly solving the model.

An operator solution to (6.1)-(6.6) is

X, -=X (3X„(IX,
define the operators"

~ i Wwy5(@+a)
7

(6.28)

(6.29)

A„= e„,s'(q+ o), s"A„=O.
e (6.30)

The second term in (6.26) arises from the usual
exponential line integral needed for gauge invari-
ance. ''' Although with (6.25)-(6.27) the field
equations are R-invariant, the gauge group 9~ of
the theory cannot be determined until the model is
solved in terms of fundamental independent fields.
Since the photon becomes massive one expects
R g Q~. To confirm this, we recall that an oper-
ator solution can be obtained by the following
steps":

(1) Let q be a. free massless scalar field"
quantized with a. negative metric, and on the (in-
definite metric) Hilbert space (m„'=—m' =e'/m)

e
A„=ae„,9 o +—k„, (6.21) Equation (6.29) then satisfies the massless Dirac

equation, but (6.26) gives
where o(x) is a mass-m scalar free field,

( +m')o =0, (6.22)
1j„=k~ — c„„s'(o+ q),

V7T
(6.31)

o (x)-o (x), (6.23 )

ll(x)- exp(+ (imam'/e) [A(x) -y, Z(x)]'l X(x) (6.24)

on the fundamental independent fields, as follows
from (6.18). The picture is thus confirmed. We
have local gauge invariance, no massless photon
excitation, and R not in the gauge group, con-
sistently with Sec. V.

The operator field equations for two-dimensional
@ED have the forms (2. 1) (m=0) and (2.2) with"

h(x) = 'y" »m
I
A„(x-+ &)0(x) + 4(x)A

f
(x —

&N(~o
(6.25)

and a is an arbitrary constant. That (6.21) solves
(6.6) and (6.7) is a.n immediate consequence of
8"&„=0and k„=0. The mass spectrum is now

clear, The complete Hilbert space is the direct
product X —= X Xx of the free -field Fock spaces,
and the particle spectrum consists of a free mass-
m scalar and a free massless spinor. The gauge
group of the model is also clear. It is the one
specified above since the transformations (6. 13)
and (6.14) are induced by the transformations

whereas

A„= — c„,s'o = e(j„—l„),
V' 77

(6.32)

where

1
lp kp, f

—cpU~
V'V

(6.33)

(2) Consider the non-negative metric subspace
X~ of X, consisting of vectors annihilated by t„
( lq=O):

li„~iP) = 0 for ~P) C K~. (6.34)

The Maxwell equations are satisfied on X~, where
one has

1
&p= I= &pv~& ~

V 7T
(6.35)

so that Q =0 and ( + m')A&=0, and furthermore
the electron has now disappeared from the spec-
rum

(3) Finally proceed to the positive-normed
Hilbert space K—=K~/K, obtained from Kp by di-
viding out the zero-normed states. Here the theo-
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l~(x) —l„(x) .

The desired transformation laws are

{y(x)—o (x),

q(x)-yl(x)+ ~ X(x),

(6.36)

(6.37)

(6.38)

ry is equivalent to that of the massive free scalar
field o on K ." Thus the electron disappears and
the photon acquires mass nz by the mechanism
(1 3)

We can now proceed to investigate the gauge-
invariance properties of the model. We must
determine for which functions A(x) the theory is
invariant under the transforma. tions (2.6). This
means by definition that we must determine for
which A(x) the transformations (2.6) can be im-
plemented via (6.29), (6.30), a.nd (6.34), by trans-
formations on the independent fundamental fields
{y, ){, and y). Note that although g a.nd A„depend
only on the sum q + a, the subsidiary condition
(6.34) depends on ){and q alone, a.nd so there a,re
three distinct independent fields; i.e. , (6.34) is
not a condition on P and A& alone and (6.29) and
(6.30) do not determine the theory, and I„(x) must
be gauge -invariant:

g, = ~O„~B~C, (7.1)

where A. is a massless scalar field, B is a vector
field, and C is a scalar field. Because of the
derivative coupling of A, the theory is formally
invariant to the A transformations

A. (x) -A(x) + r,
B„(x)—B„(x),
C (x)-C (x) .

(7.2a, )

(7.2b)

(7.2c)

When 8" or C have finite masses, the theory can
be renormalized so as to preserve the symmetry
under (7.2). All of the expected zero-momentum
theorems will hold in each order of perturbation
theory. For example,

invariance group of the field equations (2.1) and
(2.2) since these (renormalized) equations deter-
mine the perturbative solution in which g and Az
are independent fields. " It follows from the ex-
plicit form of the finite local field equations given
in Ref. 8 that BR Q, . Therefore, by Sec. V, D(q')
has a zero-mass excitation —the physical photon.

As our second example, we will construct a
model with A invariance but no other gauge invari-
ance. The interaction Lagrangian is

( )
ie[A{x)-y5x{x)]

( ) (6.39) lD"(o)] '= I'„(0 P) = ~"(q„q q3 q4)I, . -O

where )),(x) is given by (6.16). That (6.37)-(6.39)
induce (2.6) and (6.36) follows as for the previous
model. The symmetry group Qs of the theory is
thus determined and we see that A g 8, as expected
on the basis of Sec. V from the absence of a mass-
less photon. Although the electron confinement
aspect of the theory is interesting, '" t;he model
is physically even more trivial than the preceding
one —it is equivalent to the massive free scalar
field on X~.

There is another way of looking at the absence
of a zero-mass physical excitation in the Schwing-
er model. Because the operator solution (6.29),
(6.30) gives noncanonical equal-time commutation
relations and does not satisfy the operator Max-
well equation, the formalism of Sec. II is not di-
rectly applicable. Because of (6.30), Eq. (2.17)
has no solution. A II„, can only be defined if g„,
in (2.17) is replaced by (q'g„, -q„q„)P(q') with P
a polynomial, as required by locality. Then
II„,(0)=0, but this does not imply the presence of
a singularity in D(q~)=P(q )/[ I+II(q )] at q =0.
Equation (1.3) is obtained only if P(q') is taken to
be 1/q', but this choice is not possible in all gauges.

VII. FOUR-DIMENSIONAL PERTURBATIVE MODELS

We consider first conventional QED. The gauge-
invariance group 8', of the theory is just the gauge-

J&—:s&A —gB& P . (7.4)

The WT identities arising from ~~J& = 0 give no
new information, however, because 8 "J„=0 is
just the A field equation

A = ga" (B„y). (7.5)

If B" and C are also massless, the theorems
(7.3) remain va.lid in ea.ch order, but now
II "(P') -P'(lnP')" and so D "(P') loses its pole but
remains singular. " The vanishing of 11"(0) is a
direct consequence of the A invariance of the mod-
el, as manifested in the derivative coupling. In
this case, since the theory is infrared-free, the
zero-momentum behavior can be exactly deter-
mined by Symanzik's" method.

As our final examples, we consider the class of
models recently studied by Cornwall. " These
models are gauge-invariant, but the gauge parti-
cles nevertheless are massive because of the
presence of mass terms of the form

(7.3)
where D (q') is the A propagator, I'„(q, p) is the
A(q)-B), (p)-C(p-q) proper vertex, and T"(q; ) is the
proper A four-point function. In fact, the proper
A self-energy function 11"(q') vanishes linea, rly for
q' —0, and so D (q') has a simple pole at q' = 0.

The formal generator of (7.2) is the conserved
current
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(7.6)

The expression (7.6) is invariant under (1.1) for
A(x) such that A(x) & 0, but it is not invariant
under (1.5). We thus again find consistency with
the analysis of Sec. V.

VIII. DISCUSSION

Our study of various models in Secs. VI and VII
has confirmed our conclusions deduced in Sec. V.
It is the presence of the A transformation (1.5) in
the gauge symmetry group 8 that implies the pre-
sence of a zero-mass excitation. Consequently,
if such excitations are to be avoided, g must not
contain R.

Is this observation useful? In finite orders of
perturbation theory, the field equations determine
the theory and the given fields are the fundamental
ones so that the invariance group 8 of the theory
is the invariance group of the field equations, and
it is relatively easy to see if R & g. Itis, however,
also easy to study D(0) itself order by order. In
some models, the field equations themselves may
not be enough to determine whether or not R ~ 8.
It may be necessary to know the exact solution,
which of course gives D(0) directly. The models
we have studied thus do not indicate that our re-
sults are particularly useful. However, in more
complicated and hopefully more realistic models,
it may be much easier to determine if A E 8 than
to calculate D(0). Our analysis can then be used
as an effective tool to study the zero-momentum
behavior of these theories. This possibility is
discussed in detail in another paper. '

It is of course possible that R c 8 in each order
of perturbation theory but not in the exact sum. ~'

For example, a Lagrangian with a term like (7.6)
may be equivalent to a Lagrangian without such a
term if this latter theory is summed over all
orders. " Another example is provided by the
Schwinger model in which, as we have seen, it is

the nonfundamental nature of the original ) and A„
fields which is responsible for the lack of R in-
variance in the exact solutions. We cannot rul, e
out such occurrences in nature, but we note that
if they are present, then it seems impossible to
perform realistic calculations at the present time.
Perturbation theory is the only serious calculation
tool presently available.

We note in this connection that the symmetry
group of the field equations cannot fail to be the
symmetry group of the theory because of vacuum
breaking. The R symmetry is always a spontan-
eously broken one, and so some other mechanism
must be present in order to ruin the strict corres-
pondence between field equations and symmetries.

As a final comment, we recall that our analysis
only established a singularity of D(q') at q' = 0 if
A ~ 8. The question arises as to whether or not
this singularity corresponds to a physical mass-
less particle. This is, in general, a difficult
problem. If D(q') has a pole at q' = 0, the particle
interpretation is clear. In special cases, it may
be possible to prove that the singularity is a, pole.
For example, if a suitable conserved current can
be constructed, one may use the method of Ezawa
and Swieca." Even if there is no simple pole, it
may be possible to construct an S matrix, perhaps
using the methods developed by Zwanziger" for
@ED. In any case, the mere presence of a singu-
larity at q' = 0 indicates the existence of physical
massless excitations which are presumably not
present experimentally in strong interactions and
so must be avoided. The hadronic symmetry
group should therefore not contain the R transfor-
mation.
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We calculate the O(e') terms of the Wilson expansion of the critical exponents in the Reggeon field

theory with a bare linear trajectory and a triple-Regge interaction. We find that the O(e') and O(e)
terms are comparable at e = 2, and we obtain cr„,(s) — (lns) . We also show that the
Gell-Mann —Low function P(g) expanded to finite order in both & and g carries no information about
the existence of the Gell-Mann-Low zero at finite e.

I. INTRODUCTION

o... -(Ins)-&, (2)

The technique of using the renormalization group'
and the Wilson e expansion' to derive scaling prop-
erties of proper vertices in Reggeon field theory'
was introduced by Migdal, Polyakov, and Ter-
Martirosyan, ' and by Abarbanel and Bronzan. "In
their work the behavior of the proper vertices in
the infrared limit j = 1 and t=0 was examined, and
a number of conclusions were reached. The most
important of these was a prediction that in a theory
with a linear unrenormalized Pomeron trajectory
and a triple-Pomeron coupling, the asymptotic be-
havior of the elastic amplitude is

T(s, t) = s(lns) "E(t(lns)'),

with y & 0. This behavior arises from the coin-
cidence at j =1 and t=0 of an infinite number of
branch points. The scaling exponent y specifies
the logarithmic rise of the total cross section,

and the exponent z specifies the trajectories of
Pomeron cuts and pole for small t,

n(t) = 1+const x (t)'t'

-y = —,', e+(~~2 in~3+ P,)(~~2m)'+O(e'),

z = I+ ~2, e+(~24 in~~+ P)(~~2&)'+O(e') .
(4)

Since the coefficients of the (~»e)' terms are about
7.7 and 3.5, respectively, the O(e') terms are
larger than the O(e) terms at e =2. It would there-
fore seem that the e expansion is a questionable

The exponents y and ~ can be determined in an e

expansion, where e = 4 —D is the difference between
the natural scaling dimension (=4) and the number
of transverse dimensions D; we want answers for
e =2. Although c is large, it was shown4 ' that to
o de, -y=» =6, a=1+,4 =». If e were al-
ways accompanied by a factor like», a few terms
in the e expansion would give good results for y
and z. We have determined that


